很好的电压比较器的例子
常用的电压比较器

常用的电压比较器电压比较器是电子电路中常见的一种器件或电路,通常用于比较两个电压的大小,然后输出高电平或低电平来实现对信号的控制。
在电子电路设计中,电压比较器是十分常用的电路之一,因此,本文将介绍一些常用的电压比较器。
1. LM311电压比较器LM311是一种具有高速、精度和灵敏度的电压比较器,常用于电子控制和测量系统中。
它操作电源范围广,具有高电阻输入和输出,且能够在广泛的温度范围内操作。
另外,LM311还具有可调的电压比较器和滞回比较器的特性,使其更加灵活和多功能。
2. LM339电压比较器LM339是一种低功耗、低电压操作和高精度的电压比较器。
它具有四个独立的比较器,每个比较器都有一个开放式输出引脚和一个输入电平偏置器。
LM339的功耗非常低,故它在开启多个输出时也不会对电路产生太大的负担。
3. LM393电压比较器LM393是一种专为简单应用设计的低功耗、电压操作和高精度的电压比较器。
它具有两个独立的高增益、低偏移电压比较器,具有不需要外部元件的开环电路输入抗性。
它还具有多种工作电压和温度范围,适用于多种不同的应用场合。
4. UA741电压比较器UA741是一种原始的集成电路,它是很多电路中常见的基本电压比较器模块。
它具有高增益、宽电压范围和大电流能力,因此,在许多不同应用场合中都有广泛的应用。
总的来说,以上四种电压比较器都有各自的特点和应用场合,它们都是电子电路设计中常见的器件或电路。
电压比较器在电压判断、判断两个电路是否相等等方面有广泛的应用,但需要特别注意的是在实际应用中,也需要使用外部元件来进行稳定性校正,这种校正可以提高电路的稳定性、精度和性能。
很好的电压比较器的例子

霍尔测速测速是工农业生产中经常遇到的问题,学会使用单片机技术设计测速仪表具有很重要的意义。
要测速,首先要解决是采样的问题。
在使用模拟技术制作测速表时,常用测速发电机的方法,即将测速发电机的转轴与待测轴相连,测速发电机的电压高低反映了转速的高低。
使用单片机进行测速,可以使用简单的脉冲计数法。
只要转轴每旋转一周,产生一个或固定的多个脉冲,并将脉冲送入单片机中进行计数,即可获得转速的信息。
下面以常见的玩具电机作为测速对象,用CS3020设计信号获取电路,通过电压比较器实现计数脉冲的输出,既可在单片机实验箱进行转速测量,也可直接将输出接到频率计或脉冲计数器,得到单位时间内的脉冲数,进行换算即可得电机转速。
这样可少用硬件,不需编程,但仅是对霍尔传感器测速应用的验证。
1 脉冲信号的获得霍尔传感器是对磁敏感的传感元件,常用于开关信号采集的有CS3020、CS3040等,这种传感器是一个3端器件,外形与三极管相似,只要接上电源、地,即可工作,输出通常是集电极开路(OC)门输出,工作电压范围宽,使用非常方便。
如图1所示是CS3020的外形图,将有字面对准自己,三根引脚从左向右分别是Vcc,地,输出。
图1 CS3020外形图使用霍尔传感器获得脉冲信号,其机械结构也可以做得较为简单,只要在转轴的圆周上粘上一粒磁钢,让霍尔开关靠近磁钢,就有信号输出,转轴旋转时,就会不断地产生脉冲信号输出。
如果在圆周上粘上多粒磁钢,可以实现旋转一周,获得多个脉冲输出。
在粘磁钢时要注意,霍尔传感器对磁场方向敏感,粘之前可以先手动接近一下传感器,如果没有信号输出,可以换一个方向再试。
这种传感器不怕灰尘、油污,在工业现场应用广泛。
2 硬件电路设计测速的方法决定了测速信号的硬件连接,测速实际上就是测频,因此,频率测量的一些原则同样适用于测速。
通常可以用计数法、测脉宽法和等精度法来进行测试。
所谓计数法,就是给定一个闸门时间,在闸门时间内计数输入的脉冲个数;测脉宽法是利用待测信号的脉宽来控制计数门,对一个高精度的高频计数信号进行计数。
神奇的滞回电压比较器

神奇的滞回电压比较器初学者感觉滞回电压比较器比较奇妙,是因为它有两个转折的门限电压,为了容易理解,不妨从一个更通俗的例子说起。
比如我们常用饮水机中的温控开关.就是比较简单也是比较典型的具有滞回特性的器件。
假如我们设定开关工作的温度是T1,如果开关没有滞回的特点,当达到这个温度时,电热器断开,温度下降,当低于这个温度时,电加热器接通。
这样就会出现一种情况,电热器在这个温度附近会频繁接通和断开,温度达到T1一加热器件断开一温度下降一导致电热器接通一温度上升-加热器件又断开,如此反复,在临界区附近产生振荡。
这是我们不希望的结果,所以,温控开关一般是具有滞回的特点,动作(断开)温度TH和复位(接通)温度TL有一定的温度差一回复误差。
比如:设定开关断开的温度是大于95℃,复位接通的温度是小于90℃,回复误差根据需要可以调整,这样就解决了温控开关频繁接通和断开的问题。
接通到断开,断开到接通沿着不同的路径,不走回头路,故此称为滞回控制开关。
滞回电压比较器和上述的温控开关是一样的道理,可以类比理解。
大家知道运算放大器在开环状态下可以用作比较器,其理想和实际的电压传输特性如附图所示,实际特性是只有当它的差模输入电压足够大时,输出电压Uo才为正负最大值。
Uo在从+Uce变为-Uss或从-Uss变为+Uce的过程中,随着Ui的变化,将经过线性区,并需要一定的时间。
可以知道,在单限比较器中,输入电压在阀值电压附近的微小变化,都将引起两个不同的输出状态之间产生不期望的频繁穿越跳变,不管这种微小变化是来源于输入信号还是外部干扰。
因此,虽然单限比较器很灵敏,但是抗干扰能力差。
而滞回比较器具有滞回特性,即具有惯性,因此也就具有一定的抗干扰能力。
用带有内部滞回电路的比较器代替开环运算放大器能够抑制输出的频繁跳变和振荡。
滞回电压比较器电路有两个阀值电压,类似本文开始提到的温控开关,有两个门限值UH、UL。
输入电压Ui从小变大过程中使输出电压Uo产生跃变的阔值电压UH,不等于Ui从大变小过程中使输出电压Uo产生跃变的阀值电压UL.电路具有滞回特性。
(完整版)四电压比较器LM339的典型应用

四电压比较器LM339的典型应用LM339集成块内部装有四个独立的电压比较器,该电压比较器的特点是:1)失调电压小,典型值为2mV;2)电源电压范围宽,单电源为2-36V,双电源电压为±1V-±18V;3)对比较信号源的内阻限制较宽;4)共模范围很大,为0~(Ucc-1.5V)Vo;5)差动输入电压范围较大,大到可以等于电源电压;6)输出端电位可灵活方便地选用。
LM339集成块采用C-14型封装,图1为外型及管脚排列图。
由于LM339使用灵活,应用广泛,所以世界上各大IC生产厂、公司竟相推出自己的四比较器,如IR2339、ANI339、SF339等,它们的参数基本一致,可互换使用。
LM339类似于增益不可调的运算放大器。
每个比较器有两个输入端和一个输出端。
两个输入端一个称为同相输入端,用“+”表示,另一个称为反相输入端,用“-”表示。
用作比较两个电压时,任意一个输入端加一个固定电压做参考电压(也称为门限电平,它可选择LM339输入共模范围的任何一点),另一端加一个待比较的信号电压。
当“+”端电压高于“-”端时,输出管截止,相当于输出端开路。
当“-”端电压高于“+”端时,输出管饱和,相当于输出端接低电位。
两个输入端电压差别大于10mV就能确保输出能从一种状态可靠地转换到另一种状态,因此,把LM339用在弱信号检测等场合是比较理想的。
LM339的输出端相当于一只不接集电极电阻的晶体三极管,在使用时输出端到正电源一般须接一只电阻(称为上拉电阻,选3-15K)。
选不同阻值的上拉电阻会影响输出端高电位的值。
因为当输出晶体三极管截止时,它的集电极电压基本上取决于上拉电阻与负载的值。
另外,各比较器的输出端允许连接在一起使用。
单限比较器电路图2a给出了一个基本单限比较器。
输入信号Uin,即待比较电压,它加到同相输入端,在反相输入端接一个参考电压(门限电平)Ur。
当输入电压Uin>Ur 时,输出为高电平UOH。
电压比较器电路图,电压比较器的应用

电压比较器电路图,电压比较器的应用电压比较器电路图>OH。
图1b为其传输特性。
电压比较器基本原理及设计应用本文主要介绍电压比较器基本概念、工作原理及典型工作电路,并介绍一些常用的电压比较器。
电压比较器(以下简称比较器)是一种常用的集成电路。
它可用于报警器电路、自动控制电路、测量技术,也可用于V/F变换电路、A/D变换电路、高速采样电路、电源电压监测电路、振荡器及压控振荡器电路、过零检测电路等。
什么是电压比较器简单地说,电压比较器是对两个模拟电压比较其大小(也有两个数字电压比较的,这里不介绍),并判断出其中哪一个电压高,如图1所示。
图1(a)是比较器,它有两个输入端:同相输入端(“+”端) 及反相输入端(“-”端),有一个输出端Vout(输出电平信号)。
另外有电源V+及地(这是个单电源比较器),同相端输入电压VA,反相端输入VB。
VA和VB 的变化如图1(b)所示。
在时间0~t1时,VA>VB;在t1~t2时,VB>VA;在t2~t3时,VA>VB。
在这种情况下,Vout的输出如图1(c)所示:VA>VB时,Vout输出高电平(饱和输出);VB>VA 时,Vout输出低电平。
根据输出电平的高低便可知道哪个电压大。
如果把VA输入到反相端,VB输入到同相端,VA及VB的电压变化仍然如图1(b)所示,则Vout输出如图1(d)所示。
与图1(c)比较,其输出电平倒了一下。
输出电平变化与VA、VB的输入端有关。
图2(a)是双电源(正负电源)供电的比较器。
如果它的VA、VB输入电压如图1(b)那样,它的输出特性如图2(b)所示。
VB>VA时,Vout输出饱和负电压。
如果输入电压VA与某一个固定不变的电压VB相比较,如图3(a)所示。
此VB称为参考电压、基准电压或阈值电压。
如果这参考电压是0V(地电平),如图3(b)所示,它一般用作过零检测。
比较器的工作原理比较器是由运算放大器发展而来的,比较器电路可以看作是运算放大器的一种应用电路。
LM339电压比较器的常用方法介绍

四电压比较器LM339的常用方法LM339集成块内部装有四个独立的电压比较器,该电压比较器的特点是:1)失调电压小,典型值为2mV;2)电源电压范围宽,单电源为2-36V,双电源电压为±1V-±18V;3)对比较信号源的内阻限制较宽;4)共模范围很大,为0~(Ucc-1.5V)V o;5)差动输入电压范围较大,大到可以等于电源电压;6)输出端电位可灵活方便地选用。
LM339集成块采用C-14型封装,图1为外型及管脚排列图。
由于LM339使用灵活,应用广泛,所以世界上各大IC生产厂、公司竟相推出自己的四比较器,如IR2339、ANI339、SF339等,它们的参数基本一致,可互换使用。
LM339类似于增益不可调的运算放大器。
每个比较器有两个输入端和一个输出端。
两个输入端一个称为同相输入端,用“+”表示,另一个称为反相输入端,用“-”表示。
用作比较两个电压时,任意一个输入端加一个固定电压做参考电压(也称为门限电平,它可选择LM339输入共模范围的任何一点),另一端加一个待比较的信号电压。
当“+”端电压高于“-”端时,输出管截止,相当于输出端开路。
当“-”端电压高于“+”端时,输出管饱和,相当于输出端接低电位。
两个输入端电压差别大于10mV就能确保输出能从一种状态可靠地转换到另一种状态,因此,把LM339用在弱信号检测等场合是比较理想的。
LM339的输出端相当于一只不接集电极电阻的晶体三极管,在使用时输出端到正电源一般须接一只电阻(称为上拉电阻,选3-15K)。
选不同阻值的上拉电阻会影响输出端高电位的值。
因为当输出晶体三极管截止时,它的集电极电压基本上取决于上拉电阻与负载的值。
另外,各比较器的输出端允许连接在一起使用。
l、单限比较器电路图1a给出了一个基本单限比较器。
输入信号Uin,即待比较电压,它加到同相输入端,在反相输入端接一个参考电压(门限电平)Ur。
当输入电压Uin>Ur时,输出为高电平UOH。
四电压比较器LM339简介和9个典型应用例子

四电压比较器 LM339 简介和 9 个典型应用例子摘要:LM339 集成块内部装有四个独立的电压比较器,该电压比较器的特点是:1 )失调电压小,典型值为 2mV ;2 )电源电压范围宽,单电源为 2-36V ,双电源电压为±1V - ±18V;3 )对比较信号源的内阻限制较宽;4)共模范围很大,为0~(Ucc-1.5V)Vo;5)差动输入电压范围较大,大到可以等于电源电压;6)输出端电位可灵活方便地选用。
LM339集成块采用 C-14 型封装,图 1 为外型及管脚排列图。
由于LM339 使用灵活,应用广泛,所以世界上各大 IC 生产厂、公司竟相推出自己的四比较器,如 IR2339、ANI339、SF339 等..LM339 集成块内部装有四个独立的电压比较器,该电压比较器的特点是:1 )失调电压小,典型值为 2mV ;2 )电源电压范围宽,单电源为 2-36V ,双电源电压为±1V -±18V;3 )对比较信号源的内阻限制较宽;4 )共模范围很大,为0~(Ucc-1.5V)Vo;5)差动输入电压范围较大,大到可以等于电源电压;6)输出端电位可灵活方便地选用。
LM339 集成块采用 C-14 型封装,图 1 为外型及管脚排列图。
由于LM339 使用灵活,应用广泛,所以世界上各大 IC 生产厂、公司竟相推出自己的四比较器,如 IR2339 、ANI339 、SF339 等,它们的参数基本一致,可互换使用。
LM339 类似于增益不可调的运算放大器。
每个比较器有两个输入端和一个输出端。
两个输入端一个称为同相输入端,用“+”表示,另一个称为反相输入端,用“ -”表示。
用作比较两个电压时,任意一个输入端加一个固定电压做参考电压(也称为门限电平,它可选择LM339输入共模范围的任何一点),另一端加一个待比较的信号电压。
当“+”端电压高于“-”端时,输出管截止,相当于输出端开路。
LM339的8个典型应用例子CSDN

设为首页加入收藏本站首页 | 文章中心 | 下载中心 | 网站产品 | 技术论坛 | 如何购买 | 定货系统 | 联系我们当前位置:首页 >> 文章中心 >> 四电压比较器LM339的8个典型应用例子四电压比较器LM339的8个典型应用例子作者:匿名来源:网上搜集浏览次数:224添加时间:2006-5-1 17:35:42 LM339集成块内部装有四个独立的电压比较器,该电压比较器的特点是:1)失调电压小,典型值为2mV;2)电源电压范围宽,单电源为2-36V,双电源电压为±1V-±18V;3)对比较信号源的内阻限制较宽;4)共模范围很大,为0~(Ucc-1.5V)Vo;5)差动输入电压范围较大,大到可以等于电源电压;6)输出端电位可灵活方便地选用。
LM339集成块采用C-14型封装,图1为外型及管脚排列图。
由于LM339使用灵活,应用广泛,所以世界上各大IC生产厂、公司竟相推出自己的四比较器,如IR2339、ANI339、SF339等,它们的参数基本一致,可互换使用。
LM339类似于增益不可调的运算放大器。
每个比较器有两个输入端和一个输出端。
两个输入端一个称为同相输入端,用“+”表示,另一个称为反相输入端,用“-”表示。
用作比较两个电压时,任意一个输入端加一个固定电压做参考电压(也称为门限电平,它可选择LM339输入共模范围的任何一点),另一端加一个待比较的信号电压。
当“+”端电压高于“-”端时,输出管截止,相当于输出端开路。
当“-”端电压高于“+”端时,输出管饱和,相当于输出端接低电位。
两个输入端电压差别大于10mV就能确保输出能从一种状态可靠地转换到另一种状态,因此,把LM339用在弱信号检测等场合是比较理想的。
LM339的输出端相当于一只不接集电极电阻的晶体三极管,在使用时输出端到正电源一般须接一只电阻(称为上拉电阻,选3-15K)。
选不同阻值的上拉电阻会影响输出端高电位的值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
霍尔测速
测速是工农业生产中经常遇到的问题,学会使用单片机技术设计测速仪表具有很重要的意义。
要测速,首先要解决是采样的问题。
在使用模拟技术制作测速表时,常用测速发电机的方法,即将测速发电机的转轴与待测轴相连,测速发电机的电压高低反映了转速的高低。
使用单片机进行测速,可以使用简单的脉冲计数法。
只要转轴每旋转一周,产生一个或固定的多个脉冲,并将脉冲送入单片机中进行计数,即可获得转速的信息。
下面以常见的玩具电机作为测速对象,用CS3020设计信号获取电路,通过电压比较器实现计数脉冲的输出,既可在单片机实验箱进行转速测量,也可直接将输出接到频率计或脉冲计数器,得到单位时间内的脉冲数,进行换算即可得电机转速。
这样可少用硬件,不需编程,但仅是对霍尔传感器测速应用的验证。
1 脉冲信号的获得
霍尔传感器是对磁敏感的传感元件,常用于开关信号采集的有CS3020、CS3040等,这种传感器是一个3端器件,外形与三极管相似,只要接上电源、地,即可工作,输出通常是集电极开路(OC)门输出,工作电压范围宽,使用非常方便。
如图1所示是CS3020的外形图,将有字面对准自己,三根引脚从左向右分别是Vcc,地,输出。
图1 CS3020外形图
使用霍尔传感器获得脉冲信号,其机械结构也可以做得较为简单,只要在转轴的圆周上粘上一粒磁钢,让霍尔开关靠近磁钢,就有信号输出,转轴旋转时,就会不断地产生脉冲信号输出。
如果在圆周上粘上多粒磁钢,可以实现旋转一周,获得多个脉冲输出。
在粘磁钢时要注意,霍尔传感器对磁场方向敏感,粘之前可以先手动接近一下传感器,如果没有信号输出,可以换一个方向再试。
这种传感器不怕灰尘、油污,在工业现场应用广泛。
2 硬件电路设计
测速的方法决定了测速信号的硬件连接,测速实际上就是测频,因此,频率测量的一些原则同样适用于测速。
通常可以用计数法、测脉宽法和等精度法来进行测试。
所谓计数法,就是给定一个闸门时间,在闸门时间内计数输入的脉冲个数;测脉宽法是利用待测信号的脉宽来控制计数门,对一个高精度的高频计数信号进行计数。
由于闸门与被测信号不能同步,因此,这两种方法都存在±1误差的问题,第一种方法适用于信号频率高时使用,第二种方法则在信号频率低时使用。
等精度法则对高、低频信号都有很好的适应性。
图2是测速电路的信号获取部分,在电源输入端并联电容C2用来滤去电源尖啸,使霍尔元件稳定工作。
HG表示霍尔元件,采用CS3020,在霍尔元件输出端(引脚3)与地并联电容C3滤去波形尖峰,再接一个上拉电阻R2,然后将其接入LM324的引脚3。
用LM324构成一个电压比较器,将霍尔元件输出电压与电位器R P1比较得出高低电平信号给单片机读取。
C4用于波形整形,以保证获得良好数字信号。
LED便于观察,当比较器输出高电平时不亮,低电平时亮。
微型电机M可采用型,通过电位器R P1分压,实现提高或降低电机转速的目的。
C1电容使电机的速度不会产生突变,因为电容能存储电荷。
电压比较器的功能:比较两个电压的大小(用输出电压的高或低电平,表示两个输入电压的大小关系):
当“+”输入端电压高于“-”输入端时,电压比较器输出为高电平;
当“+”输入端电压低于“-”输入端时,电压比较器输出为低电平;
比较器还有整形的作用,利用这一特点可使单片机获得良好稳定的输出信号,不至于丢失信号,能提高测速的精确性和稳定性。
C
1
图.2 测速电路原理图
3 测速程序
测量转速,使用霍尔传感器,被测轴安装有1只磁钢,即转轴每转一周,产生1个脉冲,要求将转速值(转/分)显示在数码管上。
用C语言编制的程序如下:
//硬件:老版STC实验版
//P3-5口接转速脉冲
#include <STC12C5410AD.H> // 单片机内部专用寄存器定义
#define uchar unsigned char
#define uint unsigned int //数据类型的宏定义
uchar code LK[10]={0xC0,0xF9,0xA4,0xB0,0x99,0x92,0x82,0xF8,0x80,0x90,} ;//数码管
0~9的字型码
uchar LK1[4]={0xfe,0xfd,0xfb,0xf7}; //位选码
uint data z,counter;
//定义无符号整型全局变量lk
//====================================================
void init(void) //定义名为init的初始化子函数
{ //init子函数开始,分别赋值
TMOD=0X51; //GATE C/T M1 M0 GATE C/T M1 M0 计数器T1 定时器T0 // 0 1 0 1 0 0 0 1
TH1=0; //计数器初始值
TL1=0;
TH0=-(50000/256); //定时器t0 定时50ms
TL0=-(50000%256);
EA=1; // IE=0X00; //EA - ET1 ES ET1 EX1 ET0 EX0 ET0=1; // 1 0 0 0 0 0 1 0 TR1=1;
TR0=1;
TF0=1;
}
//=============================================
void delay(uint k) //延时程序
{
uint data i,j;
for(i=0;i<k;i++)
{
for(;j<121;j++) {;}
}
}
//================================================
void display(void) //数码管显示
{
P1=LK[z/1000];P2=LK1[0];delay(10);
P1=LK[(z/100)%10];P2=LK1[1];delay(10);
P1=LK[(z%100)/10];P2=LK1[2];delay(10);
P1=LK[z%10];P2=LK1[3];delay(10);
}
//=========================================
void main(void) //主程序开始
{
uint temp1,temp2;
init(); //调用init初始化子函数
for(;;)
{
temp1=TL1;temp2=TH1;
counter=(temp2<<8)+temp1; //读出计数器值并转化为十进制 //z=counter;
display();
} //无限循环语句结束
} //主程序结束
//===================================================
// uint chushi=60;
void timer0(void) interrupt 1 using 1
{
TH0=-(50000/256); //定时器t0 定时50ms
TL0=-(50000%256);
// chushi--;
// if(chushi<=0){
z=counter /0.5 ; //读出速度
//}
TH0=0; //每50MS清一次定时器
TL1=0;
}。