高考物理一轮复习 专题16 圆周运动(练)(含解析)1

合集下载

2020届人教版高考物理一轮复习测试专题《平抛运动与圆周运动》(含解析)

2020届人教版高考物理一轮复习测试专题《平抛运动与圆周运动》(含解析)

2020届人教版高三物理一轮复习测试专题《平抛运动与圆周运动》一、单选题(共20小题,每小题3.0分,共60分)1.如图,可视为质点的小球位于半圆体左端点A的正上方某处,以初速度v0水平抛出,其运动轨迹恰好能与半圆柱体相切于B点.过B点的半圆柱体半径与水平方向的夹角为30°,则半圆柱体的半径为(不计空气阻力,重力加速度为g)()A.B.C.D.2.如图所示,某人向对面的山坡上水平抛出两个质量不等的石块,分别落到A,B两处.不计空气阻力,则落到B处的石块()A.初速度大,运动时间短B.初速度大,运动时间长C.初速度小,运动时间短D.初速度小,运动时间长3.质量为2kg的质点在竖直平面内斜向下做曲线运动,它在竖直方向的速度图象和水平方向的位移图象如图甲、乙所示。

下列说法正确的是()A.前2 s内质点处于超重状态B. 2 s末质点速度大小为4 m/sC.质点的加速度方向与初速度方向垂直D.质点向下运动的过程中机械能减小4.如图所示,位于同一高度的小球A,B分别以v1和v2的速度水平抛出,都落在了倾角为30°的斜面上的C点,小球B恰好垂直打到斜面上,则v1,v2之比为()A. 1 ∶1B. 2 ∶1C. 3 ∶2D. 2 ∶35.公交车是人们出行的重要交通工具,如图所示是公交车内部座位示意图,其中座位A和B的边线和车前进的方向垂直,当车在某一站台由静止开始匀加速启动的同时,一个乘客从A座位沿AB连线相对车以 2m/s 的速度匀速运动到B,则站在站台上的人看到该乘客()A.运动轨迹为直线B.运动轨迹为抛物线C.因该乘客在车上匀速运动,所以乘客处于平衡状态D.当车速度为 5m/s 时,该乘客对地速度为 7m/s6.“套圈圈”是小孩和大人都喜爱的一种游戏。

某小孩和大人直立在界外,在同一竖直线上不同高度分别水平抛出小圆环,并恰好套中前方同一物体。

假设小圆环的运动可以视为平抛运动,则()A.大人抛出的圆环运动时间较短B.大人应以较小的速度抛出圆环C.小孩抛出的圆环运动发生的位移较大D.小孩抛出的圆环单位时间内速度变化量较小7.如图,一质量为M的光滑大圆环,用一细轻杆固定在竖直平面内;套在大环上质量为m的小环(可视为质点),从大环的最高处由静止滑下。

圆周运动高考题(含答案)

圆周运动高考题(含答案)

匀速圆周运动二、匀速圆周运动的描述1.线速度、角速度、周期和频率的概念(1)线速度v是描述质点沿圆周运动快慢的物理量,是矢量,其大小为v st2Tr;其方向沿轨迹切线,国际单位制中单位符号是m/s;(2)角速度ω是描述质点绕圆心转动快慢的物理量,是矢量,其大小为t 2T;在国际单位制中单位符号是rad/s;(3)周期T是质点沿圆周运动一周所用时间,在国际单位制中单位符号是s;(4)频率f是质点在单位时间内完成一个完整圆运动的次数,在国际单位制中单位符号是Hz;(5)转速n是质点在单位时间内转过的圈数,单位符号为r/s,以及r/min.2、速度、角速度、周期和频率之间的关系线速度、角速度、周期和频率各量从不同角度描述质点运动的快慢,它们之间有关系v=rω.T1f,v2T,2f。

由上可知,在角速度一定时,线速度大小与半径成正比;在线速度一定时,角速度大小与半径成反比.三、向心力和向心加速度1.向心力(1)向心力是改变物体运动方向,产生向心加速度的原因.(2)向心力的方向指向圆心,总与物体运动方向垂直,所以向心力只改变速度的方向.2.向心加速度(1)向心加速度由向心力产生,描述线速度方向变化的快慢,是矢量.(2)向心加速度方向与向心力方向恒一致,总沿半径指向圆心;向心加速度的大小为a n2vr2r42r2T公式:1.线速度V=s/t=2πr/T2.角速度ω=Φ/t=2π/T=2πf3.向心加速度a=V2/r=ω2r=(2π/T)2r4.向心力F 2/r=mω2r=mr(2π/T)2=mωv=F心=mV 合5.周期与频率:T=1/f6.角速度与线速度的关系:V=ωr7.角速度与转速的关系ω=2πn(此处频率与转速意义相同)8.主要物理量及单位:弧长s:米(m);角度Φ:弧度(rad);频率f:赫(Hz);周期T:秒(s);转速n:r/s;半径r:米(m);线速度V:(m/s);角速度ω:(rad/s);向心加速度:(m/s2)。

高考物理一轮课时演练:圆周运动及其应用(含答案)

高考物理一轮课时演练:圆周运动及其应用(含答案)

课时提能演练(十二)圆周运动及其应用(45分钟100分)一、选择题(本大题共10小题,每小题7分,共70分。

每小题只有一个选项正确)1.质量为m的木块从半径为R的半球形的碗口下滑到碗的最低点的过程中,如果由于摩擦力的作用使木块的速率不变,那么( )A.因为速率不变,所以木块的加速度为零B.木块下滑过程中所受的合外力越来越大C.木块下滑过程中所受的摩擦力大小不变D.木块下滑过程中的加速度大小不变,方向始终指向球心【解析】选D。

由于木块沿圆弧下滑速率不变,故木块做匀速圆周运动,存在向心加速度,选项A错误;由牛顿第二定律得:F合=ma n=m,而v的大小不变,故合外力的大小不变,选项B错误;由于木块在滑动过程中与接触面的正压力是变化的,故滑动摩擦力在变化,选项C错误;木块在下滑过程中,速度的大小不变,所以向心加速度的大小不变,方向始终指向圆心,选项D正确。

2.如图所示,一质点沿螺旋线自外向内运动,已知其走过的弧长s与运动时间t成正比,关于该质点的运动,下列说法正确的是( )A.小球运动的线速度越来越大B.小球运动的加速度越来越小C.小球运动的角速度越来越小D.小球所受的合外力越来越大【解析】选D。

由于质点走过的弧长s与运动时间t成正比,质点运动的线速度大小不变,选项A错误;由于螺旋线的曲率半径r越来越小,由向心加速度公式a=可知向心加速度越来越大,所受合外力越来越大,选项B错误、D正确;由角速度公式ω=可知角速度越来越大,选项C错误。

3.如图所示,光滑水平面上,小球m在拉力F作用下做匀速圆周运动。

若小球运动到P点时,拉力F发生变化,关于小球运动情况的说法正确的是( )A.若拉力突然消失,小球将沿轨迹Pa做离心运动B.若拉力突然变小,小球将沿轨迹Pa做离心运动C.若拉力突然变大,小球将沿轨迹Pb做离心运动D.若拉力突然变小,小球将沿轨迹Pc运动【解析】选A。

若拉力突然消失,则小球沿着P点处的切线做匀速直线运动,选项A正确;若拉力突然变小,则小球做离心运动,但由于力与速度有一定的夹角,故小球做曲线运动,选项B、D错误;若拉力突然变大,则小球做近心运动,不会沿轨迹Pb做离心运动,选项C错误。

2020版高考物理一轮复习课后限时作业16圆周运动(含解析)新人教版

2020版高考物理一轮复习课后限时作业16圆周运动(含解析)新人教版

课后限时作业16 圆周运动时间:45分钟1.如图所示为锥形齿轮的传动示意图,大齿轮带动小齿轮转动,大、小齿轮的角速度分别为ω1、ω2,两齿轮边缘处的线速度大小分别为v 1、v 2,则( A )A .ω1<ω2,v 1=v 2B .ω1>ω2,v 1=v 2C .ω1=ω2,v 1>v 2D .ω1=ω2,v 1<v 2解析:由题意可知,两齿轮边缘处的线速度大小相等,即v 1=v 2,因r 1>r 2,故根据v =ωr 可知ω1<ω2,选项A 正确.2.光盘驱动器读取数据的某种方式可简化为以下模式:在读取内环数据时,以恒定角速度的方式读取,而在读取外环数据时,以恒定线速度的方式读取.如图所示,设内环内边缘半径为R 1,内环外边缘半径为R 2,外环外边缘半径为R 3.A 、B 、C 分别为各边缘上的点,则读取内环上A 点时A 点的向心加速度大小和读取外环上C 点时C 点的向心加速度大小之比为( D )A.R 21R 2R 3 B.R 22R 1R 3 C.R 2R 3R 21 D.R 1R 3R 22解析:A 、B 两点角速度相同,由a n =ω2r ,可知a A a B =R 1R 2;B 、C 两点线速度大小相同,由a n =v 2r,可知a Ba C =R 3R 2,故a A a C =R 1R 3R 22,D 正确.3.如图所示,在匀速转动的圆筒内壁上有一物体随圆筒一起转动而未滑动.当圆筒的角速度增大后(物体不滑动),下列说法正确的是( D )A.物体所受弹力增大,摩擦力也增大B.物体所受弹力增大,摩擦力减小C.物体所受弹力和摩擦力都减小D.物体所受弹力增大,摩擦力不变解析:物体随圆筒一起转动时,受到三个力的作用:重力G、筒壁对它的弹力F N和筒壁对它的摩擦力f,如图所示.其中G和f是一对平衡力,筒壁对它的弹力F N提供它做圆周运动的向心力.当圆筒转动时,不管其角速度为多大,只要物体随圆筒一起转动而未滑动,则物体所受的(静)摩擦力f大小就等于其重力大小.根据向心力公式得F N=mrω2,当角速度ω增大后,F N也增大,选项D正确.4.如图所示,一个内壁光滑的圆锥筒的轴线垂直于水平面,圆锥筒固定不动.有一质量为m的小球A紧贴着筒内壁在水平面内做匀速圆周运动,筒口半径和筒高分别为R和H,小球A所在的高度为筒高的一半.已知重力加速度为g,则( A )A .小球A 做匀速圆周运动的角速度ω=2gH RB .小球A 受到重力、支持力和向心力三个力作用C .小球A 受到的合力大小为mgR HD .小球A 受到的合力方向垂直于筒壁斜向上解析:对小球进行受力分析,可知小球受重力、支持力两个力的作用,两个力的合力提供向心力,设筒壁与竖直方向夹角为θ,由向心力公式可得mgtan θ=m ω2r ,其中tan θ=RH,r =R 2,解得ω=2gHR,选项A 正确,B 错误;小球受到的合力方向应指向圆周运动的圆心,提供向心力,所以合力大小为mgtan θ=mgHR,选项C 、D 错误. 5.在高速公路的拐弯处,通常路面都是外高内低.如图所示,在某路段汽车向左拐弯,司机左侧的路面比右侧的路面低一些,汽车的运动可看作是半径为R 的圆周运动.设内、外路面高度差为h ,路基的水平宽度为d ,路面的宽度为L .已知重力加速度为g .要使车轮与路面之间的横向摩擦力(即垂直于前进方向)等于零,则汽车转弯时的车速应等于( B )A.gRh LB.gRh dC.gRL hD.gRd h解析:汽车做匀速圆周运动,没有横向摩擦力时,向心力由重力与斜面对汽车的支持力的合力提供,且向心力的方向沿水平方向,向心力F 向=mg tan θ,根据牛顿第二定律有F向=m v 2R ,又知tan θ=hd ,解得汽车转弯时的速度v =gRhd,B 正确.6.某兴趣小组设计了一个滚筒式炒栗子机器,滚筒内表面粗糙,内径为D .工作时滚筒绕固定的水平中心轴转动.为使栗子受热均匀,要求栗子到达滚筒最高处前与筒壁脱离,则(重力加速度为g )( A )A .滚筒的角速度ω应满足ω< 2gDB .滚筒的角速度ω应满足ω>2gDC .栗子脱离滚筒的位置与其质量有关D .若栗子到达最高点时脱离滚筒,栗子将自由下落解析:栗子在最高点恰好不脱离时,有mg =m D2ω2,解得ω=2gD,要求栗子到达滚筒最高处前与筒壁脱离,则ω<2gD,故A 正确,B 错误;栗子脱离滚筒的位置与其质量无关,故C 错误;若栗子到达最高点时脱离滚筒,由于栗子此时的速度不为零,则栗子的运动不是自由落体运动,故D 错误.7.(多选)如图所示,水平杆两端有挡板,质量为m 的小木块A 穿在水平杆上,轻质弹簧一端与杆左侧挡板连接,另一端与A 连接.初始时弹簧处于伸长状态,弹力恰好等于A 与水平杆间的最大静摩擦力,A 与杆间的动摩擦因数为μ,最大静摩擦力等于滑动摩擦力,A 到竖直轴OO ′的距离为L .现使杆绕竖直轴OO ′由静止缓慢加速转动,角速度为ω.若小木块A 不与挡板接触,则下列说法正确的是( AC )A .弹簧伸长量先保持不变后逐渐增大B .弹簧伸长量保持不变C .当ω= μgL时,摩擦力为零 D .当ω=μgL时,弹簧弹力为零解析:初始时,弹簧弹力大小为μmg .ω较小时,摩擦力f 背离竖直轴OO ′,有μmg -f =mL ω2,ω越大,则f 越小,当ω= μgL 时,f 为零;ω较大时,摩擦力f 指向竖直轴OO ′,有μmg +f =mL ω2,当ω>2μgL时,A 将沿远离OO ′方向移动,弹簧弹力增大,伸长量增大.综上分析,B 、D 错误,A 、C 正确.8.如图所示,在光滑的水平面上,两个质量相等的小球A 、B 用两根等长的轻绳连接,并系于固定杆C 上.现让两小球A 、B 以C 为圆心、以相同的角速度做匀速圆周运动,A 球的向心加速度为a 1,B 球的向心加速度为a 2,A 、C 间绳所受拉力记为F 1,A 、B 间绳所受拉力记为F 2,则下列说法中正确的是( D )A .a 1a 2=1 1B .a 1a 2=1 4C .F 1F 2=12D .F 1F 2=32解析:设轻绳长度为l ,两球角速度相等,根据a n =r ω2,有a 1a 2=l 2l =12,选项A 、B 错误;对B 球,有F 2=m ·2l ω2,对A 球,有F 1-F 2=ml ω2,联立解得F 1F 2=32,选项C 错误,选项D 正确.9.如图所示,转动轴垂直于光滑水平面,交点O 的上方h 高处(A 点)固定细绳的一端,细绳的另一端拴接一质量为m 的小球B ,绳长l >h ,重力加速度为g ,转动轴带动小球在光滑水平面内做圆周运动.当转动的角速度ω逐渐增大时,下列说法正确的是( C )A .小球始终受三个力的作用B .细绳上的拉力始终保持不变C .要使小球不离开水平面,角速度的最大值为 g hD .若小球离开了水平面,则角速度为g l解析:当转动的角速度ω逐渐增大时,小球可能只受重力和细绳的拉力,选项A 错误;小球在水平面内做匀速圆周运动时,细绳的拉力在竖直方向的分力与水平面对小球的支持力的合力大小等于小球的重力大小,细绳的拉力在水平方向的分力提供小球运动的向心力,当转动的角速度ω逐渐增大时,所需向心力逐渐增大,细绳的拉力逐渐增大,而当小球离开水平面后,角速度增大时,绳子与竖直方向的夹角变大,拉力变大,选项B 错误;要使小球刚好不离开水平面,则有mg tan θ=m ω2r ,其中tan θ=l 2-h 2h,r =l 2-h 2,联立解得ω=gh ,选项C 正确;若小球离开了水平面,则角速度大于 gh,选项D 错误. 10.(多选)如图甲所示,一长为l 的轻绳一端穿在过O 点的水平转轴上,另一端系一质量未知的小球,整个装置绕O 点在竖直面内转动.小球通过最高点时,绳对小球的拉力F 与其速度二次方v 2的关系如图乙所示,重力加速度为g .下列判断正确的是( BD )A .图线的函数表达式为F =m v 2l+mg B .重力加速度g =b lC .若绳长不变,用质量较小的球做实验,则得到的图线斜率更大D .若绳长不变,用质量较小的球做实验,则图线上b 点的位置不变解析:在最高点时,对小球进行受力分析,由牛顿第二定律有F +mg =m v 2l ,可得图线的函数表达式为F =m v 2l -mg ,A 错误;图乙中横轴截距为b ,代入函数表达式,有0=m bl-mg ,得重力加速度g =b l ,若l 不变,则b 不变,b 与m 无关,B 、D 正确;由图线的函数表达式可知,图线斜率k =m l,若l 不变,m 变小,则k 减小,C 错误.11.(多选)如图所示,质量为M 的物体内有一光滑圆形轨道,现有一质量为m 的小滑块沿该圆形轨道在竖直面内做圆周运动.A 、C 两点分别为圆周的最高点和最低点,B 、D 两点是与圆心O 在同一水平线上的点.重力加速度为g .小滑块运动时,物体在地面上静止不动,则关于物体对地面的压力F N 和地面对物体的摩擦力的说法正确的是( BC )A .小滑块在A 点时,F N >Mg ,摩擦力方向向左B .小滑块在B 点时,F N =Mg ,摩擦力方向向右C .小滑块在C 点时,F N >(M +m )g ,物体与地面无摩擦D .小滑块在D 点时,F N =(M +m )g ,摩擦力方向向左解析:因为轨道光滑,所以小滑块与轨道之间没有摩擦力.小滑块在A 点时,与轨道没有水平方向的作用力,所以物体与地面间没有运动趋势,即摩擦力为零;小滑块的速度v =gR 时,对轨道的压力为零,物体对地面的压力F N =Mg ,小滑块的速度v >gR 时,对轨道的压力向上,物体对地面的压力F N <Mg ,故选项A 错误;小滑块在B 点时,对轨道的作用力水平向左,所以物体相对地面有向左运动的趋势,地面对物体有向右的摩擦力;竖直方向上,小滑块对轨道无作用力,所以物体对地面的压力F N =Mg ,故选项B 正确;小滑块在C 点时,地面对物体也没有摩擦力;竖直方向上,小滑块对轨道的压力大于其重力,所以物体对地面的压力F N >(M +m )g ,故选项C 正确;小滑块在D 点时,地面对物体有向左的摩擦力,物体对地面的压力F N =Mg ,故选项D 错误.12.如图所示,在圆柱形房屋的天花板中心O 点悬挂一根长为L 的细绳,绳的下端挂一个质量为m 的小球,重力加速度为g .已知绳能承受的最大拉力为2mg ,小球在水平面内做圆周运动,当速度逐渐增大到绳断裂后,小球恰好以速度v 2=7gL 落到墙脚边.求:(1)绳断裂瞬间小球的速度v 1; (2)圆柱形房屋的高度H 和半径R .解析:(1)小球在绳断前瞬间受力如图所示. 由牛顿第二定律得竖直方向上,有F Tm cos θ-mg =0水平方向上,有F Tm sin θ=m v 21r由几何关系得r =L sin θ 又知F Tm =2mg 联立解得v 1=3gL 2(2)小球从飞出到落地,由机械能守恒定律得 12mv 21+mgh 1=12mv 22 解得h 1=v 22-v 212g =114L则H =h 1+L cos θ=13L4设小球由飞出至落地的水平射程为x ,如图所示. 水平方向上,有x =v 1t 竖直方向上,有h 1=12gt 2由几何关系得R =r 2+x 2联立解得R =3L 答案:(1)3gL 2 (2)13L43L。

高考物理一轮复习圆周运动专题训练(附答案)-教学文档

高考物理一轮复习圆周运动专题训练(附答案)-教学文档

高考物理一轮复习圆周运动专题训练(附答案)质点在以某点为圆心半径为r的圆周上运动,即质点运动时其轨迹是圆周的运动叫圆周运动。

以下是圆周运动专题训练,请考生认真练习。

1.(2019湖北省重点中学联考)由于地球的自转,地球表面上P、Q两物体均绕地球自转轴做匀速圆周运动,对于P、Q两物体的运动,下列说法正确的是()A.P、Q两点的角速度大小相等B.P、Q两点的线速度大小相等C.P点的线速度比Q点的线速度大D.P、Q两物体均受重力和支持力两个力作用2.(2019资阳诊断)水平放置的两个用相同材料制成的轮P和Q靠摩擦传动,两轮的半径Rr=21。

当主动轮Q匀速转动时,在Q轮边缘上放置的小木块恰能相对静止在Q轮边缘上,此时Q轮转动的角速度为1,木块的向心加速度为a1,若改变转速,把小木块放在P轮边缘也恰能静止,此时Q轮转动的角速度为2,木块的向心加速度为,则()A.=Rr=21B.=2C.=1D.=a13.自行车的小齿轮A、大齿轮B、后轮C是相互关联的三个转动部分,且半径RB=4RA、RC=8RA,如图3所示。

当自行车正常骑行时A、B、C三轮边缘的向心加速度的大小之比aAaB∶aC等于()A.11∶8B.41∶4C.41∶32D.12∶4对点训练:水平面内的匀速圆周运动4.山城重庆的轻轨交通颇有山城特色,由于地域限制,弯道半径很小,在某些弯道上行驶时列车的车身严重倾斜。

每到这样的弯道乘客都有一种坐过山车的感觉,很是惊险刺激。

假设某弯道铁轨是圆弧的一部分,转弯半径为R,重力加速度为g,列车转弯过程中倾角(车厢地面与水平面夹角)为,则列车在这样的轨道上转弯行驶的安全速度(轨道不受侧向挤压)为()A. 2B.4C. 5D.95.(多选)绳子的一端固定在O点,另一端拴一重物在水平面上做匀速圆周运动()A.转速相同时,绳长的容易断B.周期相同时,绳短的容易断C.线速度大小相等时,绳短的容易断D.线速度大小相等时,绳长的容易断6.(多选)(2019河南漯河二模)两根长度相同的细线分别系有两个完全相同的小球,细线的上端都系于O点。

高考物理一轮复习 专题16 圆周运动(讲)(含解析)-人教版高三全册物理试题

高考物理一轮复习 专题16 圆周运动(讲)(含解析)-人教版高三全册物理试题

专题16 圆周运动1.掌握描述圆周运动的物理量与其之间的关系.2.理解向心力公式并能应用;了解物体做离心运动的条件.一、描述圆周运动的物理量1.线速度:描述物体圆周运动快慢的物理量.Trt s v π2=∆∆=2.角速度:描述物体绕圆心转动快慢的物理量.Tt πθω2=∆∆=3.周期和频率:描述物体绕圆心转动快慢的物理量.vrT π2=,f T 1=4.向心加速度:描述速度方向变化快慢的物理量.r Tv r v r a n 22224πωω====5.向心力:作用效果产生向心加速度,F n =ma n . 6.相互关系:(1) rf Trr v ππω22=== (2) r f r Tv r v r a n 22222244ππωω===== 〔3〕r f m r Tm v m r v m mr ma F n n 22222244ππωω====== 二、匀速圆周运动和非匀速圆周运动 1.匀速圆周运动(1)定义:线速度大小不变的圆周运动 .(2)性质:向心加速度大小不变,方向总是指向圆心的变加速曲线运动. (3)质点做匀速圆周运动的条件合力大小不变,方向始终与速度方向垂直且指向圆心. 2.非匀速圆周运动(1)定义:线速度大小、方向均发生变化的圆周运动.(2)合力的作用①合力沿速度方向的分量F t产生切向加速度,F t=ma t,它只改变速度的方向.②合力沿半径方向的分量F n产生向心加速度,F n=ma n,它只改变速度的大小.三、离心运动1.本质:做圆周运动的物体,由于本身的惯性,总有沿着圆周切线方向飞出去的倾向.2.受力特点(如下列图)(1)当F=mrω2时,物体做匀速圆周运动;(2)当F=0时,物体沿切线方向飞出;(3)当F<mrω2时,物体逐渐远离圆心,F为实际提供的向心力.(4)当F>mrω2时,物体逐渐向圆心靠近,做向心运动.考点一圆周运动中的运动学分析描述圆周运动的物理量主要有线速度、角速度、周期、频率、转速、向心加速度、向心力等,现比拟如下表:定义、意义公式、单位线速度①描述圆周运动的物体运动快慢的物理量(v)②是矢量,方向和半径垂直,和圆周相切①Trtsvπ2=∆∆=②单位:m/s角速度①描述物体绕圆心转动快慢的物理量(ω)②中学不研究其方向①Ttπθω2=∆∆=②单位:rad/s周期和转速①周期是物体沿圆周运动一周的时间(T)②转速是物体单位时间转过的圈数(n),也叫频率(f)①vrTπ2=单位:s②n的单位:r/s、r/min,f的单位:Hz向心加速度 ①描述速度方向变化快慢的物理量(a ) ②方向指向圆心①a =rv 2=ω2r②单位:m/s 2★重点归纳★ 1.传动装置〔1〕高中阶段所接触的传动主要有:①皮带传动(线速度大小相等);②同轴传动(角速度相等);③齿轮传动(线速度大小相等);④摩擦传动(线速度大小相等).〔2〕传动装置的特点:(1)同轴传动:固定在一起共轴转动的物体上各点角速度一样;(2)皮带传动、齿轮传动和摩擦传动:皮带(或齿轮)传动和不打滑的摩擦传动的两轮边缘上各点线速度大小相等.2.圆周运动各物理量间的关系〔1〕对公式v =ωr 的理解 当r 一定时,v 与ω成正比. 当ω一定时,v 与r 成正比. 当v 一定时,ω与r 成反比.〔2〕对a =rv 2=ω2r =ωv 的理解在v 一定时,a 与r 成反比;在ω一定时,a 与r 成正比.★典型案例★〔多项选择〕如下列图为用绞车拖物块的示意图。

高考物理一轮复习《圆周运动》典型题精排版(含答案)

高考物理一轮复习《圆周运动》典型题精排版(含答案)

高考物理一轮复习《圆周运动》典型题精排版1.游客乘坐过山车,在圆弧轨道最低点处获得的向心加速度达到20 m/s2,g 取10 m/s2,那么此位置座椅对游客的作用力相当于游客重力的( ) A.1倍B.2倍C.3倍D.4倍2.如图是磁带录音机的磁带盒的示意图,A、B为缠绕磁带的两个轮子,两轮的半径均为r,在放音结束时,磁带全部绕到了B轮上,磁带的外缘半径R=3r,现在进行倒带,使磁带绕到A轮上.倒带时A轮是主动轮,其角速度是恒定的,B 轮是从动轮.经测定,磁带全部绕到A轮上需要时间为t,则从开始倒带到A、B 两轮的角速度相等所需要的时间( )A.等于t 2B.大于t 2C.小于t 2D.等于t 33.如图所示,在第七届亚冬会上双人花样滑冰比赛中,有时会看到被男运动员拉着的女运动员离开地面在空中做圆锥摆运动的精彩场面,假设体重为G的女运动员做圆锥摆运动时和水平冰面的夹角约为30°,重力加速度为g,估算该女运动员( )A.受到的拉力为3GB.受到的拉力为2GC.向心加速度为3gD.向心加速度为2g4.如图是一种“滚轮—平盘无极变速器”示意图,它由固定于主动轴上的平盘和可随从动轴移动的圆柱形滚轮组成.由于摩擦作用,当平盘转动时,滚轮就会跟随转动,如果认为滚轮不会打滑,那么,主动轴转速n 1、从动轴转速n 2、滚轮半径r 以及滚轮距离主动轴中心的距离x 之间的关系是( )A .n 2=n 1x rB .n 2=n 1r xC .n 2=n 1x 2r 2D .n 2=n 1x r5.如图所示,小球以大小为v 0的初速度由A 端向右运动,到B 端时的速度减小为v B ,若以同样大小的初速度由B 端向左运动,到A 端时的速度减小为v A .已知小球运动过程中始终未离开该粗糙轨道,D 为AB 中点.以下说法正确的是( )A .v A >vB B .v A =v BC .v A <v BD .两次经过D 点时速度大小相等6.如图所示,小球在竖直放置的光滑圆形管道内做圆周运动,内侧壁半径为R ,小球半径为r ,则下列说法正确的是( )A .小球通过最高点时的最小速度v min =g R +rB .小球通过最高点时的最小速度v min =0C .小球在水平线ab 以下的管道中运动时,内侧管壁对小球一定无作用力D .小球在水平线ab 以上的管道中运动时,外侧管壁对小球一定有作用力7.如图所示,木块P放在水平圆盘上随圆盘一起转动,关于木块所受摩擦力f的叙述正确的是( )A.f的方向总是指向圆心B.圆盘匀速转动时f=0C.在转速一定的条件下,f的大小跟木块到轴O的距离成正比D.在木块与轴O的距离一定的条件下,圆盘匀速转动时,f的大小跟圆盘转动的角速度成正比8.中央电视台《今日说法》栏目报道了一起发生在湖南长沙某区湘府路上的离奇交通事故.住在公路拐弯处的张先生和李先生家在三个月内连续遭遇了七次大卡车侧翻在自家门口的场面,第八次有辆卡车冲撞进李先生家,造成三死一伤和房屋严重损毁的血腥惨案.经公安部门和交通部门协力调查,画出的现场示意图如图所示.交警根据图示作出以下判断,你认为正确的是( )A.由图可知汽车在拐弯时发生侧翻是因为车做离心运动B.由图可知汽车在拐弯时发生侧翻是因为车做向心运动C.公路在设计上可能内(东)高外(西)低D.公路在设计上可能外(西)高内(东)低9.亚运会上,场地自行车女子记分赛决赛我国选手刘馨顺利夺冠,如图1所示.比赛时运动员分别沿不同的轨道行驶,该过程可简化为如图2所示的理想模型,两质点分别在M和N两处紧贴着圆台内壁分别在虚线所示的水平面内做匀速圆周运动,不计摩擦,则( )A.M处质点的线速度一定大于N处质点的线速度B.M处质点的角速度一定大于N处质点的角速度C.M处质点的运动周期一定等于N处质点的运动周期D.M处质点的向心加速度一定大于N处质点的向心加速度10.如图所示,细绳一端系着质量M=0.6 kg的物体,静止在水平面,另一端通过光滑小孔吊着质量m=0.3 kg的物体,M的中点与圆孔距离为0.3 m.已知M和水平面的最大静摩擦力为2 N,现使此平面绕中心轴线转动,问角速度ω在什么范围m会处于静止状态?(g取10 m/s2)11.如图所示,一根长0.1 m的细线,一端系着一个质量为0.18 kg的小球,拉住线的另一端,使球在光滑的水平桌面上做匀速圆周运动,使小球的转速很缓慢地增加,当小球的转速增加到开始时转速的3倍时,细线断开,线断开前的瞬间线受到的拉力比开始时大40 N,求:(1)线断开前的瞬间,线受到的拉力大小;(2)线断开的瞬间,小球运动的线速度;(3)如果小球离开桌面时,速度方向与桌边线的夹角为60°,桌面高出地面0.8 m,求:小球飞出后的落地点距桌边线的水平距离.高考物理一轮复习《圆周运动》典型题精排版参考答案1.解析:由牛顿第二定律可得(人的质量设为m):F N-mg=ma向心,代入数值解得F N=3mg,故C正确.答案:C2.解析:本题考查圆周运动、线速度、角速度、半径之间的关系.A的角速度是恒定的,但是A的半径越来越大,根据v=ωr可得v在增大,所以一开始需要的时间比较长,B项正确.答案:B3.解析:女运动员做圆锥摆运动,对女运动员受力分析可知,受到重力G、男运动员对女运动员的拉力F,竖直方向合力为零,有F sin 30°=G得F=2G,B 项正确.水平方向的合力提供匀速圆周运动的向心力,有F cos 30°=ma向,即2mg cos 30°=ma向,所以a向=3g,C项正确.答案:BC4.解析:由于平盘和滚轮接触处的线速度大小相等,所以2πn1x=2πn2r,即n2=n1xr.所以选项A正确.答案:A5.解析:左边圆弧轨道,F N1-mg=m v2 1R,右边圆弧轨道mg-F N2=m v2 2 R∴F N1>F N2.而f=μF N∴f1>f2而W=-f·l,选A.答案:A6.解析:小球沿管上升到最高点的速度可以为零,故A错误,B正确;小球在水平线ab以下的管道中运动时,由外侧管壁对小球的作用力F N与球重力在背离圆心方向的分力F mg 的合力提供向心力,即F N -F mg =mv 2R +r,因此,外侧管壁一定对球有作用力,而内侧管壁无作用力,C 正确;小球在水平线ab 以上的管道中运动时,小球受管壁的作用力与小球速度大小有关,D 错误.答案:BC7.解析:木块随着圆盘转动时,不一定是匀速转动,所以摩擦力的方向也不一定沿半径方向,只有圆盘匀速转动时摩擦力才指向圆心,所以A 选项错误;匀速转动时静摩擦力提供向心力,所以静摩擦力肯定不为零,所以B 错误;当转速一定时,说明做的是匀速圆周运动,由此可知,静摩擦力与转动半径成正比,所以C 选项正确;在半径一定时,木块做匀速转动,静摩擦力与角速度的平方成正比,所以D 选项错误,故答案为C.答案:C8. 解析:汽车进入民宅,远离圆心,因而车做离心运动,A 对,B 错.汽车在水平公路上拐弯时,静摩擦力提供向心力,此处,汽车以与水平公路上相同速度拐弯,易发生侧翻,摩擦力不足以提供向心力;也可能是路面设计不太合理,内高外低.重力沿斜面方向的分力背离圆心而致,C 对,D 错.答案:AC9.解析: 某质点在圆台内壁沿水平面做匀速圆周运动时的受力情况如图所示,其中θ为比赛场地所在的斜面与水平面之间的夹角,则mg tan θ=ma =m v 2r =m ω2r =m (2πT )2r ,分别解得a =g tan θ,v =rg tan θ,ω=g tan θr,T =2πr g tan θ,由此可以判断得出a M =a N ,v M >v N ,ωM <ωN ,T M >T N ,只有A 对.答案:A10.解析:设物体M 和水平面保持相对静止,当ω具有最小值时,M 有向圆心运动的趋势,故水平面对M 的摩擦力方向和指向圆心方向相反,且等于最大静摩擦力2 N.隔离M有T-f m=Mω21r0.3×10-2=0.6ω21×0.2解得ω1=2.9 rad/s当ω具有最大值时,M有离开圆心的趋势,水平面对M摩擦力方向指向圆心,大小也为2 N.隔离M有T+f m=Mω22r0.3×10+2=0.6ω22×0.2解得ω2=6.5 rad/s故ω范围是2.9 rad/s≤ω≤6.5 rad/s.答案:2.9 rad/s≤ω≤6.5 rad/s11.解析:(1)线的拉力等于向心力,设开始时角速度为ω,向心力是F0,线断开的瞬间,角速度为ω,线的拉力是F.F=mω20R①F=mω2R②由①②得FF=ω2ω20=91③又因为F=F0+40 N④由③④得F=45 N (2)设线断开时速度为v由F=mv2R得,v=FRm=45×0.10.18m/s=5 m/s(3)设桌面高度为h,小球落地经历时间为t.t=2hg=0.4 s则小球飞出后的落地点到桌边线的水平距离为l=v·sin 60°·t=5×32×0.4 m= 3 m=1.73 m.答案:(1)F=45 N (2)v=5 m/s (3)l=1.73 m。

2021届高考物理:圆周运动含答案

2021届高考物理:圆周运动含答案
1.水平面内的匀速圆周运动轨迹特点
运动轨迹是圆且在水平面内。
2.匀速圆周运动的受力特点
(1)物体所受合外力大小不变、方向总是指向圆心。
(2)合外力充当向心力。
3.解答匀速圆周运动问题的一般步骤
(1)选择研究对象、找出匀速圆周运动的圆心和半径。
(2)分析物体受力情况、其合外力提供向心力。
(3)由Fn=m 或Fn=mrω2或Fn=mr 列方程求解。
2.受力特点及轨迹
①当Fn=mω2r时、物体做匀速圆周运动。
②当Fn=0时、物体沿切线方向飞出。
③当Fn<mω2r时、物体逐渐远离圆心、做离心运动。
④当Fn>mω2r时、物体逐渐靠近圆心、做近心运动。
1.思考辨析(正确的画“√”、错误的画“×”)
(1)匀速圆周运动是匀加速曲线运动。(×)
(2)做匀速圆周运动的物体的向心加速度与半径成反比。(×)
2.(多选)(20xx·河南示范性高中联考)如图所示、A、B两小球用一根轻绳连接、轻绳跨过圆锥筒顶点处的光滑小定滑轮、圆锥筒的侧面光滑。当圆锥筒绕竖直对称轴OO′匀速转动时、两球都位于筒侧面上、且与筒保持相对静止、小球A到顶点O的距离大于小球B到顶点O的距离、则下列判断正确的是( )
A.A球的质量大
3.(多选)(20xx·沙市中学模拟)如图所示、在光滑的以角速度ω旋转的水平细杆上穿有质量分别为m和M的两球、两球用轻细线(不会断)连接、若M>m、则( )
A.当两球离轴距离相等时、两球可能相对杆静止
B.当两球离轴距离之比等于质量之比时、两球一定相对杆滑动
C.若两球相对于杆滑动、一定是都向穿有质量为M的球的一端滑动
常见的三种传动方式及特点
类型
模型
模型解读
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题16 圆周运动(练)1.一根长为L 的细线上端固定,另一端连接一小球,现设法使小球在水平面做匀速圆周运动,则小球运动的周期T 与细线和竖直直线之间的夹角θ的关系是: ( )A .角θ越小,周期T 越长B .角θ越小,周期T 越短C .周期T 的长短与角θ的大小无关D .条件不足,无法确定【答案】A 【名师点睛】本题是圆锥摆问题,关键是通过分析受力情况确定向心力的来源.要注意小球圆周运动的半径不等于绳长.2.(多选)如图所示,半径为R ,内径很小的光滑半圆细管竖直放置,一质量为m 的小球A 以某一速度从下端管口进入,并以速度1v 通过最高点C 时与管壁之间的弹力大小为0.6mg ,另一质量也为m 的小球B 以某一速度从下端管口进入,并以速度2v 通过最高点C 时与管壁之间的弹力大小为0.3mg ,且12v v <,210/g m s =。

当A 、B 两球落地时,落地点与下端管口之间的水平距离A B x x 、之比可能为: ( )A 、7B A x x =、13B A x x =C 、7B A x x =、13B A x x =【答案】AB【名师点睛】本题主要考查了圆周运动向心力公式及平抛运动基本公式的直接应用,关键判断出两种情况下轨道对小球的弹力方向,分析时抓住平抛运动时间相等。

3.(多选)如图所示,质量为M=1kg 的薄壁细圆管竖直放置在固定的底座上,圆管内部光滑,圆半径比细管的内径大得多。

已知圆的半径R =0.4m ,一质量m=0.5kg 的小球,在管内最低点A 的速度大小为22m/s ,g 取10m/s 2,则以下说法正确的是: ( )A.小球恰能做完整的圆周运动B.小球沿圆轨道上升的最大高度为0.4mC.圆管对底座的最大压力为15ND.圆管对底座的最大压力等于25N 【答案】BD【解析】小球在转动过程中,管壁对小球的作用力垂直于速度方向,不做功,只有重力做功,根据动能定理可得21 2mgh mv =,解得:20.42v h m g ==,而小球要做完整的圆周运动,需要上升的高度为0.8m ,故不能上升到最高点,A 错误B 正确;在最低点时,速度最大,球对圆管的压力最大,根据牛顿第二定律可得2v N mg m R-=,解得:15N N =,即球对圆管的压力为15N ,则圆管对地的最大压力为151025N F N Mg N =+=+=,C 错误D 正确。

【名师点睛】小球运动过程中,只有重力做功,机械能守恒,根据机械能守恒定律求出小球沿圆轨道上升的最大高度,判断能不能上升到最高点,在最低点时,球对圆管的压力最大,此时圆管对地的压力最大,根据向心力公式和平衡条件列式求解。

4.(多选)如图所示,内部光滑的半球形容器固定放置,两个完全相同的小气a、b分别沿容器内部,在不同的水平面内做匀速圆周运动,下列判断正确的是:()A、a的内壁的压力小于b对内壁的压力B、a的周期小于b的周期C、a的角速度小于b的角速度D、a的向心加速度大小大于b的向心加速度大小【答案】BD【名师点睛】分析受力情况,确定小球向心力的来源,以任意一球为研究对象,根据牛顿第二定律得出角速度、周期、向心加速度和小球所受支持力的表达式,再比较其大小。

5.如图所示,M是水平放置的半径足够大的圆盘,绕过其圆心的竖直轴OO匀速转动,规定经过圆心D点且水平向右为礴由正方向。

在D点正上方距盘面高为h=1.25m处有一个可间断滴水的容器,从t=0时刻开始.容器沿水平轨道向X轴正方向做初速度为零的匀加速直线运动。

已知t=0时刻滴下第一滴水,以后每当前一滴水刚好落到盘面时再滴下一滴水。

则:(取g=l0m/s2)(1)每一滴水离开容器后经过多长时间滴落到盘面上?(2)要使每一滴水在盘面上的落点都位于同一直线上,圆盘的角速度应为多大?(3)当圆盘的角速度为2πr ad/s时,第二滴水与第三滴水在盘面上落点间的距离2m,求容器的加速度a为多少?【答案】(1)t =0.5s ;(2)ω=2kπ,其中k =1,2,3,…;(3)a =1.45m/s 2【解析】(1)水滴在竖直方向做自由落体运动,有221gt h =,解得t =0.5s (3)第二滴水离开O 点的距离为a t at at x 832122=•+= 第三滴水离开O 点的距离为a t t a t a x =•+=)2()2(2123 又△θ=ωt =6.28×0.5=π即第二滴水和第三滴水分别滴落在圆盘上x 轴方向及负x 轴的方向上,所以:283=+a a 解得:a =1.45m/s 2;【名师点睛】本题主要考查了匀速圆周运动、自由落体运动相关知识。

属于难度较大的题目。

本题涉及到运动的合成与分解,圆周运动,匀变速直线运动的相关规律,特别注意水滴离开容器后做平抛运动,竖直方向做自由落体运动,水平方向做匀速直线运动,注意两个物体运动的同时性,圆周运动的周期性。

1.将一物体沿与水平面α角的方向以速度v 0抛出,重力加速度为g ,如图所示。

在其轨迹最高点P 处附近的一小段曲线可近似为一段圆弧,则该圆弧所在的圆的半径是: ( )A .20v gB .220sin v g αC .220cos v g αD .220cos sin v g αα【答案】C 【名师点睛】曲率半径,一个新的概念,平时不熟悉,但根据题目的介绍可知,求曲率半径也就是求在该点做圆周运动的半径,读懂题目的真正意图,本题就可以解出了.2.(多选)如图所示,小木块a 、b 和c (可视为质点)放在水平圆盘上,a 、b 两个质量均为m , c 的质量为m/2,a 与转轴OO′的距离为L ,b 、c 与转轴OO′的距离为2L 且均处于水平圆盘的边缘.木块与圆盘的最大静摩擦力为木块所受重力的k 倍,重力加速度大小为g ,若圆盘从静止开始绕转轴缓慢地加速转动,下列说法正确的是: ( )A .b 、c 所受的摩擦力始终相等,故同时从水平圆盘上滑落B .当a 、b 和c 均未相对圆盘滑动时,a 、c 所受摩擦力的大小相等C .b 和c 均未相对圆盘滑动时,它们的线速度相同D .b 开始相对圆盘滑动时的转速是L kg 221π 【答案】BD【解析】物体做圆周运动的向心力等于物体与转盘之间的静摩擦力,根据2f m r ω=可知,b 所受的摩擦力大于c ,a 、c 所受摩擦力的大小相等,选项A 错误,B 正确;根据v=ωr 可知,b 和c 均未相对圆盘滑动时,它们的线速度大小相同,方向不同,选项C 错误;b 开始相对圆盘滑动时满足:2(2)2kmg m n L π=⋅,解得n=Lkg 221π,故选项D 正确;故选D. 【名师点睛】此题考查了牛顿第二定律在圆周运动问题中的应用问题;要知道物体做圆周运动的向心力是由静摩擦力来提供的,当静摩擦力达到最大时,不足于提供向心力了,物体就要产生滑动;此题意在考查学生基本规律的运用能力.3.(多选)如图所示,两物块A 、B 套在水平粗糙的CD 杆上,并用不可伸长的轻绳连接,整个装置能绕过CD 中点的轴1OO 转动,已知两物块质量相等,杆CD 对物块A 、B 的最大静摩擦力大小相等,开始时绳子处于自然长度(绳子恰好伸直但无弹力),物块B 到1OO 轴的距离为物块A 到1OO 轴距离的两倍,现让该装置从静止开始转动,使转速逐渐慢慢增大,在从绳子处于自然长度到两物块A 、B 即将滑动的过程中,下列说法正确的是: ( )A 、A 受到的静摩擦力一直增大B 、B 受到的静摩擦力先增大后保持不变C 、A 受到的静摩擦力是先增大后减小再增大D 、B 受到的合外力先增大后保持不变【答案】BC【名师点睛】在转动过程中,两物体都需要向心力来维持,一开始是静摩擦力作为向心力,当摩擦力不足以做向心力时,绳子的拉力就会来做补充,速度再快,当这2个力的合力都不足以做向心力时,物体将会发生相对滑动,根据向心力公式进行讨论即可求解。

4.(多选)如图所示,水平杆固定在竖直杆上,两者互相垂直,水平杆上0、A 两点连接有两轻绳,两绳的另一端都系在质量为m 的小球上,O A=O B=AB ,现通过转动竖直杆,使水平杆在水平面内做匀速圆周运动,三角形O AB 始终在竖直平面内,若转动过程O A 、AB 两绳始终处于拉直状态,则下列说法正确的是( )A .OB 绳的拉力范围为0~mg 33 B .O B 绳的拉力范围为mg 33~mg 332, C .AB 绳的拉力范围为0~mg 33 D .AB 绳的拉力范围为0~mg 332 【答案】BC【名师点睛】本题考查圆周运动的向心力,意在考查学生应用牛顿运动定律分析圆周运动的临界问题,难度中等.转动的角速度为零时,O B 绳的拉力最小,AB 绳的拉力最大,当AB 绳的拉力刚好为零时,O B 绳的拉力最大,根据共点力平衡和牛顿第二定律进行求解.5.如图所示,竖直平面内的43圆弧形光滑轨道半径为R ,A 端与圆心O 等高,AD 为与水平方向成45°角的斜面.B 端在O 的正上方.一个小球在A 点正上方由静止开始释放,自由下落至A 点后进入圆形轨道并恰能到达B 点,求:(1)释放点距A 点的竖直高度;(2)小球落到斜面上C 点时的速度大小【答案】(1)释放点距A 点的竖直高度是1.5R (2)小球落到斜面上C 点时的速度大小为【名师点睛】(1)小球恰能到达B 点,说明此时恰好是物体的重力作为向心力,由向心力的公式可以求得在B 点的速度大小;从开始下落到B 的过程中,根据动能定理,从而可以求得小球释放时距A 点的竖直高度.(2)离开B 点后小球做平抛运动,落点仍在斜面上,根据水平方向的匀速直线运动,竖直方向上的自由落体运动,有x y =θtan ,求得竖直分速度,再利用速度的合成求得小球落到斜面上时的速度.1.【2016·上海卷】风速仪结构如图(a )所示。

光源发出的光经光纤传输,被探测器接收,当风轮旋转时,通过齿轮带动凸轮圆盘旋转,当圆盘上的凸轮经过透镜系统时光被挡住。

已知风轮叶片转动半径为r ,每转动n 圈带动凸轮圆盘转动一圈。

若某段时间Δt 内探测器接收到的光强随时间变化关系如图(b )所示,则该时间段内风轮叶片: ( )A .转速逐渐减小,平均速率为4πΔnr tB .转速逐渐减小,平均速率为8πΔnr tC .转速逐渐增大,平均速率为4πΔnr t D .转速逐渐增大,平均速率为8πΔnr t 【答案】B 【方法技巧】先通过图示判断圆盘凸轮的转动速度变化和转动圈数,再通过圆周运动的关系计算叶片转动速率。

2.【2016·全国新课标Ⅲ卷】如图,在竖直平面内有由14圆弧AB 和12圆弧BC 组成的光滑固定轨道,两者在最低点B 平滑连接。

相关文档
最新文档