线性方程组的直接解法

合集下载

求解线性方程组的直接解法

求解线性方程组的直接解法

求解线性方程组的直接解法5.2LU分解① Gauss消去法实现了LU分解顺序消元结束时的上三角矩阵U和所用的乘数,严格下三角矩阵。

将下三角矩阵的对角元改成1,记为L,则有A=LU,这事实是一般的,我们不难从消去的第k个元素时的矩阵k行及k列元素的历史得到这一点.因为从消元的历史有u kj=a kj-m k1u1j- m k2u2j -…- m k,k-1u k-1,j, j=k,k+1,…,nm ik=(a ik-m i1u1k- m i2u2k -…-m i,k-1u k-1,k>/u kk i=k+1,k+2,…,n于是a kj=m k1u1j+m k2u2j+…+m k,k-1u k-1,j+u kj, j=k,k+1,…,na ik=m i1u1k+m i2u2k+…+m i,k-1u k-1,k+m ik u kk i=k+1,k+2,…,n从前面两个式子我们可以直接计算L和U(见下段>.将矩阵分解为单位下三角矩阵和上三角矩阵之积称为矩阵的LU分解.顺序消元实现了LU分解,同时还求出了g, Lg=b的解.②直接LU分解上段我们得到(l ij=m ij>u kj=a kj-l k1u1j-l k2u2j -…- l k,k-1u k-1,j, j=k,k+1,…,nl ik=(a ik-l i1u1k-l i2u2k -…-l i,k-1u k-1,k>/u kk i=k+1,k+2,…,n2诸元素对应乘积,只不过算L的元素时还要除以同列对角元.这一规律很容易记住.可写成算法(L和U可存放于A>:for k=1:n-1for j=k:nu kj=a kj-l k1u1j-l k2u2j -…- l k,k-1u k-1,jendfor i=k+1:nl ik=(a ik-l i1u1k-l i2u2k -…-l i,k-1u k-1,k>/u kkendend这一算法也叫Gauss消去法的紧凑格式,可一次算得L,U的元素,不需逐步计算存储.考察上面的表格会发现还可安排其它计算次序,只要在这一次序下每个元素左边的L的元素与上方的U的元素已计算在先。

求解线性方程组的直接解法范文

求解线性方程组的直接解法范文

求解线性方程组的直接解法5.2 LU 分解① Gauss 消去法实现了LU 分解顺序消元结束时的上三角矩阵U 和所用的乘数,严格下三角矩阵。

将下三角矩阵的对角元改成1,记为L ,则有A =LU ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-613322121121542774322这事实是一般的,我们不难从消去的第k 个元素时的矩阵k 行及k 列元素的历史得到这一点.因为从消元的历史有 u kj =a kj -m k 1u 1j - m k 2u 2j -…- m k ,k-1u k-1,j , j=k ,k+1,…,n m ik =(a ik -m i 1u 1k - m i 2u 2k -…-m i ,k-1u k-1,k )/u kk i=k+1,k+2,…,n 于是 a kj =m k 1u 1j +m k 2u 2j +…+m k ,k-1u k-1,j +u kj , j=k ,k+1,…,n a ik =m i 1u 1k +m i 2u 2k +…+m i ,k-1u k-1,k +m ik u kk i=k+1,k+2,…,n 从前面两个式子我们可以直接计算L 和U (见下段).将矩阵分解为单位下三角矩阵和上三角矩阵之积称为矩阵的LU 分解.顺序消元实现了LU 分解,同时还求出了g , Lg =b 的解.② 直接LU 分解上段我们得到(l ij =m ij ) u kj =a kj -l k 1u 1j -l k 2u 2j -…- l k ,k-1u k-1,j , j=k ,k+1,…,n l ik =(a ik -l i 1u 1k -l i 2u 2k -…-l i ,k-1u k-1,k )/u kk i=k +1,k+2,…,n2诸元素对应乘积,只不过算L 的元素时还要除以同列对角元.这一规律很容易记住.可写成算法(L 和U 可存放于A ): for k =1:n -1 for j=k :n u kj =a kj -l k 1u 1j -l k 2u 2j -…- l k ,k-1u k-1,jendfor i=k+1:nl ik =(a ik -l i 1u 1k -l i 2u 2k -…-l i ,k-1u k-1,k )/u kk end end这一算法也叫Gauss 消去法的紧凑格式,可一次算得L ,U 的元素,不需逐步计算存储.考察上面的表格会发现还可安排其它计算次序,只要在这一次序下每个元素左边的L 的元素与上方的U 的元素已计算在先。

数值分析第三章线性方程组解法

数值分析第三章线性方程组解法

数值分析第三章线性方程组解法在数值分析中,线性方程组解法是一个重要的主题。

线性方程组是由一组线性方程组成的方程组,其中未知数的次数只为一次。

线性方程组的解法包括直接解法和迭代解法两种方法。

一、直接解法1.1矩阵消元法矩阵消元法是求解线性方程组的一种常用方法。

这种方法将方程组转化为上三角矩阵,然后通过回代求解得到方程组的解。

1.2LU分解法LU分解法是将系数矩阵A分解为一个下三角矩阵L和一个上三角矩阵U的乘积,然后通过解两个三角方程组求解线性方程组。

这种方法可以减少计算量,提高计算效率。

1.3 Cholesky分解法Cholesky分解法是对称正定矩阵进行分解的一种方法。

它将系数矩阵A分解为一个下三角矩阵L和它的转置的乘积,然后通过解两个三角方程组求解线性方程组。

Cholesky分解法适用于对称正定矩阵的求解,具有较高的精度和稳定性。

二、迭代解法2.1 Jacobi迭代法Jacobi迭代法是一种迭代求解线性方程组的方法。

它通过分解系数矩阵A为一个对角矩阵D和一个余项矩阵R,然后通过迭代更新未知数的值,直至达到一定精度要求为止。

Jacobi迭代法简单易懂,容易实现,但收敛速度较慢。

2.2 Gauss-Seidel迭代法Gauss-Seidel迭代法是一种改进的Jacobi迭代法。

它通过使用新计算出的未知数值代替旧的未知数值,达到加快收敛速度的目的。

Gauss-Seidel迭代法是一种逐步逼近法,每次更新的未知数值都会被用于下一次的计算,因此收敛速度较快。

2.3SOR迭代法SOR迭代法是一种相对于Jacobi和Gauss-Seidel迭代法更加快速的方法。

它引入了一个松弛因子,可以根据迭代的结果动态地调整未知数的值。

SOR迭代法在理论上可以收敛到线性方程组的解,而且收敛速度相对较快。

三、总结线性方程组解法是数值分析中的一个重要内容。

直接解法包括矩阵消元法、LU分解法和Cholesky分解法,可以得到线性方程组的精确解。

数值分析-线性方程组的直接解法

数值分析-线性方程组的直接解法

算法 Gauss(A,a,b,n,x)
1. 消元 For k=1,2, … , n-1 1.1 if akk=0 , stop; 1.2 For i=k+1,k+2, …, n 1.2.1 l ik=aik /akk => aik 1.2.2 For j=k+1,k+2, … ,n ai j -aik ak j =>aij 1.2.3 bi -aik bk=> bi 2. 回代 2.1 bn / an=>xn; 2.2 For i=n-1,n-2, …, 2,1 2.2.1 bk => S 2.2.2 For j=k+1,k+2, … ,n S –akj xj =>S 2.2.3 S/ akk => xk a1 1 a1 2 a13 a2 1 a2 2 a23
线性方程组的直接解法
刘 斌
线性方程组的直接解法
§1 Gauss消去法 1.1 顺序Gauss消去法
1.2
§2 2.1 2.2 2.3
列主元Gauss消去法
Gauss消去法的矩阵运算 Doolittle分解法 平方根法
直接三角分解方法
2.4
追赶法
引入
在科学计算中,经常需要求解含有n个未知量 的n个方程构成的线性方程组 a11 x1 a12 x2 a1n xn b1 a21 x1 a22 x2 a2 n xn b2 (1) an1 x1 an 2 x2 ann xn bn
(1) a12 ( 2) a22 0
(1) (1) a13 a1 n ( 2) ( 2) a23 a2 n ( 3) ( 3) a33 a3 n
0

数值分析小论文线性方程组的直接解法

数值分析小论文线性方程组的直接解法

数值分析小论文线性方程组的直接解法线性方程组的直接解法是指通过一系列的代数运算直接求解线性方程组的解。

线性方程组是数值分析中非常重要的问题,广泛应用于工程、科学、计算机图形学等领域。

在线性方程组的直接解法中,最常用的方法是高斯消元法,它是一种基于矩阵变换的方法。

高斯消元法将线性方程组表示为增广矩阵,并通过一系列的行变换将增广矩阵转化为行阶梯形矩阵,从而得到方程组的解。

高斯消元法的主要步骤包括消元、回代和得到方程组的解。

消元是高斯消元法的第一步,通过一系列的行变换将增广矩阵的元素转化为上三角形式。

在消元过程中,我们首先找到主元素,即矩阵的对角线元素,然后将其它行的元素通过消元操作转化为0,从而使得矩阵逐步变成上三角形矩阵。

回代是高斯消元法的第二步,通过一系列的回代操作求解线性方程组。

回代操作是从上三角形矩阵的最后一行开始,通过依次求解每个未知数的值,最终得到方程组的解。

高斯消元法的优点是算法简单易于实现,可以在有限的步骤内求解线性方程组,适用于一般的线性方程组问题。

但是高斯消元法也存在一些问题,例如当矩阵的主元素为0时,无法进行消元操作,此时需要通过行交换操作来避免这种情况。

另外,高斯消元法对病态矩阵的求解效果较差,容易引起舍入误差累积,导致解的精度下降。

在实际应用中,为了提高求解线性方程组的效率和精度,人们常常使用一些改进的直接解法,例如列主元高斯消元法和LU分解法。

列主元高斯消元法通过选择最大主元来避免主元为0的情况,进一步提高了求解线性方程组的精度。

LU分解法将矩阵表示为两个矩阵的乘积,从而将线性方程组的求解问题转化为两个三角形矩阵的求解问题,提高了求解效率。

综上所述,线性方程组的直接解法是一种基于矩阵变换的方法,通过一系列的代数运算求解线性方程组的解。

高斯消元法是最常用的直接解法之一,它简单易于实现,适用于一般的线性方程组问题。

在实际应用中,可以通过改进的直接解法来进一步提高求解效率和精度。

数值分析第二章解线性方程组的直接方法

数值分析第二章解线性方程组的直接方法

a2(22) x2 ... a2(2n) xn b2(2) ,
..............
an(nn) xn bn(n) .
对此方程组进行回代,就可求出方程组的解.
xn
xiΒιβλιοθήκη bn(n) (bi(i )
an(nn) ,
n
ai(ji ) x
j i 1
j
)
ai(ii ) ,
i n 1,n 2,,1.
x3 x3
1 1
4x1 2x2 2x3 3
消去后两个方程中的x1得
x1
2 x2 5 x2
x3 1 2x3 2
6x2 6x3 1
再消去最后一个方程的x2得
x1
2 x2 5 x2
x3 1 2x3 2
42 5
x3
7 5
消元结束.
x1
1 2
经过回代得解:
x2
1 3
互换, 因而程序比较复杂, 计算时间较长.
• 列主元素法的精度虽然稍低于全主元素法, 但其
计算简单, 工作量大为减少, 且计算经验与理论实
践均表明, 它与全主元素法同样具有良好的数值稳
定性.
• 列主元素法是求解中小型稠密线性方程组的最好
方法之一.
27
§2 直接三角分解法
Gauss消元法的矩阵表示
a12
a13
a 1 0 a21 a22 a23 a21 aa11 a22 aa12 a23 aa13
b 0 1 a31 a32 a33 a31 ba11 a32 ba12 a33 ba13
28
n=3时Gauss消元法的矩阵表示
a11 a12 a13 A a21 a22 a23

线性方程组的直接解法程序设计

线性方程组的直接解法程序设计

线性方程组的直接解法程序设计一、高斯消元法高斯消元法是解线性方程组最常用的方法之一、它通过消元和回代的方式,将线性方程组转化为上三角形式,进而求解未知数的值。

程序设计步骤如下:1.读入线性方程组的系数矩阵A和常数向量b;2.进行初等行变换,将系数矩阵A转化为上三角矩阵U,并同时对常数向量b进行相应的变换;3.判断是否有唯一解,如果主对角线上存在零元素,则方程组无解;如果主对角线上所有元素都非零,则方程组有唯一解;4.进行回代计算,求解未知数的值。

高斯消元法的优点是简单直观,容易理解和实现。

但是在一些情况下,会出现主对角线上有零元素的情况,此时需要进行行交换,增加了额外的计算量。

二、LU分解法LU分解法是另一种常用的线性方程组直接解法。

它将系数矩阵A分解为下三角矩阵L和上三角矩阵U的乘积,即A=LU。

程序设计步骤如下:1.读入线性方程组的系数矩阵A和常数向量b;2.进行LU分解,找到下三角矩阵L和上三角矩阵U;3.解第一个方程Ly=b,先求解向前替代方程,计算出y的值;4.解第二个方程Ux=y,再求解向后替代方程,计算出x的值。

LU分解法的优点是可以在多次需要解线性方程组的情况下重复使用LU分解的结果,提高计算效率。

但是LU分解法需要找到L和U的值,增加了额外的计算量。

三、数学实验在进行数学实验时,需要注意以下几点:1.线性方程组的系数矩阵应该是满秩的,以保证方程组有唯一解;2.对于大规模的线性方程组,可以使用稀疏矩阵存储和计算,减少内存和计算时间的消耗;3.在求解过程中,需要判断方程组是否有解,并且考虑特殊情况的处理;4.通过数学实验可以验证直接解法的正确性和有效性,分析计算结果的误差和稳定性。

综上所述,线性方程组的直接解法程序设计在计算方法和数学实验中都是重要的研究内容。

高斯消元法和LU分解法是常用的直接解法,通过编写程序并进行数学实验,可以深入理解和应用这些方法。

这些方法的有效性和稳定性对于解决实际问题具有重要意义。

数值分析——线性方程组直接解法Hilbert矩阵

数值分析——线性方程组直接解法Hilbert矩阵

数值分析第一次上机实习报告——线性方程组直接解法一、问题描述设 H n = [h ij ] ∈ R n ×n 是 Hilbert 矩阵, 即11ij h i j =+- 对n = 2,3,4,…13,(a) 取11n n x R ⨯⎛⎫ ⎪=∈ ⎪ ⎪⎝⎭,及n n b H x =,用Gauss 消去法和Cholesky 分解方法来求解n n H y b =,看看误差有多大.(b) 计算条件数:2()n cond H(c) 使用某种正则化方法改善(a)中的结果.二、方法描述1. Gauss 消去法Gauss 消去法一般用于系数矩阵稠密且没有任何特殊结构的线性方程组。

设H =[h ij ],y = (y 1,y 2,…,y n )T . 首先对系数矩阵H n 进行LU 分解,对于k=1,2,…n,交替进行计算:1111),,1,,1(),1,2,,k kj kj kr rj r k ik ik ir rk r kk u h l u j k k n l a l u i k k n u -=-=⎧=-=+⎪⎪⎨⎪=-=++⎪⎩∑∑…… 由此可以得到下三角矩阵L=[l ij ]和上三角矩阵U=[u ij ]. 依次求解方程组Ly=b 和Ux=y ,111,1,2,,1(),,1,,1i i i ir r r n i i ir r r i ii y b l y i n x y u x i n n u -==+⎧=-=⎪⎪⎨⎪=-=-⎪⎩∑∑…… 即可确定最终解。

2. Cholesky 分解法对于系数矩阵对称正定的方程组n n H y b =,存在唯一的对角元素为正数的下三角矩阵L ,使得H=LL T 。

因此,首先对矩阵H n 进行Cholesky 分解,即1122111()1()j jj jj jk k j ij ij ik jk k jj l h l l h l l l -=-=⎧=-⎪⎪⎨⎪=-⎪⎩∑∑ 1,i j n =+… L 的元素求出之后,依次求解方程组Ly=b 和L T x=y ,即1111111(),2,3,i i i ik k k ii b y l y b l y i n l -=⎧=⎪⎪⎨⎪=-=⎪⎩∑… 11(),1,2,n n nn n i i ki k k i nn y x l x y l x i n n l =+⎧=⎪⎪⎨⎪=-=--⎪⎩∑…1 由此求得方程组n n H y b =的解。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2、 实验结果 求得������1 = 2; ������2 = 2; ������3 = 3
五、实验结论
1、 在计算机上直接高斯消去法是一种比较高效率的算法, 但是要求矩阵各顺 序主子式不能为 0 以保证主元不为 0. 2、通过选主元的方式可以保证高斯消去法的顺利进行。 3、满足对角占优或对称正定的矩阵方程可以更高效地求解。
三、实验分析 Problem1:
������1 + 2������2 + 3������3 = 14, 用列主元高斯消去法解方程组:{2������1 + 5������2 + 2������3 = 18, 3������1 + ������2 + 5������3 = 20. 1、 实验步骤 1 2 3 14 利用附录程序,输入增广矩阵[2 5 2 18],运行程序得如图结果 3 1 5 20
[附录]迭代法源程序(C 语言)
① 列主元 Gauss 消去法 #include<stdio.h> #include<math.h> #define M 4 void select(int k, double x[][M+1]) { double t=x[k][k],e[M][M+1]; int i,j,m; for(i=k;i<M;i++)//第 k 次选主元 { if(fabs(x[i][k])>fabs(t)) { t=x[i][k]; m=i; } else m=k; } for(j=k;j<M+1;j++) { e[k][j]=x[k][j]; x[k][j]=x[m][j]; x[m][j]=e[k][j]; } } int main() { int i,j,k; double t=0,a[M][M+1],l[M][M+1],x[M]; printf("Input the matrix:\n"); for(i=1;i<M;i++) { for(j=1;j<M+1;j++) scanf("%lf",&a[i][j]); } for(k=1;k<M-1;k++)//消元过程 { select(k,a);//第 k 次选主元 for(i=k+1;i<M;i++)//消元 { l[i][k]=a[i][k]/a[k][k];//消元因子 for(j=k+1;j<M+1;j++) a[i][j]=a[i][j]-l[i][k]*a[k][j];
“线性方程组的直接解法”实验报告
姓名:石异 学号: 20161301236 班级: 16 长望 1 班 指导教师: 卢长娜
一、问题描述
从前讨论的若干问题,都包含着将原问题转化为代数问题的思想,即将问题 归结为求解线性代数方程组。而对于此类方程组的解法,已经有了克拉默法则。 但此方法的计算速度太慢,当阶数较高时,用此方法显然是不现实的。所以需要 回归到方程组本身去寻求快速而有效的算法。
} } //回代过程 x[M-1]=a[M-1][M]/a[M-1][M-1]; for(i=M-2;i>0;i--) { t=0; for(j=i+1;j<M;j++) t=t+a[i][j]*x[j]; x[i]=(a[i][M]-t)/a[i][i]; } for(i=1;i<M;i++) printf("x[%d]=%f\n",i,x[i]); return 0; } ②追赶法 #include<stdio.h> #include<math.h> #define M 4 int main() { int i,j,k; double t=0,a[M][M+1],l[M],x[M]; printf("Input the matrix:\n"); for(i=1;i<M;i++) { for(j=1;j<M+1;j++) scanf("%lf",&a[i][j]); } for(i=2;i<M;i++) { l[i]=a[i][i-1]/a[i-1][i-1]; a[i][M]=a[i][M]-l[i]*a[i-1][M]; a[i][i]=a[i][i]-l[i]*a[i-1][i]; } //回代过程 x[M-1]=a[M-1][M]/a[M-1][M-1]; for(i=M-2;i>0;i--) x[i]=(a[i][M]-a[i][i+1]*x[i+1])/a[i][i]; for(i=1;i<M;i++) printf("x[%d]=%f\n",i,x[i]); return 0; }
2、 实验结果 求得������1 = 1; ������2 = 2; ������3 = 3
Problem2:
−2������1 + ������2 = −2, 用追赶法解方程组:{������1 − 2������2 + ������3 = 1, ������2 − 2������3 = −4. 1、实验步骤 −2 1 0 −2 利用附录程序,输入增广矩阵[ 1 −2 1 1 ],运行程序得如图结果 0 1 −2 −4
二、思想方法
1、高斯消去法 对于系数矩阵为三角阵的方程组,我们可以按顺序自上而下或自下而上依次 求解方程组。 而对于一个一般的线性方程组������������ = ������, 可以通过对增广矩阵作初等 行变换(消元过程) ,将此方程组转化为同解的三角方程组(回代过程) ,假设转 化为上三角形方程组,然后反向求解此三角形方程组,得出解向主元消去法 对于上述高斯消去法,默认前提条件为每一步消元时,对应的主元均不能为 0, 否则高斯消去法不能进行。 实际上, 在计算机运算过程中, 即使主元不为零, 但是如果主元的绝对值相对于其他元素很小时,通常会导致很大的计算误差。所 以, 在每一步消元之前, 先把方程的次序适当地交换一下, 以避免小主元的出现, 在程序中可直接选出最大的主元,然后将其所在行换至当前位置。 这样,通过选主元就可以保证高斯消去法的顺利进行。 3、针对三对角矩阵的高斯消去法——追赶法 事实上,如果矩阵满足严格对角占优或对称正定时,不用通过选主元,高斯 消去法也能顺利进行。同时,如果系数矩阵是三对角矩阵的话,只要消去最下面 的斜对角元素即可, 也即高斯消去法每次只需要消去一个元素,大大减少了计算 的次数。其运算量为������(������).
相关文档
最新文档