线性方程组的解法及其应用
线性方程组的解法与应用

线性方程组的解法与应用在数学中,线性方程组是由若干个线性方程组成的方程组,它是研究线性代数的基础。
线性方程组的解法和应用非常广泛,可以用于解决实际生活和工作中的各种问题。
本文将介绍线性方程组的解法以及一些应用案例。
一、线性方程组的解法线性方程组的解法主要有三种:图解法、代入法和消元法。
下面将详细介绍这三种方法。
1. 图解法图解法是线性方程组最直观的解法之一。
通过在坐标系中画出方程组表示的直线或者平面,可以确定方程组的解。
举个例子,考虑一个包含两个未知数的线性方程组:方程一:2x + 3y = 7方程二:4x - y = 1我们可以将方程一化简为 y = (7 - 2x) / 3,方程二化简为 y = 4x - 1。
然后在坐标系中画出这两条直线,它们的交点即为方程组的解。
2. 代入法代入法是一种逐步代入的解法。
通过将已知的某个变量表达式代入到另一个方程中,逐步求解未知数的值。
仍以前述的线性方程组为例,我们可以将方程二中的 y 替换为 (7 - 2x) / 3,代入方程一中:2x + 3((7 - 2x) / 3) = 7通过化简方程,我们可以得到 x 的值,然后再将 x 的值代入到方程二中,求出 y 的值。
3. 消元法消元法是一种通过不断消去未知数来求解方程组的解法。
通过变换或者利用消元的规律,将方程组转化为更简单的形式,从而获得解。
考虑一个包含三个未知数的线性方程组为例:方程一:2x + 3y - z = 10方程二:4x - y + z = 2方程三:x + 2y + z = 3可以使用消元法将这个方程组转化为上三角形式,即方程组的右上方是零。
通过对方程组进行一系列的变换,可以得到转化后的方程组:方程一:2x + 3y - z = 10方程二:-7y + 5z = -18方程三:4y + 5z = -1一旦方程组转化为上三角形式,可以通过回代法依次求解未知数。
二、线性方程组的应用线性方程组的求解方法在现实生活中有着广泛的应用。
线性方程组的解法与实际应用

线性方程组的解法与实际应用线性方程组是数学中的基本概念之一,广泛应用于各个领域,包括物理学、经济学、工程学等。
本文将探讨线性方程组的解法以及其在实际应用中的重要性。
一、线性方程组的解法线性方程组是由一系列线性方程组成的方程组。
一般形式为:a₁x₁ + a₂x₂ + ... + aₙxₙ = b₁a₁x₁ + a₂x₂ + ... + aₙxₙ = b₂...a₁x₁ + a₂x₂ + ... + aₙxₙ = bₙ其中,a₁、a₂、...、aₙ为系数,x₁、x₂、...、xₙ为未知数,b₁、b₂、...、bₙ为常数。
解线性方程组的方法有很多种,常见的有高斯消元法、矩阵法和克莱姆法则。
下面将分别介绍这三种方法。
1. 高斯消元法高斯消元法是一种基本的线性方程组解法,它通过消元和回代的方式求解未知数的值。
首先,将线性方程组写成增广矩阵的形式,然后利用初等行变换将矩阵化为上三角矩阵,最后通过回代求解得到未知数的值。
2. 矩阵法矩阵法是一种简洁高效的线性方程组解法。
将线性方程组的系数矩阵和常数矩阵进行运算,得到增广矩阵。
然后利用矩阵的性质进行求解,如行列式的计算、逆矩阵的求解等。
最后得到未知数的值。
3. 克莱姆法则克莱姆法则是一种利用行列式求解线性方程组的方法。
根据克莱姆法则,线性方程组的解可以通过系数矩阵的行列式和常数矩阵的行列式之间的关系求得。
具体操作是将系数矩阵的每一列替换为常数矩阵,然后求解行列式的值,最后得到未知数的值。
二、线性方程组的实际应用线性方程组在实际应用中扮演着重要的角色,下面将介绍一些典型的应用场景。
1. 物理学中的应用线性方程组在物理学中有广泛的应用。
例如,牛顿第二定律可以用线性方程组表示。
当我们需要求解物体在受力作用下的加速度、速度和位移时,可以通过解线性方程组得到这些物理量的值。
2. 经济学中的应用经济学中的供求关系、成本与收益等问题也可以用线性方程组进行建模和求解。
例如,当我们需要确定某种商品的市场均衡价格和数量时,可以通过解线性方程组得到这些值。
线性方程组的解法与应用

线性方程组的解法与应用线性方程组是数学中常见的一类问题,它由一系列线性方程组成,其中每个方程都是变量的一次函数。
解决线性方程组的方法有很多种,每种方法都有其独特的优点和适用范围。
本文将介绍几种常见的线性方程组解法,并探讨其在实际应用中的重要性。
一、高斯消元法高斯消元法是解线性方程组最常用的方法之一。
它通过一系列的行变换将线性方程组转化为简化的阶梯形矩阵,从而求得方程组的解。
这种方法的优点在于简单易懂,适用范围广泛。
然而,高斯消元法在处理大规模的线性方程组时可能会出现计算量过大的问题,因此在实际应用中需要注意算法的优化。
二、矩阵求逆法矩阵求逆法是另一种常见的线性方程组解法。
它利用矩阵的逆矩阵来求解方程组的解。
具体而言,将线性方程组的系数矩阵与常数矩阵合并成一个增广矩阵,然后对增广矩阵进行初等行变换,最终得到方程组的解。
矩阵求逆法的优点在于计算过程简单,适用于求解小规模的线性方程组。
然而,矩阵求逆法在求解大规模线性方程组时可能会遇到矩阵奇异性的问题,因此需要注意矩阵的条件数。
三、LU分解法LU分解法是一种将线性方程组的系数矩阵分解为下三角矩阵和上三角矩阵的方法。
通过LU分解,可以将原始的线性方程组转化为两个简化的方程组,从而求得方程组的解。
LU分解法的优点在于可以重复使用分解后的矩阵,从而减少计算量。
此外,LU分解法还可以用于求解多个具有相同系数矩阵但不同常数的线性方程组,提高计算效率。
四、应用案例:电路分析线性方程组的解法不仅在数学领域有着广泛的应用,还在工程领域中起着重要的作用。
以电路分析为例,我们可以将电路中的各个元件表示为线性方程组中的变量,通过解方程组来求解电路中的电流和电压。
这种方法可以帮助工程师预测电路的性能,优化电路设计,并解决电路中的故障。
在电路分析中,线性方程组的解法通常与矩阵求逆法和LU分解法相结合。
通过矩阵求逆法,我们可以将电路的节点电压和支路电流表示为矩阵形式,并求解电路中各个元件的电流和电压。
线性方程组的解法及应用

线性方程组的解法及应用线性方程组是数学中常见的问题,其解法和应用十分广泛。
本文将介绍线性方程组的几种常见解法,并探讨了其在实际应用中的意义和重要性。
一、高斯消元法高斯消元法是解决线性方程组的常见方法之一。
其基本思想是通过一系列的行变换,将线性方程组转化为上三角矩阵或对角矩阵的形式,进而求解未知数。
通过逐行消元和回代过程,可以求得方程组的解。
高斯消元法是一种时间复杂度较低的求解线性方程组的方法,适用于各种规模的问题。
二、矩阵求逆法矩阵求逆法是另一种常见的求解线性方程组的方法。
根据矩阵的定义和性质,可以通过求解系数矩阵的逆矩阵,进而求得线性方程组的解。
这种方法较为简便,尤其适用于方程组的系数矩阵可逆的情况。
然而,由于求逆矩阵的计算复杂度较高,这种方法在处理大规模问题时可能变得不切实际。
三、克莱姆法则克莱姆法则是一种通过行列式的性质求解线性方程组的方法。
根据法则的定义,通过计算系数矩阵和常数矩阵的各个子行列式,可以得到线性方程组的解。
克莱姆法则具有简单的结构和直观的操作步骤,但其计算量较大,仅适用于小规模问题。
以上是几种常见的线性方程组解法,每种方法都有其适用的场景和特点。
在实际应用中,我们根据问题的特点和数据的规模,选择合适的解法以提高计算效率和准确性。
线性方程组求解的应用涉及到众多学科和领域,下面我们将探讨其中几个重要的应用。
四、物理学中的应用线性方程组在物理学中有着广泛的应用。
以力学为例,在分析力学问题中,往往需要通过线性方程组求解物体的运动状态和力的分布。
通过建立合适的力平衡方程和动力学方程,可以将问题转化为线性方程组,并求解得到物体的位移、速度和加速度等关键信息。
这对于理解物体的运动规律和进行工程设计具有重要意义。
五、经济学中的应用线性方程组在经济学中也有广泛的应用。
以宏观经济学为例,经济学家通常会建立一系列的数学模型,通过线性方程组描述经济系统中的供求关系、市场机制和宏观调控等。
通过求解线性方程组,可以得到不同经济指标之间的关系,帮助政策制定者做出科学的决策,推动经济稳定和发展。
线性方程组的解法及其应用

线性方程组的解法及其应用摘要:线性方程组是线性代数的核心内容之一,其解法研究是代数学中经典且重要的研究课题.本文综述了几种不同类型的线性方程组的解法,如消元法、克拉默法则、广义逆矩阵法、直接三角形法、平方根法、追赶法,并以具体例子介绍不同解法的应用技巧. 在这些解法中,广义逆矩阵方法,具有表达式清晰,使用范围广的特点.另外,这些方法利于快速有效地解决线性方程组的求解问题,为解线性方程组提供一个简易平台,促进了理论与实际的结合.关键词:线性方程组解法广义逆矩阵应用实例1. 引言线性方程组理论是高等数学中十分重要的内容,而线性方程组的解法是利用线性方程组理论解决问题的关键.本文主要介绍线性方程组的广义逆矩阵法、追赶法、平方根法等求解方法,为求解线性方程组提供一个平台.文章也给出线性方程组在其他领域中的应用实例,揭示了各学科之间的内通性.首先,我们讨论一般线性方程组.这里所指的一般线性方程组形式为11112211211222221122,,.n n n n s s sn n s a x a x a x b a x a x a x b a x a x a x b +++=⎧⎪+++=⎪⎨⎪⎪+++=⎩ ()i()i 式中(1,2,,)i x i n =代表未知量,(1,2,,;1,2,,)ij a i s j n ==称为方程组的系数,(1,2,,)j b j n =称为常数项.线性方程组)(i 称为齐次线性方程组,如果常数项全为零,即120s b b b ====.令111212122212n n s s sn a a a a a a A a a a ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦,12n x x X x ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦, 12s b b B b ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦,则()i 可用矩阵乘法表示为AX B =,,,.m n n m A C X C B C ⨯∈∈∈2. 线性方程组的解法2.1 消元法在初等代数里,我们已经学过用代入消元法和加减消元法解简单的二元、三元线性方程组.实际上,这个方法比用行列式解方程组更具有普遍性.但对于那些高元的线性方程组来说,消元法是比较繁琐的,不易使用.例 1 解线性方程组123123123123324,32511,23,237.x x x x x x x x x x x x +-=⎧⎪+-=⎪⎨++=⎪⎪-++=-⎩ 解 分别将第一个方程的(-3)倍,(-2)倍和2倍加到第二、三、四个方程上,整理得123232323324,71,555,7 1.x x x x x x x x x +-=⎧⎪-+=-⎪⎨-+=-⎪⎪-=⎩将此方程组第二个方程加到第四个方程上,使该方程两边全为零,并将第三个方程的两边乘以15-,得1232323324,71,1.x x x x x x x +-=⎧⎪-+=-⎨⎪-=⎩再将第三个方程的7倍加到第二个方程上,消去第二个方程中的未知量2x ,整理得123233324,1,6 6.x x x x x x +-=⎧⎪-=⎨⎪-=⎩最后解得123(,,)(2,0,1)T T x x x =--.正如消元法是我们接触比较早的,被我们所熟悉的一种方法,在此只给出三元线性方程组的解法,三元以上的方程组的具体理论、性质和解题过程详见参考文献[1]. 2.2 应用克莱姆法则对于未知个数与方程个数相等的情形,我们有定理1[1] 如果含有n 个方程的n 元线性方程组11112211211222221122,,.n n n n n n nn n n a x a x a x b a x a x a x b a x a x a x b +++=⎧⎪+++=⎪⎨⎪⎪+++=⎩ ()ii的系数矩阵111212122212n n n n nn a a a a a a A a a a ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦的行列式111212122212det 0n n n n nna a a a a a A a a a =≠,那么线性方程组()ii 有唯一解:det (1,2,,),det j j B x j n A==其中det j B 是把矩阵中第j 列换成线性方程组的常数项12,,,n b b b 所成的矩阵的行列式,即111,111,11222,122,121,1,1det,1,2,,.j j n j j n j n n j n n j nna ab a a a a b a a B j n a a b a a -+-+-+==此外,还可以叙述为,如果含有n 个未知数、n 个方程的线性方程组Ax b =的系数矩阵的行列式det 0A ≠,则线性方程组Ax b =一定有解,且解是唯一的. 例2 解线性方程组12342341242342344,3,31,73 3.x x x x x x x x x x x x x -+-=⎧⎪-+=-⎪⎨++=⎪⎪-++=-⎩ 解 由已知可得系数行列式12341234123401110111111det 16013015352073173148A ---------====≠----,因此线性方程组有唯一解.又因124234143431110311det 128,det 48,1301110137310331B B -------==-==-341244123401310113det 96,det 0.1311130107310733B B ------====--故线性方程组的解为1234(,,,)(8,3,6,0)T T x x x x =-.克莱姆法则主要给出了解与系数的明显关系,但只能应用于系数矩阵的行列式不为零的线性方程组,并且它进行计算是不方便的. 2.5 直接三角分解法[5]设有线性方程组11112211211222221122,,,n n n n n n nn n n a x a x a x b a x a x a x b a x a x a x b +++=⎧⎪+++=⎪⎨⎪⎪+++=⎩或写成矩阵形式Ax b =,其中111212122212n n n n nn a a a a a a A a a a ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦,12n x x x x ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦,12n b b b b ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦.若A 为非奇异矩阵,且有分解式A LU =,其中U 为上三角矩阵,L 为单位下三角矩阵,即11121212221,1111n n n n n nn u u u l u u A LU l l u -⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦, 则线性方程组Ax b =的求解等价于 解以下两个三角方程组:(1)Ly b =,求y ; (2)Ux y =,求x .直接三角形分解法求解线性方程组,基本步骤如下: 第一步: 11,(1,2,,),i i u a i n == 1111,(2,3,,)i i l a u i n ==,计算U 的第r 行,L 的第r 列元素,2,3,,r n =.第二步: 11,(,1,,)r ri ri rk ki k u a l u i r r n -==-=+∑.第三步: 11,(1,,;)r ir ir ik kr rr k l a l u u i r n r n -==(-)=+≠∑.求解Ly b =,Ux y =的计算公式如下:第四步: ()1111,,2,3,.i i i ik k k y b y b l y i n -==⎧⎪⎨=-=⎪⎩∑第五步: 1,(),(1,2,,1).n n nn n i i ik k ii k i x y u x y u x u i n n =+=⎧⎪⎨=-=--⎪⎩∑例5 求解线性方程组1231212321,42,227.x x x x x x x x ++=⎧⎪+=-⎨⎪-++=⎩解 由直接三角分解法第二、三步可得211100211410210012221131004A LU ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥==--=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥---⎣⎦⎣⎦⎣⎦. 于是线性方程组变为LUx b =,求解线性方程组(1,2,7)T Ly =-,得(1,4,4)T y =--;求解线性方程组(1,4,4)T Ux =--,得(1,2,1)T x =-.2.6 平方根法[7]在许多应用中,欲求解的线性方程组的系数矩阵是对称正定的.所谓平方根法,就是利用对称正定矩阵的三角分解而得到的求解具有对称正定矩阵的线性方程组的一中有效方法,目前在计算机上广泛应用平方根法解此类方程组.定理6[12] 若A 的各阶顺序主子式非零,则A 可以分解为A LDU =,其中L 是单位下三角矩阵,U 是单位上三角矩阵,D 是对角矩阵,且这种分解是唯一的.定理7[12] 设A 为对称正定矩阵,则存在三角分解T A LL =,其中L 是非奇异下三角形矩阵,且当限定L 的对角线元素为正时,这种分解是唯一的.应用对称正定矩阵的平方根法,可以解具有对称正定系数矩阵的线性方程组Ax b =,具体算法如下:1) 对j =1,2,,n ,计算11221()j jj jj jkk l a l -==-∑,11j ij ij ik jk k l a l l -==-∑(1,,)i j n =+.2) 求解线性方程组Ax b =等价于解两个三角方程组,.TLy b L x y =⎧⎨=⎩ 计算11()i i i ik k ii k y b l y l -==-∑,(i =1,2,,n ), 1()ni i ki kii k i x b lx l =+=-∑,(i n =,1n -,,2,1),即可.例6 求解线性方程组12341161 4.25 2.750.5.1 2.75 3.5 1.25x x x -⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥-=-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦ 解 设1111213121222232313233334111 4.25 2.751 2.75 3.5l l l l l l l l l l l l -⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥-=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦, 由矩阵乘法得1121223132332,0.5,2,0.5, 1.5, 1.l l l l l l ==-====解下三角方程组123260.520.50.5 1.51 1.25y y y ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥-=-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦, 得1233,0.5,1,y y y ===-再由123230.520.50.5 1.511Tx x x ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥-=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦, 得线性方程组的解为123(,,)(2,1,1)T T x x x =-.可以用消元法解此方程组,但发现此方程组的系数矩阵为正定矩阵,运用平方根法解这个方程组比较容易,而且理论分析指出,解对称正定方程组的平方根法是一个稳定的算法,其在工程计算中使用比较广泛. 2.7 追赶法[5]在许多实际问题中,都会要求解系数矩阵为对角占优的三对角方程组11112222211111iiii i n n n n n nn n n x k b c x k a b c a b c x k a b c x k a b x k -----⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦, 简记作 Ax k =, 其中A 满足下列对角占优条件:(1) 110b c >>;(2) i i i b a c ≥+, i a ,i c 0≠(i =2,3, ,1n -);(3) 0n n b c >>.由系数矩阵A 的特点,可以将A 分解为两个三角矩阵的乘积,即A LU =,其中L 为下三角矩阵,U 为单位上三角矩阵.求解线性方程组Ax k =等价于解两个三角方程组Ly k =与Ux y =,先后求y 与x ,从而得到以下解三角方程组的追赶法公式:第一步:计算的递推公式111c b β=,1()i i i i i c b a ββ-=-,(2i =,3,,1)n -;第二步:解Ly k =:111y k b =,11()()i i i i i i i y k a y b a β--=--,(2,3,,)i n =;第三步:解Ux y =:n n x y =,1i i i i x y x β+=-,(1,2,,2,1)i n n =--.例7 求解三对角线性方程组123421001131020111200210x x x x ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦.解 设有三角分解111122222233333344441111b c p q a b c a p q a b c a p q a b a p ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦, 由矩阵乘法易得111,,1,2,3.,2,3,4.i i i ii i i p b q c p i p b a q i -=⎧⎪==⎨⎪=-=⎩ 将已知系数矩阵的元素代人上式有11223342,12,52,25,35,53,73.p q p q p q p ==⎧⎪==⎪⎨==⎪⎪=⎩ 解线性方程组112233441121220p y p y p y p y ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦, 得123412,35,73, 2.y y y y ====再解线性方程组111222333441111x y q x y q x y q x y ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦,得原线性方程组的为1234(,,,)(0,1,1,2)T T x x x x =-.追赶法是以LU 分解为基础的求解方法,因此它的不足之处是当某个0=k u 时,就不能进行.但是当方程组的系数矩阵A 中有很多零元素时,利用三对角方程组系数矩阵的稀疏性,使零元素不参加运算,可以类似于追赶法来简化计算过程,从而极大地节省了计算量和存储量.这也是追赶法的最大特点.3. 应用举例3.1 线性方程组在解析几何中的应用例8 已知平面上三条不同直线的方程分别为1L :230ax by c ++=,2L :230bx cy a ++=,3L :230cx ay b ++=,试证:这三条直线交于一点的充分必要条件为0a b c ++=.证 必要性 设三直线1L ,2L ,3L 交于一点,则线性方程组232323ax by cbx cy a cx ay b +=-⎧⎪+=-⎨⎪+=-⎩ ()iii有惟一解,故系数矩阵222a b A b c c a ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦与增广矩阵232323a b c A b c a c a b --⎡⎤⎢⎥=-⎢⎥⎢⎥-⎣⎦的秩均为2,于是0A -=,即22223236()()23a bcA bc a a b c a b c ab ac bc ca b--=-=++++----=0,所以0a b c ++=.充分性 由0a b c ++=,则从必要性的证明可知,0A -=,故()3r A -<.由于22222132()2[()]2[()]0224a b ac b a a b b a b b b c =-=-++=-++≠, 故()()2r A r A -==.因此线性方程组()iii 有惟一解,即三直线1L ,2L ,3L 交于一点. 3.2 线性方程组在产品生产量中的应用例9 设有一个经济系统包括3个部门,在某一个生产周期内各部门间的消耗及最终产品如表所示:求各部门的总产品.解 设i x 表示第i 部门的总产品.由已知可以得到线性方程组()I A x y -=,其中0.250.10.1()0.20.20.10.10.10.2ij A a ⎡⎤⎢⎥==⎢⎥⎢⎥⎣⎦,0.750.10.10.20.80.10.10.10.8I A --⎡⎤⎢⎥-=--⎢⎥⎢⎥--⎣⎦,(245,90,175)T y =. 利用矩阵的初等变换可以求得1126181810()34118198912017116I A -⎡⎤⎢⎥-=⎢⎥⎢⎥⎣⎦, 所以线性方程组()I A x y -=的解为消耗系数 消耗部门 生产部门123最终产品1 0.25 0.1 0.1 2452 0.2 0.2 0.1 90 30.10.10.21751126181824540010()3411819902508912017116175300x I A y -⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥=-==⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦. 4. 结束语本文针对不同的线性方程组给出了一些计算方法,及线性方程组的应用实例.根据线性方程组自身所具有的特点,可以选择相应合适的方法,而对于那些特殊类型的线性方程组的解法,有待进一步的讨论与研究.参考文献:[1] 北京大学数学系几何与代数教研室前代数小组编. 高等代数[M].3版.北京:高等教育出版社,2003.105-112.[2] 白梅花. 线性方程组若干应用实例举例[J].科技资讯,2011,(27):200-201.[3] 康道坤,陈劲. 广义逆下线性方程组的解结构及其推广[J].大理学院学报,2011,10(4):7-9. [4] 卢刚.线性代数[M]. 北京:高等教育出版社,2002.64-72.[5] 李庆扬,王能超,易大义. 数值分析[M].4版.武汉:华中科技大学出版社,2006.177-185. [6] 苏育才,姜翠波,张跃辉. 矩阵理论[M].北京:科学出版社,2006.200-206. [7] 首都师范大学数学系组编. 数值分析[M].北京:科学出版社,2000.28-32.[8] 徐仲,张凯院,陆全,等. 矩阵论简明教程[M].2版.北京:科学出版社,2005.141-147. [9] 谢寿才,陈渊. 大学数学[M].北京:科学出版社,2010.37-40.[10] 徐仲,张凯院,陆全. 矩阵论[M].西安:西北工业大学出版社,2002.228-245.[11] 尹钊,钟卫民,赵丽君. 线性方程组的广义逆矩阵解法[J].哈尔滨师范大学自然科学学 报,1999,15(5):21-22. [12] 张明淳. 工程矩阵理论[M].1版.南京:东南大学出版社,1995.172-173.[13] 赵树嫄. 线性代数(经济应用数学基础)[M].4版.北京:中国人民大学出版社,2008.150-157.。
线性方程组的解法与应用

线性方程组的解法与应用线性方程组是数学中常见的问题之一,它在各个领域都有着广泛的应用,如物理、经济学等。
本文将介绍线性方程组的解法以及其在实际问题中的应用。
一、线性方程组的解法1. 高斯消元法高斯消元法是最常用的线性方程组解法之一。
它通过对方程组进行系数矩阵的行变换,将其转化为简化的阶梯形矩阵,从而求得方程组的解。
2. 矩阵的逆与逆矩阵对于n个未知数的线性方程组,我们可以将其转化为矩阵表示。
当系数矩阵可逆时,可以通过求解逆矩阵来得到方程组的解。
3. 克拉默法则克拉默法则是一种解决线性方程组的方法,它通过求解系数矩阵的行列式与各个未知数所对应的代数余子式,进而求得方程组的解。
二、线性方程组的应用1. 物理学中的力的平衡问题在物理学中,力的平衡问题常常可以转化为线性方程组。
通过建立各个力的平衡方程,可以求解出力的大小和方向。
2. 经济学中的投资与收益问题在经济学中,投资与收益之间常常存在线性关系。
通过建立线性方程组,可以计算出各项投资对应的预期收益,帮助做出合理的投资决策。
3. 工程学中的电路分析问题在电路分析中,线性方程组可以用于求解电路中的电流和电压。
通过建立各个元器件的电流-电压关系方程,可以求解出电路中各点的电流和电压数值。
4. 计算机科学中的图像处理问题在图像处理中,线性方程组可以应用于图像的滤波和重建等问题。
通过建立线性方程组,可以对图像进行处理和改善,实现各种图像特效。
结语线性方程组是数学中重要的内容之一,它的解法和应用涉及到各个领域。
通过掌握线性方程组的解法,我们可以解决许多实际问题,提升问题求解的能力。
希望本文能对你对线性方程组的理解和应用有所帮助。
线性方程组解法总结与应用

线性方程组解法总结与应用线性方程组是数学中的基础概念,广泛应用于各个领域,如物理学、经济学、工程学等。
解决线性方程组的问题对于理解和应用这些领域的知识至关重要。
本文将总结一些常见的线性方程组解法,并探讨其在实际问题中的应用。
一、高斯消元法高斯消元法是解决线性方程组的经典方法之一。
其基本思想是通过一系列的行变换将线性方程组转化为简化的行阶梯形式,从而求解方程组的解。
高斯消元法的优势在于其简单直观的操作步骤,适用于各种规模的线性方程组。
在实际应用中,高斯消元法常用于解决矩阵方程组的问题。
例如,在电力系统中,通过电流和电压的关系可以建立一个矩阵方程组,通过高斯消元法可以求解出电流和电压的值,从而实现对电力系统的分析和控制。
二、矩阵的逆与克拉默法则矩阵的逆是另一种常见的线性方程组解法。
当线性方程组的系数矩阵可逆时,可以通过求解矩阵的逆来得到方程组的解。
这种方法在计算机科学和工程学中得到广泛应用,例如在图像处理中,通过求解逆矩阵可以实现图像的旋转、缩放和变换。
克拉默法则是一种基于行列式的线性方程组解法。
它通过计算方程组的行列式和各个未知数的行列式来求解方程组的解。
克拉默法则的优势在于其简单的计算步骤,适用于规模较小的线性方程组。
在经济学中,克拉默法则常用于求解供求模型和投资决策模型等问题。
三、矩阵分解方法矩阵分解方法是一种将线性方程组转化为矩阵乘法的解法。
常见的矩阵分解方法包括LU分解、QR分解和奇异值分解等。
这些方法通过将系数矩阵分解为两个或多个矩阵的乘积,从而简化方程组的求解过程。
LU分解是将系数矩阵分解为一个下三角矩阵和一个上三角矩阵的乘积。
它的优势在于可以将线性方程组的求解过程分解为两个步骤,从而提高计算效率。
在计算机图形学中,LU分解常用于求解图像变换和光照模型等问题。
QR分解是将系数矩阵分解为一个正交矩阵和一个上三角矩阵的乘积。
它的优势在于可以将线性方程组的求解问题转化为最小二乘问题,从而提高求解的精度。
线性方程组的解法及应用案例

线性方程组的解法及应用案例一、引言线性方程组是数学中的重要概念,广泛应用于各个领域。
解决线性方程组的方法有很多种,本文将介绍常见的解法,并结合实际案例进行应用分析。
二、高斯消元法高斯消元法是求解线性方程组的一种常见方法。
它通过将方程组转化为阶梯形式,从而简化计算过程。
下面通过一个例子来说明高斯消元法的具体步骤。
假设有如下线性方程组:```2x + 3y - z = 13x - 2y + 2z = 3x + y - z = 0```首先,我们将方程组写成增广矩阵的形式:```[2 3 -1 | 1][3 -2 2 | 3][1 1 -1 | 0]```接下来,我们通过行变换的方式将矩阵转化为阶梯形式。
具体步骤如下:1. 将第二行乘以2,然后与第一行相减,消去x的系数:```[2 3 -1 | 1][0 -8 4 | 1][1 1 -1 | 0]```2. 将第三行乘以0.5,然后与第一行相减,消去x的系数:```[2 3 -1 | 1][0 -8 4 | 1][0 -1 0 | -0.5]```3. 将第三行乘以-8,然后与第二行相加,消去y的系数:```[2 3 -1 | 1][0 0 8 | -3][0 -1 0 | -0.5]```4. 将第三行乘以3,然后与第二行相加,消去y的系数:```[2 3 -1 | 1][0 0 8 | -3][0 0 0 | -2]```现在,我们得到了一个阶梯形的矩阵。
接下来,我们可以通过回代的方式求解方程组的解。
从最后一行开始,我们可以得到z的值为1。
然后,将z的值代入第二行的方程中,可以得到y的值为-0.5。
最后,将z和y的值代入第一行的方程中,可以得到x的值为0.5。
综上所述,线性方程组的解为x=0.5,y=-0.5,z=1。
三、矩阵求逆法除了高斯消元法,矩阵求逆法也是求解线性方程组的一种常见方法。
它通过求解方程组的逆矩阵,从而得到方程组的解。
下面通过一个例子来说明矩阵求逆法的具体步骤。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
线性方程组的解法及其应用The solution of linear equation and its application专业:测控技术与仪器班级: 2010-1班作者:刘颖学号: 20100310110105摘要线性方程组是线性代数的一个重要组成部分,也在现实生产生活中有着广泛的运用,在电子工程、软件开发、人员管理、交通运输等领域都起着重要的作用。
在一些学科领域的研究中,线性方程组也有着不可撼动的辅助性作用,在实验和调查后期利用线性方程组对大量的数据进行处理是很方便简捷的选择。
本文主要围绕如何解线性方程组来进行讲解,对于不同类型的线性方程组的不同方法,并简述线性方程组的一些实际应用。
关键词:齐次线性方程组,非齐次线性方程组,克莱姆法则,消元法,矩阵,矩阵的秩,特解,通解。
AbstractLinear equations linear algebra is one of the important component parts, and in real life has extensive production use,and it plays an important role in electronic engineering, software development, personnel management, transportation, etc. In some discipline study, it also has the reigns of linear equations of the auxiliary function.In experiment and survey using the linear equations of the late on the data processing is very convenient simple choice. This article, focusing on how to solve linear equations to explain, for different types of linear equations of different methods, and briefly introduces some of the practical application of linear equations.Keywords:Homogeneous linear equations, Non homogeneous linearequation,Clem’s law,Elimination method,Matrix,Rank of matrix,Special solution,General solution.1.线性方程组的定义小学的时候,我们就已经学过方程,并解过一些简单方程,例如形如c b ax =+ 的一元一次方程,形如d c bx ax =++2 的一元二次方程等等。
到了中学,又学习了形如 ⎩⎨⎧=+=+222211c y b x a c y b x a 的二元一次方程组。
这些都可以称为简单的线性方程组。
1.1 一般线性方程组根据上述,所谓一般线性方程组是指形如⎪⎪⎩⎪⎪⎨⎧=+++=+++=+++.,,22112222212*********n n nn n n n n n n b x a x a x a b x a x a x a b x a x a x a (1.1)的方程组,其中n x x x ,,,21 代表n 个未知量,m 是该方程组所包含的方程的个数,),,2,1;,,2,1(n j m i a ij == 称为方程组的系数,),,2,1(m j b j = 称为常数项。
常数项一般写在等式的右边,一个方程组完全由常数项与系数所确定。
1.2 齐次线性方程组所谓齐次线性方程组是指对于一般线性方程组而言,常数项全为零。
即齐次线性方程组是指形如⎪⎪⎩⎪⎪⎨⎧=+++=+++=+++.0,0,0221122221211212111n nn n n n n n n x a x a x a x a x a x a x a x a x a (1.2) 的方程组。
1.3 非齐次线性方程组所谓非齐次线性方程组是指对于一般线性方程组而言,常数项不全为零。
2.用克莱姆法则求解线性方程组利用克莱姆法则求解线性方程组时需要具备两个条件: 线性方程组的方程个数必须与未知量的个数相等, (1) 线性方程组的系数列行列式不等于零。
2.1 克莱姆法则设含有n 个未知数的线性方程组⎪⎪⎩⎪⎪⎨⎧=+++=+++=+++.,,22112222212*********n n nn n n n n n n b x a x a x a b x a x a x a b x a x a x a (2.1)的系数行列式nnn n nna a a a a a a a a D 212222111211=≠0, (2.2)则该线性方程组有解,且只有唯一解,其解可以表示为DD x D Dx D D x n n ===,,,2211 .其中D j (j=1,2,…,n)是把系数行列式D 中第j 列的元素用常数项n b b b ,,,21 代替后所得到的n 阶行列式,即nnj n nj n n n j j n j j j a a b a a a a b a a a a b a a D 1,1,121,221,22111,111,111+-+-+-=. (2.3)2.2 克莱姆法则的证明用ij A 乘以第i 个方程,得ij i n ij in j ij ij ij i A b x A a x A a x A a =++++ 11,n i ,2,1=,那么可以得到∑∑∑∑=====⎪⎭⎫⎝⎛++⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛ni ij i n n i ij in j n i ij ij n i ij i A b x A a x A a x A a 111111 ,(注意:上式中只有j x 的系数不为零,其余各项系数全为零.) 于是 j j D Dx =. 又由于0≠D ,所以DD x j j =,n j ,2,1=.另证:nnn n n na a a a a a a a a D 212222111211=⇒111111ii in n nn nnb a a b a a o b a a =加行加列(1,2)i n =⇒121311*********+(1)(1)(1)+i i i i b D a D a D a D +++++=-+-+-1(1)1(1)(1)n n in n a D ++-+-⋅-⇒11220i i i in n b D a D a D a D =----⇒1122i i i in n b D a D a D a D =+++由于0≠D ,所以1212ni i i inD D D b a a a D DD=+++, 故 ii D x D=(1,2,i n =);Ax b =有解且解唯一.2.3 克莱姆法则在线性方程组中的应用(1)用克莱姆法则解方程组12341242341234258,369,225,4760x x x x x x x x x x x x x x +-+=⎧⎪--=⎪⎨-+=-⎪⎪+-+=⎩.解:6741212060311512-----=D 212427513130602127712r r r r -----====--17513 2127712c -==---展开 21223235310772c c c c +====+-------233270,72r -===≠--展开故线性方程组有解。
,8167402125603915181=------=D ,10867012150609115822-=-----=D,276412520693118123-=---=D ,2707415120903185124=-----=D,3278111===∴D D x ,42710822-=-==D D x,1272733-=-==D D x .1272744===D D x(2)设曲线 230123y a a x a x a x =+++ 通过四点(1,3)、(2,4)、 (3,3)、(4,-3),求系数0123,,,a a a a .解:将四点的坐标代入曲线方程,得线性方程组01230123012301233248439273416643a a a a a a a a a a a a a a a a +++=⎧⎪+++=⎪⎨+++=⎪⎪+++=-⎩,其系数行列式1111124812013927141664D ==≠.又 12311113114248144836,18,3392713927341664131664D D ====---34113111131248124424,61332713931436414163D D ====---.由克莱姆法则得方程组有惟一解。
得0123313,,2,22a a a a ==-==-.以上为本文对克莱姆法则的简述。
综上所述,可知用克莱姆法则解n 个未知量、n 个方程的线性方程组,需要计算 n+1 个n 阶行列式,计算量相当大。
所以在实际问题中,超过四个未知数的线性方程组一般不采用克莱姆法则求解,通常是才用一下介绍的方法。
尽管如此,克莱姆法则在理论上仍然是相当重要的,因为它清楚地告诉我们,当方程组(2.1)的系数行列式不等于零时,方程组(2.1)有唯一解,又从求解公式中可以看到方程组(2.1)的解与它们的系数、常数项的依赖关系,而且以后将会看到,克莱姆法则还可以用于一般线性方程组的研究和讨论。
所以对克莱姆法则的条件、结论及其求解公式必须正确掌握和运用。
3.利用消元法求解线性方程组消元法是求解线性方程组的最直接、最有效、最一般的方法,它的基本思想是利用方程组中方程之间的算术运算,每次保留一个方程,消去其他方程的某一个未知量,这样一步步做下去,最后得到一个阶梯形方程组,然后通过解这个比较容易求解的阶梯形方程组而获得原方程组的解。
3.1 线性方程组的矩阵设含有n 个未知数的线性方程组⎪⎪⎩⎪⎪⎨⎧=+++=+++=+++.,,22112222212111212111n n nn n n n n n n b x a x a x a b x a x a x a b x a x a x a (3.1)该方程组的矩阵表示形式为:AX = B其中A = ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡mn m m n n a a a a a a a a a 212222111211, X = ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡n x x x 21, B = ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡n b b b 21.称A 为方程组(3.1)的系数矩阵,X 为未知矩阵,B 为常数矩阵。