高考第一轮复习数学:2.7 指数与指数函数

合集下载

高考文科数学一轮复习:指数与指数函数

高考文科数学一轮复习:指数与指数函数

+2-2×
2
1 4

1 2
-(0.01)0.5;
(2)
5 a 13b-2·(-3 a
1 2
2
1
b-1)÷(4 a 3b-3 );2
6
(a
2 3
b1

)
1 2
a

1 2
b
1 3
(3)
6 ab5
.
1
1
解析
(1)原式=1+ 1×
4

4 9

2
-

1 100
答案 B
解析
4
b=

1 2

3
,而函数y=
1 2

x
在R上为减函数,4 > 2> 1,所以
332
4
2

1 2

3
<

1 2

3
<
1


1 2

2
,即b<a<c.
命题方向二 指数型复合函数的单调性
典例4
(1)函数f(x)=
(3)原式= a
3b2a 2b3
15
a6b6
规律总结
11 1
115
1
= a 3 2 6 · b2 3 6 = .
a
指数幂运算的一般原则
(1)有括号的先算括号里的,无括号的先进行指数运算.
(2)先乘除后加减,负指数幂化成正指数幂的倒数.
(3)底数是负数的,先确定符号;底数是小数的,先化成分数;底数是带分数 的,先化成假分数. (4)若是根式,则化为分数指数幂,尽可能用幂的形式表示,运用指数幂的 运算性质来解答. ▶提醒 运算结果不能同时含有根号和分数指数幂,也不能既有分母又 含有负指数,形式力求统一.

2025届高中数学一轮复习课件《指数函数》PPT

2025届高中数学一轮复习课件《指数函数》PPT

第29页
求解与指数函数有关的复合函数问题时,首先要熟知指数函数的定义域、值域、单调性 等相关性质,其次要明确复合函数的构成,当涉及单调性问题时,要借助“同增异减”这一 性质分析判断.
高考一轮总复习•数学
第30页
对点练 4(1)(2024·山东莱芜模拟)已知函数 f(x)=|-2x-x+15|,,xx≤>22,, 若函数 g(x)=f(x)-
解析:∵y=35x 是 R 上的减函数,∴35-13 >35-14 >350,即 a>b>1,又 c=32-34 <320 =1,∴c<b<a.
高考一轮总复习•数学
第11页
4.(2024·四川成都模拟)若函数 f(x)=13-x2+4ax 在区间(1,2)上单调递增,则 a 的取值范 围为___-__∞__,__12_ _.
在(4,+∞)上单调递增.令12x≤4,得 x≥-2,令12x>4,得 x<-2, 代入外层函数的单调递减区间,得到自变量 x 的取值范围,这才是复合函数的单调递增 区间. 而函数 t=12x 在 R 上单调递减,所以函数 y=122x-8·12x+17 的单调递增区间为[-2, +∞).
高考一轮总复习•数学
所谓“底大图高”,反映指数函数的排列规律.
高考一轮总复习•数学
第8页
1.判断下列结论是否正确. (1)函数 y=a-x(a>0,且 a≠1)是 R 上的增函数.( ) (2)函数 y=ax(a>0,且 a≠1)与 x 轴有且只有一个交点.( ) (3)若 am>an,则 m>n.( ) (4)函数 y=ax 与 y=a-x(a>0,且 a≠1)的图象关于 y 轴对称.( √ )

高考数学理一轮复习 2-7指数与指数函数精品课件

高考数学理一轮复习 2-7指数与指数函数精品课件

[规律总结]
根式运算或根式与指数式混合运算时,将
根式化为指数式计算较为方便,对于计算的结果,不强求统 一用什么形式来表示,如果有特殊要求,要根据要求写出结 果.但结果不能同时含有根号和分数指数,也不能既有分母 又含有负指数.
备选例题1 计算:
解法二:可令 x= 5-2 6+ 5+2 6,则 x>0. 两边平方得 x2 = (5 - 2 6) + (5 + 2 6) + 2 52-(2 6)2 = 12.∴x=2 3(x>0), 即 5-2 6+ 5+2 6 =2 3. 3 3 (2)令 x= 2+ 5 + 2- 5 ,两边立方,得 3 3 3 3 x = 2 + 5 + 2 - 5 + 3· 2+ 5 · 2- 5 · ( 2+ 5 + 3 2- 5), 即 x3=4-3x⇒x3+3x-4=0⇒(x-1)(x2+x+4)=0, 3 3 2 x=1(x +x+4=0,Δ<0 无解).∴ 2+ 5 + 2- 5 =1.
第七节
指数与指数函数
知识自主· 梳理
1.理解分数指数幂的概念. 2.掌握有理指数幂的运算性质. 最新考纲 3.掌握指数函数的概念、图象和性质. 4.能够利用指数函数的性质解决某些简单的实 际问题. 1.以选择题或填空题的形式考查有关函数值的 求法、数值的计算或数值的大小比较问题. 高考热点 2.与函数性质、二次函数、方程、不等式等内 容结合,以综合题的形式出现.
1 例 1 已知 a=9,b=9.求: 3 7 3 -8 3 15 -3 (1) a2 a ÷ a ·a ; a-1+b-1 (2) -1 . (ab)
解法二:利用运算性质解. - - - - a 1+b 1 a 1 b 1 1 1 -1 = -1 -1+ -1 -1 = -1+ -1=b+a. (ab) a b a b b a 1 82 ∵a=9,b=9,∴a+b= 9 .

适用于新教材2024版高考数学一轮总复习:指数与指数函数课件北师大版

适用于新教材2024版高考数学一轮总复习:指数与指数函数课件北师大版
6,则 2 + -2 -2的值为
.
3
=
(a>0,b>0).
·
.
答案
167
(1)9
解析
1
3 -2
(1)原式=(-2) +5002
2
(2)a
1
(3)
4

1
1
1
3
3 [( 3 ) -(2 3 )3 ]
1
1
1
1
2
( 3 ) + 3 ·(2 3 )+(2 3 )2
(2)原式=
1
2
1
(a>0,且a≠1)为偶函数.
2.若函数g(x)=af(x)(a>0,且a≠1)的值域为(0,+∞),则f(x)的值域必为R.
自主诊断
题组一 思考辨析(判断下列结论是否正确,正确的画“ ”,错误的画“×”)
4
1. a2 + 2ab + b 2 = a + b.
1
3
2.(-2) =
6
( ×)
(-2)2 .
数值.
因为底数 1.7>1,所以指数函数 y=1.7x 是增函数.
因为 2.5<3,所以 1.72.5<1.73.
(2)同(1)理,因为 0<0.8<1,所以指数函数 y=0.8x 是减函数.因为- 2>- 3,所以
0.8 - 2 <0.8 - 3 .
(3)由指数函数的性质知
1.70.3>1.70=1,0.93.1<0.90=1,所以 1.70.3>0.93.1.
2
-
10( 5+2)

2006年高考第一轮复习数学:2.7--指数与指数函数

2006年高考第一轮复习数学:2.7--指数与指数函数

2.7 指数与指数函数●知识梳理1.指数(1)n次方根的定义若xn=a,则称x为a的n次方根,“”是方根的记号.在实数范围内,正数的奇次方根是一个正数,负数的奇次方根是一个负数,0的奇次方根是0;正数的偶次方根是两个绝对值相等符号相反的数,0的偶次方根是0,负数没有偶次方根. (2)方根的性质①当n为奇数时,=a.②当n为偶数时,=|a|=(3)分数指数幂的意义①a=(a>0,m、n都是正整数,n>1).②a==(a>0,m、n都是正整数,n>1).2.指数函数(1)指数函数的定义一般地,函数y=ax(a>0且a≠1)叫做指数函数.(2)指数函数的图象底数互为倒数的两个指数函数的图象关于y轴对称.(3)指数函数的性质①定义域:R.②值域:(0,+∞).③过点(0,1),即x=0时,y=1.④当a>1时,在R上是增函数;当0<a<1时,在R上是减函数.●点击双基1.·等于A.-B.-C. D.解析:·=a·(-a)=-(-a)=-(-a).答案:A2.(2003年郑州市质量检测题)函数y=2的图象与直线y=x的位置关系是解析:y=2=()x.∵>1,∴不可能选D.又∵当x=1时,2>x,而当x=3时,2<x,∴不可能选A、B.答案:C3.(2004年湖北,文5)若函数y=ax+b-1(a>0且a≠1)的图象经过二、三、四象限,则一定有A.0<a<1且b>0B.a>1且b>0C.0<a<1且b<0D.a>1且b<0解析:作函数y=ax+b-1的图象.答案:C4.(2004年全国Ⅱ,理6)函数y=-ex的图象A.与y=ex的图象关于y轴对称B.与y=ex的图象关于坐标原点对称C.与y=e-x的图象关于y轴对称D.与y=e-x的图象关于坐标原点对称解析:图象法.答案:D5.(2004年湖南,文16)若直线y=2a与函数y=|ax-1|(a>0且a≠1)的图象有两个公共点,则a的取值范围是___________________.解析:数形结合.由图象可知0<2a<1,0<a<.答案:0<a<6.函数y=()的递增区间是___________.解析:∵y=()x在(-∞,+∞)上是减函数,而函数y=x2-2x+2=(x-1)2+1的递减区间是(-∞,1],∴原函数的递增区间是(-∞,1].答案:(-∞,1]●典例剖析【例1】下图是指数函数(1)y=ax,(2)y=bx,(3)y=cx,(4)y=dx的图象,则a、b、c、d与1的大小关系是A.a<b<1<c<dB.b<a<1<d<cC.1<a<b<c<dD.a<b<1<d<c剖析:可先分两类,即(3)(4)的底数一定大于1,(1)(2)的底数小于1,然后再从(3)(4)中比较c、d的大小,从(1)(2)中比较a、b的大小.解法一:当指数函数底数大于1时,图象上升,且当底数越大,图象向上越靠近于y轴;当底数大于0小于1时,图象下降,底数越小,图象向右越靠近于x轴.得b<a<1<d<c.解法二:令x=1,由图知c1>d1>a1>b1,∴b<a<1<d<c.答案:B【例2】已知2≤()x-2,求函数y=2x-2-x的值域.解:∵2≤2-2(x-2),∴x2+x≤4-2x,即x2+3x-4≤0,得-4≤x≤1.又∵y=2x-2-x是[-4,1]上的增函数,∴2-4-24≤y≤2-2-1.故所求函数y的值域是[-,].【例3】要使函数y=1+2x+4xa在x∈(-∞,1]上y>0恒成立,求a的取值范围.解:由题意,得1+2x+4xa>0在x∈(-∞,1]上恒成立,即a>-在x∈(-∞,1]上恒成立.又∵-=-()2x-()x=-[()x+]2+,当x∈(-∞,1]时值域为(-∞,-],∴a>-.评述:将不等式恒成立问题转化为求函数值域问题是解决这类问题常用的方法.●闯关训练夯实基础1.已知f(x)=ax,g(x)=-logbx,且lga+lgb=0,a≠1,b≠1,则y=f(x)与y=g(x)的图象A.关于直线x+y=0对称B.关于直线x-y=0对称C.关于y轴对称D.关于原点对称解析:lga+lgb=0ab=1.∴g(x)=-logbx=-loga-1x=logax.∴f(x)与g(x)的图象关于y=x对称.答案:B2.下列函数中值域为正实数的是A.y=-5xB.y=()1-xC.y=D.y=解析:∵y=()x的值域是正实数,而1-x∈R,∴y=()1-x的值域是正实数.答案:B3.化简(a>0,b>0)的结果是___________________.解析:原式====.答案:4.满足条件m>(mm)2的正数m的取值范围是___________________.解析:∵m>0,∴当m>1时,有m2>2m,即m>2;当0<m<1时,有m2<2m,即0<m<1.综上所述,m>2或0<m<1.答案:m>2或0<m<15.(2004年湖北,理7)函数f(x)=ax+loga(x+1)在[0,1]上的最大值与最小值的和为a,则a的值为A. B. C.2 D.4解析:f(x)在[0,1]上是单调函数,由已知f(0)+f(1)=a1+loga1+a+loga2=aloga2=-1a=.答案:B6.已知9x-10·3x+9≤0,求函数y=()x-1-4()x+2的最大值和最小值.解:由9x-10·3x+9≤0得(3x-1)(3x-9)≤0,解得1≤3x≤9.∴0≤x≤2.令()x=t,则≤t≤1,y=4t2-4t+2=4(t-)2+1.当t=即x=1时,ymin=1;当t=1即x=0时,ymax=2.培养能力7.若a2x+·ax-≤0(a>0且a≠1),求y=2a2x-3·ax+4的值域.解:由a2x+·ax-≤0(a>0且a≠1)知0<ax≤.令ax=t,则0<t≤,y=2t2-3t+4.借助二次函数图象知y∈[3,4).8.(2004年全国Ⅲ,18)解方程4x+|1-2x|=11.解:当x≤0时,1-2x≥0.原方程4x-2x-10=02x=±2x=-<0(无解)或2x=+>1知x>0(无解).当x>0时,1-2x<0.原方程4x+2x-12=02x=-±2x=-4(无解)或2x=3x=log23(为原方程的解).探究创新9.若关于x的方程25-|x+1|-4·5-|x+1|-m=0有实根,求m的取值范围.解法一:设y=5-|x+1|,则0<y≤1,问题转化为方程y2-4y-m=0在(0,1]内有实根.设f(y)=y2-4y-m,其对称轴y=2,∴f(0)>0且f(1)≤0,得-3≤m<0.解法二:∵m=y2-4y,其中y=5-|x+1|∈(0,1],∴m=(y-2)2-4∈[-3,0).●思悟小结1.利用分数指数幂的意义可以把根式的运算转化为幂的运算,从而简化计算过程.2.指数函数y=ax(a>0,a≠1)的图象和性质受a的影响,要分a>1与0<a<1来研究.3.指数函数的定义重在“形式”,像y=2·3x,y=2,y=3,y=3x+1等函数都不符合形式y=ax (a>0,a≠1),因此,它们都不是指数函数.●教师下载中心教学点睛1.本小节的重点是指数函数的图象和性质的应用.对于含有字母参数的两个函数式比较大小或两个函数式由于自变量的不同取值而有不同大小关系时,必须对字母参数或自变量取值进行分类讨论.用好用活指数函数单调性,是解决这一类问题的关键.2.对可化为a2x+b·ax+c=0或a2x+b·ax+c≥0(≤0)的指数方程或不等式,常借助换元法解决,但应提醒学生注意换元后“新元”的范围.拓展题例【例1】若60a=3,60b=5.求12的值.解:a=log603,b=log605,1-b=1-log605=log6012,1-a-b=1-log603-log605=log604,==log124,12=12=12=2.【例2】方程2x=2-x的解的个数为______________.解析:方程的解可看作函数y=2x和y=2-x的图象交点的横坐标,分别作出这两个函数图象(如下图).由图象得只有一个交点,因此该方程只有一个解.答案:1评述:无法直接求解的方程问题,常用作图法来解,注意数形结合的思想.。

指数与指数函数(课件)2024届高三数学一轮全方位基础复习(新教材新高考)

指数与指数函数(课件)2024届高三数学一轮全方位基础复习(新教材新高考)

4 3
25
【解析】对于A,根据分式指数幂的运算法则,可得3 ⋅ 4 = 3+4 = 12 ≠ ,选项A错误;
对于B,8 = 2,故 = ± 8 2,选项B正确;
1
1
1
1
1
对于 C, + = 3, (2 + −2 )2 = + −1 + 2 = 3 + 2 = 5,因为 > 0,所以2 + −2 = 5,选项C错误;
立,
则满足2 − 4 < 0,即2 < 4,解得−2 < < 2,所以实数的取值范围是(−2,2).
故答案为:(−2,2).
考向典题讲解


【对点训练6】(2023·全国·高三专题练习)已知不等式4 − ⋅ 2 + 2 > 0,对于 ∈ (−∞, 3]恒成立,则实数
的取值范围是_________.
当 n 为偶数时, an=|a|=
-a,a<0.
n
考点知识梳理
2.分数指数幂
m
n
n
m
a
正数的正分数指数幂, a =____(a>0,m,n∈N*,n>1).
1

m
n
m
n
1 (a>0,m,n∈N*,n>1).
a
正数的负分数指数幂,a =____=
n m
a
0的正分数指数幂等于__,0的负分数指数幂没有意义.
当() = 0时,e = ,结合图象可知,此时 < 0,所 > 0,则e > e0 = 1,所以 > 1,
故选:C.

考向典题讲解

2023版高考数学一轮总复习:指数与指数函数课件理

第二章
函数概念与基本初等函数Ⅰ
第四讲 指数与指数函数
要点提炼
考点1
指数与指数运算
1.根式的性质
(1)( )n== a (a使 有意义).
(2)


,为奇数,
=൝
||,为偶数.
2.分数指数幂的意义



(a>0,m,n∈N*,且n>1).
1

1

(2) = = (a>0,m,n∈N*,且n>1).
1
值范围是 (0, ) .
2
解析
(1)曲线y=|2x-1|与直线y=b的图象如图
所示,由图象可得,如果曲线y=|2x-1|与直线y=b有
1
2
1
3
1
1
3



由( + 2 )3=33,得 2 +3 2 +3 2 + 2 =27.
1
2
3

2 −3
1


∴ + =18,∴ + -3=15.∴ 2 −2 = .
+
−2 3
3
2
3
2
3
2
3
2
3
2 +
考向1
指数幂的运算
方法技巧
指数幂的运算技巧
运算
①有括号先算括号内的;②无括号先进行指数的乘方、开方,
(1) =

(3)0的正分数指数幂等于0,0的负分数指数幂没有意义.
考点1
指数与指数运算
3.有理数指数幂的运算性质
(1)ar·as= ar+s (a>0,r,s∈Q);

高三第一轮复习指数与指数函数


零的 n 次 方根是零 负数没有 偶次方根
2.两个重要公式 n为奇数, a , n n a (a≥0), (1) a = n为偶数; |a|= -a (a<0), (2)( a) = a (注意 a 必须使 a有意义). n
n
n

二、有理数指数幂



2.有理数指数幂的性质 r+s as (1)ara = (a>0,r,s∈Q); rs as r (2)(a ) = (a>0,r,s∈Q); rbr a (3)(ab)r= (a>0,b>0,r∈Q).


3 .已知函数 f(x) = 4 + ax - 1 的图象恒过定 点P,则点P的坐标是 ( ) A.(1,5) B.(1,4) C.(0,4) D.(4,0) A [当x=1时,f(x)=5.]



4 .若函数 y = (a2 - 3a + 3)·ax 是指数函数, 则实数a的值为________. 解析 ∵ a2 - 3a + 3 = 1 , ∴ a = 2 或 a = 1(舍). 答案 2
2t y=3 是单调递减的,
因此 f(x)的单调递增区间是(-∞,0], 单调递减区间是[0,+∞). 答案 (-∞,0] [0,+∞)
[互动探究] 9 在本例条件下,若 f(x)的最大值等于4,则 a=______. 解析 9 9 2-2 由于 f(x)的最大值是4,且4=3 ,
x
所以选 D. 答案 D
[规律方法] 1.与指数函数有关的函数的图象的研究, 往往利用相应指数函数的图象,通过平移、 对称变换得到其图象. 2.一些指数方程、不等式问题的求解,往 往利用相应的指数型函数图象数形结合求 解.

2023年高考数学一轮总复习第10讲:指数与指数函数

第1页共11页2023年高考数学一轮总复习第10讲:指数与指数函数【教材回扣】1.分数指数幂(1)a m n =________(a >0,m ,n ∈N *,且n >1);a -m n=________(a >0,m ,n ∈N *,且n >1);0的正分数指数幂等于0;0的负分数指数幂没有意义.(2)有理数指数幂的运算性质:a r a s =________,(a r )s =________,(ab )r =________,其中a >0,b >0,r ,s ∈Q .2.指数函数的图象与性质y =a x a >10<a <1图象定义域________值域________性质过定点________当x >0时,________;当x <0时,□10________当x >0时,□11________;当x <0时,□12________在(-∞,+∞)上是□13________在(-∞,+∞)上是□14________【题组练透】题组一判断正误(正确的打“√”,错误的打“×”)1.n a n 与(n a )n 都等于a (n ∈N *).()2.2a ·2b =2ab .()3.函数y =3·2x 与y =2x +1都不是指数函数.()4.若a m <a n (a >0,且a ≠1),则m <n .()题组二教材改编1.(多选题)设a >0,则下列运算中不正确的是()A .a 43a 34=a B .a ÷a 23=a 32C .a 23a-23=0D .(a 14)4=a 2.如图,①②③④中不属于函数y =2x ,y =6x ,y 的一个是()。

高考数学一轮总复习教学课件第二章 函 数第6节 指数函数

又ex+πy>e-y+π-x⇔f(x)>f(-y),于是x>-y,即x+y>0,
则x+y+e>e,从而ln(x+y+e)>ln e=1,A正确,B错误;
给定条件不能比较x+y与1的大小,当x+y=1时,logπ|x+y|=0,C,D
错误.故选A.
角度二
解简单的指数方程或不等式
[例 3] (1)若
[例2] (1)(2024·江苏苏州模拟)若a=0.30.7,b=0.70.3,c=1.20.3,则
a,b,c的大小关系是(

A.a>b>c B.c>b>a
C.b>c>a D.a>c>b
)
解析:(1)因为函数y=0.3x,y=0.7x在R上是减函数,
所以0<0.30.7<0.30.3<0.30=1,0.70.3<0.70=1,
(1)若函数y=f(x)的图象关于原点对称,求函数g(x)=f(x)+
点x0;
解:(1)因为f(x)的图象关于原点对称,
所以f(x)为奇函数,
所以f(-x)+f(x)=0,
所以a·2-x-2-x+a·2x-2x=0,
即(a-1)·(2-x+2x)=0,所以a=1.

的零

x
-x
x
-x

所以 f(x)=2 -2 ,所以 g(x)=2 -2 + ,

+



B.[ ,2]


C.(-∞, )

x
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2.7 指数与指数函数●知识梳理 1.指数(1)n 次方根的定义:若x n=a ,则称x 为a 的n 次方根,“n”是方根的记号.在实数范围内,正数的奇次方根是一个正数,负数的奇次方根是一个负数,0的奇次方根是0;正数的偶次方根是两个绝对值相等符号相反的数,0的偶次方根是0,负数没有偶次方根.(2)方根的性质①当n 为奇数时,nn a =a .②当n 为偶数时,nn a =|a |=⎩⎨⎧<-≥).0(),0(a aa a(3)分数指数幂的意义①a n m=nm a (a >0,m 、n 都是正整数,n >1).②anm -=nm a1=nma1(a >0,m 、n 都是正整数,n >1).2.指数函数(1)指数函数的定义一般地,函数y =a x (a >0且a ≠1)叫做指数函数. (2)指数函数的图象a > )1(0底数互为倒数的两个指数函数的图象关于y 轴对称.(3)指数函数的性质 ①定义域:R . ②值域:(0,+∞).③过点(0,1),即x =0时,y =1.④当a >1时,在R 上是增函数;当0<a <1时,在R 上是减函数. ●点击双基 1.3a ·6a -等于 A.-a - B.-a C.a -D.a解析:3a ·6a -=a 31·(-a )61=-(-a )6131+=-(-a )21.答案:A2.(2003年郑州市质量检测题)函数y =23x的图象与直线y =x 的位置关系是解析:y =23x=(32)x .∵32>1,∴不可能选D.又∵当x =1时,23x>x ,而当x =3时,23x<x ,∴不可能选A 、B.答案:C3.(2004年湖北,文5)若函数y =a x +b -1(a >0且a ≠1)的图象经过二、三、四象限,则一定有A.0<a <1且b >0B.a >1且b >0C.0<a <1且b <0D.a >1且b <0解析:作函数y =a x +b -1的图象.答案:C4.(2004年全国Ⅱ,理6)函数y =-e x 的图象 A.与y =e x 的图象关于y 轴对称B.与y =e x 的图象关于坐标原点对称C.与y =e -x的图象关于y 轴对称D.与y =e -x的图象关于坐标原点对称解析:图象法.答案:D5.(2004年湖南,文16)若直线y =2a 与函数y =|a x -1|(a >0且a ≠1)的图象有两个公共点,则a 的取值范围是___________________.解析:数形结合.由图象可知0<2a <1,0<a <21.答案:0<a <216.函数y =(21)222+-x x的递增区间是___________.解析:∵y =(21)x在(-∞,+∞)上是减函数,而函数y =x 2-2x +2=(x -1)2+1的递减区间是(-∞,1],∴原函数的递增区间是(-∞,1].答案:(-∞,1] ●典例剖析【例1】 下图是指数函数(1)y =a x ,(2)y =b x ,(3)y =c x ,(4)y =d x的图象,则a 、b 、c 、d 与1的大小关系是A.a <b <1<c <dB.b <a <1<d <cC.1<a <b <c <dD.a <b <1<d <c剖析:可先分两类,即(3)(4)的底数一定大于1,(1)(2)的底数小于1,然后再从(3)(4)中比较c 、d 的大小,从(1)(2)中比较a 、b 的大小.解法一:当指数函数底数大于1时,图象上升,且当底数越大,图象向上越靠近于y 轴;当底数大于0小于1时,图象下降,底数越小,图象向右越靠近于x 轴.得b <a <1<d <c .解法二:令x =1,由图知c 1>d 1>a 1>b 1, ∴b <a <1<d <c . 答案:B 【例2】 已知2xx +2≤(41)x -2,求函数y =2x -2-x 的值域.解:∵2xx+2≤2-2(x -2),∴x 2+x ≤4-2x ,即x 2+3x -4≤0,得-4≤x ≤1.又∵y =2x -2-x是[-4,1]上的增函数,∴2-4-24≤y ≤2-2-1.故所求函数y 的值域是[-16255,23].【例3】 要使函数y =1+2x +4x a 在x ∈(-∞,1]上y >0恒成立,求a 的取值范围. 解:由题意,得1+2x+4xa >0在x ∈(-∞,1]上恒成立,即a >-xx421+在x ∈(-∞,1]上恒成立.又∵-xx421+=-(21)2x-(21)x=-[(21)x+21]2+41,当x ∈(-∞,1]时值域为(-∞,-43],∴a >-43.评述:将不等式恒成立问题转化为求函数值域问题是解决这类问题常用的方法.●闯关训练夯实基础1.已知f (x )=a x ,g (x )=-log b x ,且lg a +lg b =0,a ≠1,b ≠1,则y =f (x )与y =g (x )的图象A.关于直线x +y =0对称B.关于直线x -y =0对称C.关于y 轴对称D.关于原点对称解析:lg a +lg b =0⇒ab =1.∴g (x )=-log b x =-log a -1x =log a x . ∴f (x )与g (x )的图象关于y =x 对称. 答案:B2.下列函数中值域为正实数的是A.y =-5xB.y =(31)1-xC.y =1)21(-xD.y =x 21-解析:∵y =(31)x的值域是正实数,而1-x ∈R ,∴y =(31)1-x的值域是正实数.答案:B 3.化简3421413223)(ab b a abba ⋅(a >0,b >0)的结果是___________________.解析:原式=3122131223)(])[(ab abab b a ⋅⋅=3732316123b a b a b a ⋅=373234610b a b a=ba .答案:ba4.满足条件m 2m >(m m )2的正数m 的取值范围是___________________. 解析:∵m >0,∴当m >1时,有m 2>2m ,即m >2;当0<m <1时,有m 2<2m ,即0<m <1. 综上所述,m >2或0<m <1. 答案:m >2或0<m <15.(2004年湖北,理7)函数f (x )=a x +log a (x +1)在[0,1]上的最大值与最小值的和为a ,则a 的值为A.41 B. 21 C.2 D.4解析:f (x )在[0,1]上是单调函数,由已知f (0)+f (1)=a ⇔1+log a 1+a +log a 2=a ⇔log a 2=-1⇔a =21.答案:B6.已知9x -10·3x +9≤0,求函数y =(41)x -1-4(21)x +2的最大值和最小值.解:由9x -10·3x +9≤0得(3x -1)(3x -9)≤0,解得1≤3x ≤9.∴0≤x ≤2.令(21)x=t ,则41≤t ≤1,y =4t 2-4t +2=4(t -21)2+1.当t =21即x =1时,y min =1;当t =1即x =0时,y max =2.培养能力 7.若a 2x +21·a x -21≤0(a >0且a ≠1),求y =2a 2x -3·a x +4的值域.解:由a 2x +21·a x -21≤0(a >0且a ≠1)知0<a x ≤21.令a x=t ,则0<t ≤21,y =2t 2-3t +4.借助二次函数图象知y ∈[3,4).8.(2004年全国Ⅲ,18)解方程4x+|1-2x|=11.解:当x ≤0时,1-2x ≥0.原方程⇔4x -2x -10=0⇔2x =21±241⇔2x=21-241<0(无解)或2x=21+241>1知x >0(无解).当x >0时,1-2x <0.原方程⇔4x +2x -12=0⇔2x =-21±27⇔2x=-4(无解)或2x =3⇔x =log 23(为原方程的解).探究创新9.若关于x 的方程25-|x +1|-4·5-|x +1|-m =0有实根,求m 的取值范围.解法一:设y =5-|x +1|,则0<y ≤1,问题转化为方程y 2-4y -m =0在(0,1]内有实根.设f (y )=y 2-4y -m ,其对称轴y =2,∴f (0)>0且f (1)≤0,得-3≤m <0.解法二:∵m =y 2-4y ,其中y =5-|x +1|∈(0,1],∴m =(y -2)2-4∈[-3,0).●思悟小结1.利用分数指数幂的意义可以把根式的运算转化为幂的运算,从而简化计算过程.2.指数函数y =a x (a >0,a ≠1)的图象和性质受a 的影响,要分a >1与0<a <1来研究.3.指数函数的定义重在“形式”,像y =2·3x,y =2x 1,y =32+x ,y =3x +1等函数都不符合形式y =a x (a >0,a ≠1),因此,它们都不是指数函数.●教师下载中心 教学点睛1.本小节的重点是指数函数的图象和性质的应用.对于含有字母参数的两个函数式比较大小或两个函数式由于自变量的不同取值而有不同大小关系时,必须对字母参数或自变量取值进行分类讨论.用好用活指数函数单调性,是解决这一类问题的关键.2.对可化为a 2x +b ·a x +c =0或a 2x +b ·a x +c ≥0(≤0)的指数方程或不等式,常借助换元法解决,但应提醒学生注意换元后“新元”的范围.拓展题例【例1】 若60a =3,60b =5.求12)1(21b ba ---的值.解:a =log 603,b =log 605,1-b =1-log 605=log 6012,1-a -b =1-log 603-log 605=log 604,bb a ---11=12log4log 6060=log 124,12)1(21b ba ---=124log 2112=122log 12=2.【例2】 方程2x =2-x 的解的个数为______________.解析:方程的解可看作函数y=2x和y=2-x的图象交点的横坐标,分别作出这两个函数图象(如下图).由图象得只有一个交点,因此该方程只有一个解.答案:1评述:无法直接求解的方程问题,常用作图法来解,注意数形结合的思想.。

相关文档
最新文档