《微积分》课后答案(复旦大学出版社(曹定华_李建平_毛志强_著))第四章
《微积分》课后答案(复旦大学出版社(曹定华_李建平_毛志强_著))第2章

xn a xn a
由数列极限的定义得 考察数列
即
xn a
lim xn a
n
n n
xn (1) n ,知 lim xn 不存在,而 xn 1 , lim xn 1 ,
n
xn 0
由数列极限的定义可得 4. 利用夹逼定理证明:
即 xn
即 xn 0
lim xn 0
n
1
本文档由天天learn提供,查看其他章节请点击/html/69/n-69.html
微积分 复旦大学出版社 曹定华主编 课后答案
微积分 复旦大学出版社 曹定华主编 课后答案
又 所以
xn 1 xn xn ( 2 xn ) ,而 xn 0 , xn 2 , xn 1 xn 0
即
xn 1 xn ,
即数列是单调递增数列。 综上所述,数列 xn 是单调递增有上界的数列,故其极限存在。 (3)由数列 xn 单调递增, yn 单调递减得 xn x1 , yn y1 。 又由 lim( xn yn ) 0 知数列 xn yn 有界,于是存在 M >0,使 xn yn M ,
即xn 1 xn
所以 xn 为单调递减有下界的数列,故 xn 有极限。 (2)因为 x1
2 2 ,不妨设 xk 2 ,则
xk 1 2 xk 22 2
故有对于任意正整数 n,有 xn 2 ,即数列 xn 有上界,
2
本文档由天天learn提供,查看其他章节请点击/html/69/n-69.html
lim
2n 0 n n !
微积分各章习题及详细答案(供参考)

微积分各章习题及详细答案(供参考)第一章函数极限与连续一、填空题1、已知 f (sin x) 1cos x ,则 f (cos x)。
2(4 3x)22、 lim2)。
xx(1 x3、 x 0 时, tan x sin x 是 x 的阶无量小。
4、 lim xksin10 建立的 k 为。
xx5、 lim e x arctan xx6、 f ( x)ex1, xb,7、 limln( 3x1)x 06x。
x 0在 x 0处连续,则 b 。
x 0。
8、设 f (x) 的定义域是 [ 0,1] ,则 f (ln x) 的定义域是 __________ 。
9、函数 y 1 ln( x 2) 的反函数为 _________。
10、设 a 是非零常数,则 lim (xa) x ________ 。
xx a111、已知当 x 0时, (1 ax 2 ) 3 1与 cosx 1 是等价无量小,则常数 a ________。
12、函数 f ( x)arcsin3x的定义域是 __________ 。
1 x13、 lim ( x 22x 2 2)____________ 。
x14、设 lim (x2a ) x 8 ,则 a________。
xx a15、 lim ( n n 1)( n 2n) =____________ 。
n二、选择题1、设 f ( x), g(x) 是 [ l , l ] 上的偶函数, h( x) 是 [ l , l ] 上的奇函数,则中所给的函数必为奇函数。
(A) f ( x) g( x) ;(B) f ( x) h( x) ;( C ) f (x)[ g(x) h( x)] ;( D ) f ( x) g( x) h(x) 。
2、1 x3x( x),( x)1x ,则当时有。
1 x1(A) 是比 高阶的无量小; (B) 是比 低阶的无量小;( C )与 是同阶无量小;( D )~。
3、函数 f (x)1 x 1 ,x 0( x1) 在 x0处连续,则 k3 1 x 1 。
《微积分》课后答案(复旦大学出版社(曹定华_李建平_毛志强_著))第7章

3 . 2
4. 在 xOy 坐标面上求向量 a,使其垂直于向量 b=4i-3j+5k,且|a|=2|b|. 解:设向量 a ( x, y, 0) ,由 a b 得 a b 0 即 4x 3y 0 , 由 | a | 2 | b | 得 解方程组
(6,10, 2) (6, 6, 6) (16, 4, 12) (16, 0, 20)
5.已知两点 M1(0,1,2)和 M2(1,-1,0),求向量 M 1M 2 ,并求 M 1M 2 及与 M 1M 2 平 行的单位向量. 解: M 1M 2 (1 0)i (1 1) j (0 2)k i 2 j 2k (1, 2, 2)
2.试用向量证明:如果平面上一个四边形的对角线互相平分,则该四边形是平行 四边形. 证: (如上题图) ,依题意有 AM MC , DM MB. 于是 AB AM MB MC DM DC. 故 ABCD 是平行四边形. 3.已知向量 a=i-2j+3k 的始点为(1,3,-2),求向量 a 的终点坐标. 解:设 a 的终点坐标为( x, y, z ),则
即与 M 1M 2 平行的单位向量为 ,
1 3
2 2 1 2 2 , 或 , , . 3 3 3 3 3
习题 7-3
) 1. 已知 a =2, b =1, (a,b
解: (1) a a | a | 4
2
,求(1) a·a,(2) a·b,(3) (2a+3b)·(3a-b). 3 ) 2 1 cos π 1 (2) a a | a | | b | cos(a,b 3
《微积分》课后答案(复旦大学出版社(曹定华_李建平_毛志强_著))第11章

t t 1 t 1 1 1 yt (1)i 2t i 1 2t 1 ( )i 2t 2 3 i 0 i 0
由 (11 2 4) 式,得所给方程的通解
1 yt A(1)t 2t 3
(A 为任意常数)
*
(4)对应齐次差分方程为 yt 1 yt 0 ,其通解为 yt A , 设原方程特解为
yt 2t ( B1 cos πt B2 sin πt ) 代入原方程得:
2t 1[ B1 cos π(t 1) B2 sin π(t 1)] 2t ( B1 cos πt B2 sin πt ) 2t cos πt
yt 1
1 4 yt ,其中 3 3
1 4 a , b ,由通解公式 (11 2 7) 得原方程的通解为: 3 3
1 yt y A (t ) yt A( )t 1 (A 为任意常数) 3 1 3 t 1 3 1 (2)方程可化为 yt 1 yt ,其中 a , b0 , b1 ,故由通解公式 2 2 2 2 2 2 (11 2 9) 得方程的通解为: 3 1 1 1 t 1 7 t yt A( ) 2 2 2 t 即 yt A( )t . 1 1 1 2 9 3 2 1 (1 ) 2 1 2 2 2
t
(4) a 4 , π , b1 0 , b2 3 , D (4 cos π) sin π=9 0 ,且
2 2
由公式 (11 2 14) 得 = [0 (4 cos π) 3 sin π]=0 , = [3(4 cos π) 0 sin π]=1 , 方程通解为 yt A(4) sin πt ,以 t 0 时 y0 1 代入上式,得 A 1 ,故原方程特解为:
微积分曹定华版课后题答案习题详解

第二章习题2-11. 试利用本节定义5后面的注3证明:若lim n →∞x n =a ,则对任何自然数k ,有lim n →∞x n +k =a .证:由lim n n x a →∞=,知0ε∀>,1N ∃,当1n N >时,有取1N N k =-,有0ε∀>,N ∃,设n N >时此时1n k N +>有 由数列极限的定义得 lim n k x x a +→∞=.2. 试利用不等式A B A B -≤-说明:若lim n →∞x n =a ,则lim n →∞∣x n ∣=|a|.考察数列x n =-1n ,说明上述结论反之不成立.证:而 n n x a x a -≤- 于是0ε∀>,,使当时,有N n N ∃>n n x a x a ε-≤-< 即 n x a ε-<由数列极限的定义得 lim n n x a →∞=考察数列 (1)nn x =-,知lim n n x →∞不存在,而1n x =,lim 1n n x →∞=,所以前面所证结论反之不成立;3. 利用夹逼定理证明:1 lim n →∞222111(1)(2)n n n ⎛⎫+++ ⎪+⎝⎭=0; 2 lim n →∞2!n n =0. 证:1因为222222111112(1)(2)n n n n n n n n n n++≤+++≤≤=+ 而且 21lim0n n →∞=,2lim 0n n→∞=, 所以由夹逼定理,得222111lim 0(1)(2)n n n n →∞⎛⎫+++= ⎪+⎝⎭. 2因为22222240!1231n n n n n<=<-,而且4lim 0n n →∞=,所以,由夹逼定理得4. 利用单调有界数列收敛准则证明下列数列的极限存在. 1 x n =11n e +,n =1,2,…;2 x 1x n +1n =1,2,…. 证:1略;2因为12x <,不妨设2k x <,则故有对于任意正整数n ,有2n x <,即数列{}n x 有上界,又 1n n x x +-=,而0n x >,2n x <,所以 10n n x x +-> 即 1n n x x +>, 即数列是单调递增数列;综上所述,数列{}n x 是单调递增有上界的数列,故其极限存在;习题2-21※. 证明:0lim x x →fx =a 的充要条件是fx 在x 0处的左、右极限均存在且都等于a .证:先证充分性:即证若0lim ()lim ()x x x x f x f x a -+→→==,则0lim ()x x f x a →=. 由0lim ()x x f x a -→=及0lim ()x x f x a +→=知: 10,0εδ∀>∃>,当010x x δ<-<时,有()f x a ε-<,20δ∃>当020x x δ<-<时,有()f x a ε-<;取{}12min ,δδδ=,则当00x x δ<-<或00x x δ<-<时,有()f x a ε-<, 而00x x δ<-<或00x x δ<-<就是00x x δ<-<, 于是0,0εδ∀>∃>,当00x x δ<-<时,有()f x a ε-<, 所以 0lim ()x x f x a →=.再证必要性:即若0lim ()x x f x a →=,则0lim ()lim ()x x x x f x f x a -+→→==, 由0lim ()x x f x a →=知,0,0εδ∀>∃>,当00x x δ<-<时,有()f x a ε-<,由00x x δ<-<就是 00x x δ<-<或00x x δ<-<,于是0,0εδ∀>∃>,当00x x δ<-<或00x x δ<-<时,有()f x a ε-<.所以 0lim ()lim ()x x x x f x f x a -+→→== 综上所述,0lim x x →fx =a 的充要条件是fx 在x 0处的左、右极限均存在且都等于a .2. 1 利用极限的几何意义确定0lim x → x 2+a ,和0lim x -→1e x; 2 设fx = 12e ,0,,0,xx x a x ⎧⎪<⎨⎪+≥⎩,问常数a 为何值时,0lim x →fx 存在.解:1因为x 无限接近于0时,2x a +的值无限接近于a ,故2lim()x x a a →+=.当x 从小于0的方向无限接近于0时,1e x 的值无限接近于0,故10lim e 0xx -→=. 2若0lim ()x f x →存在,则00lim ()lim ()x x f x f x +-→→=, 由1知 22lim ()lim()lim()x x x f x x a x a a +--→→→=+=+=, 所以,当0a =时,0lim ()x f x →存在;3. 利用极限的几何意义说明lim x →+∞sin x 不存在.解:因为当x →+∞时,sin x 的值在-1与1之间来回振摆动,即sin x 不无限接近某一定直线y A =,亦即()y f x =不以直线y A =为渐近线,所以lim sin x x →+∞不存在;习题2-31. 举例说明:在某极限过程中,两个无穷小量之商、两个无穷大量之商、无穷小量与无穷大量之积都不一定是无穷小量,也不一定是无穷大量.解:例1:当0x →时,tan ,sin x x 都是无穷小量,但由sin cos tan xx x=当0x →时,cos 1x →不是无穷大量,也不是无穷小量;例2:当x →∞时,2x 与x 都是无穷大量,但22xx=不是无穷大量,也不是无穷小量; 例3:当0x +→时,tan x 是无穷小量,而cot x 是无穷大量,但tan cot 1x x =不是无穷大量,也不是无穷小量;2. 判断下列命题是否正确:1 无穷小量与无穷小量的商一定是无穷小量;2 有界函数与无穷小量之积为无穷小量;3 有界函数与无穷大量之积为无穷大量;4 有限个无穷小量之和为无穷小量;5 有限个无穷大量之和为无穷大量;6 y =x sin x 在-∞,+∞内无界,但lim x →∞x sin x ≠∞;7 无穷大量的倒数都是无穷小量;8 无穷小量的倒数都是无穷大量. 解:1错误,如第1题例1; 2正确,见教材§定理3;3错误,例当0x →时,cot x 为无穷大量,sin x 是有界函数,cot sin cos x x x =不是无穷大量;4正确,见教材§定理2;5错误,例如当0x →时,1x 与1x -都是无穷大量,但它们之和11()0x x+-=不是无穷大量;6正确,因为0M ∀>,∃正整数k ,使π2π+2k M >,从而ππππ(2π+)(2π+)sin(2π+)2π+2222f k k k k M ==>,即sin y x x =在(,)-∞+∞内无界,又0M ∀>,无论X 多么大,总存在正整数k ,使π>k X ,使(2π)πsin(π)0f k k k M ==<,即x →+∞时,sin x x 不无限增大,即lim sin x x x →+∞≠∞;7正确,见教材§定理5;8错误,只有非零的无穷小量的倒数才是无穷大量;零是无穷小量,但其倒数无意义; 3. 指出下列函数哪些是该极限过程中的无穷小量,哪些是该极限过程中的无穷大量. 1 fx =234x -,x →2; 2 fx =ln x ,x →0+,x →1,x →+∞; 3 fx = 1e x,x →0+,x →0-; 4 fx =2π-arctan x ,x →+∞;5 fx =1x sin x ,x →∞; 6 fx = 21xx →∞. 解:122lim(4)0x x →-=因为,即2x →时,24x -是无穷小量,所以214x -是无穷小量,因而234x -也是无穷大量; 2从()ln f x x =的图像可以看出,1lim ln ,limln 0,lim ln x x x x x x +→→+∞→=-∞==+∞,所以,当0x +→时,x →+∞时,()ln f x x =是无穷大量;当1x →时,()ln f x x =是无穷小量;3从1()e x f x =的图可以看出,110lim e ,lim e 0x xx x +-→→=+∞=, 所以,当0x +→时,1()e xf x =是无穷大量; 当0x -→时,1()e xf x =是无穷小量;4πlim(arctan)02xx→+∞-=,∴当x→+∞时,π()arctan2f x x=-是无穷小量;5当x→∞时,1x是无穷小量,sin x 是有界函数,∴1sin xx是无穷小量;6当x→∞时,21x是无穷小量,∴;习题2-41.若limx x→fx存在,limx x→gx不存在,问limx x→fx±gx,limx x→fx·gx是否存在,为什么解:若limx x→fx存在,limx x→gx不存在,则1limx x→fx±gx不存在;因为若limx x→fx±gx存在,则由()()[()()]g x f x f x g x=--或()[()()]()g x f x g x f x=+-以及极限的运算法则可得limx x→gx,与题设矛盾;2limx x→fx·gx可能存在,也可能不存在,如:()sinf x x=,1()g xx=,则limsin0xx→=,1limx x→不存在,但limx x→fx·gx=1lim sin0xxx→=存在;又如:()sinf x x=,1()cosg xx=,则π2limsin1xx→=,π21limcosx x→不存在,而0limx x→fx·gxπ2lim tanxx→=不存在;2. 若limx x→fx和limx x→gx均存在,且fx≥gx,证明limx x→fx≥limx x→gx.证:设limx x→fx=A,limx x→gx=B,则0ε∀>,分别存在1δ>,2δ>,使得当010x xδ<-<时,有()A f xε-<,当020x xδ<-<时,有()g x Bε<+令{}12min,δδδ=,则当0x xδ<-<时,有从而2A Bε<+,由ε的任意性推出A B≤即00lim()lim()x x x xf xg x→→≤.3. 利用夹逼定理证明:若a1,a2,…,a m为m个正常数,则limn →∞nma ++=A , 其中A =max{a 1,a2,…,a m }.n n n m a m A ≤++≤,即而lim n A A →∞=,1lim nn mA A →∞=,由夹逼定理得nm n a A ++=.4※. 利用单调有界数列必存在极限这一收敛准则证明:若x1=,x 2x n +1=1,2,…,则lim n →∞x n 存在,并求该极限.证:因为12x x ==有21x x >今设1k k x x ->,则1k k x x -=>=,由数学归纳法知,对于任意正整数n有1n n x x +>,即数列{}n x 单调递增;又因为12x =<,今设2k x <,则12k x -=<=,由数学归纳法知,对于任意的正整数 n 有2n x <,即数列{}n x 有上界,由极限收敛准则知lim n n x →∞存在;设lim n n x b →∞=,对等式1n x +=两边取极限得b =即22b b =+,解得2b =,1b =-由极限的保号性,舍去,所以lim 2n n x →∞=.5. 求下列极限:1 lim n →∞33232451n n n n n +++-+;2 lim n →∞1cos n ⎡⎤⎛⎢⎥⎝⎣⎦; 3 lim n →∞4 limn →∞11(2)3(2)3n nn n ++-+-+; 5 lim n →∞1112211133n n ++++++. 解:1原式=23232433lim 11155nn n n n n→∞++=+-+;2因为lim(10n →∞=,即当n →∞时,1是无穷小量,而cos n 是有界变量,由无穷小量与有界变量的乘积是无穷小量得:lim (10n n →∞⎡⎤=⎢⎥⎣⎦;322lim(n n n→∞=而lim 0nn→∞→∞==, 2n n →∞∴==∞;41111121(1)()(2)31333limlim2(2)33(1)()13nn n n n n n n n n ++→∞→∞++-+-+==-+-+; 5111111()21111114[1()]42222lim lim lim 1111311()3[1()]3333113n n n n n n n n n ++→∞→∞→∞++-+++--===+++---.6. 求下列极限: 1 3limx →239x x --; 2 1limx →22354x x x --+; 3 lim x →∞3426423x x x ++;4 2limx π→sin cos cos 2x xx -; 5 0lim h →33()x h x h+-; 6 3lim x→7 1lim x →21n x x x n x +++--; 8 lim x →∞sin sin x x x x +-;9 lim x →+∞ 10 1lim x →313()11x x---; 11 0lim x →21(sin )x x.解:23333311(1)limlim lim 9(3)(3)36x x x x x x x x x →→→--===--++2211lim(54)0,lim(23)1x x x x x →→-+=-=-3344226464lim lim 03232x x x x x x x x→∞→∞++==++; 4π2ππsincos sin cos 22lim1cos 2cos πx x xx →--==-; 5[]223300()()()()lim limh h x h x x h x h x x x h x h h→→⎡⎤+-+++++-⎣⎦= 222lim ()()3h x h x h x x x →⎡⎤=++++=⎣⎦;633(23)92)x x x →→+-=343x x →→===;72211(1)(1)(1)limlim 11n n x x x x x n x x x x x →→+++--+-++-=--1123(1)2n n n =++++=+; 8sin lim0x x x →∞=无穷小量1x与有界函数sin x之积为无穷小量sin 1sin lim lim 1sin sin 1xx x x x x xx x x→∞→∞++∴==--; 922limlimx x→+∞=limlim1x x ===;101lim x →313()11x x---231(1)3lim 1x x x x →++-=- 11当0x →时,2x 是无穷小量,1sinx是有界函数,∴它们之积21sinx x 是无穷小量,即201lim sin 0x x x →⎛⎫= ⎪⎝⎭;习题2-5求下列极限其中a >0,a ≠1为常数: 1. 0limx →sin 53x x; 2. 0lim x →tan 2sin 5xx ; 3. 0lim x →x cot x ;4. 0lim x→; 5. 0lim x →2cos5cos 2x x x -; 6. lim x →∞1xx x ⎛⎫⎪+⎝⎭; 7. 0lim x →()cot 13sin xx +; 8. 0lim x →1x a x-; 9. 0lim x →x x a a x --;10. lim x →+∞ln(1)ln x x x +-; 11. lim x →∞3222xx x -⎛⎫⎪-⎝⎭; 12.lim x →∞211xx ⎛⎫+ ⎪⎝⎭; 13. 0limx →arcsin x x ; 14. 0lim x →arctan xx; .解:1. 000sin 55sin 55sin 55lim lim lim 335353x x x x x x x x x →→→===;2. 000tan 2sin 221sin 25lim lim lim sin 5cos 2sin 55cos 22sin 5x x x x x x x x x x x x x→→→== 0205021sin 252lim lim lim 5cos 22sin 55x x x x x x x x →→→==; 3. 0000lim cotlim cos lim limcos 1cos01sin sin x x xx x xx x x x x x →→→→=⋅==⨯=;4. 0000sin22limlim22x x x x x x x→→→→=== 0sin2221222xx →===; 5. 2200073732sin sin sin sin cos5cos 2732222lim lim lim (2)732222x x x x x x x x x x x x x →→→⎡⎤-⎢⎥-==-⋅⋅⋅⋅⎢⎥⎢⎥⎣⎦0073sin sin 212122limlim 732222x x x x x x →→=-⋅=-;6. 111lim lim lim 111e (1)xxx x x x x x x x x →∞→∞→∞⎛⎫ ⎪⎛⎫=== ⎪ ⎪++⎝⎭ ⎪+⎝⎭; 7. 3cos cos 1cot sin 3sin 0lim(13sin )lim(13sin )lim (13sin )xx xxx x x x x x x →→→⎡⎤+=+=+⎢⎥⎣⎦8.令1xu a =-,则log (1)a x u =+,当0x →时,0u →,111ln log elimlog (1)a ua u a u →===+. 9. 000(1)(1)11lim lim lim x x x x x x x x x a a a a a a x x xx ---→→→⎛⎫------==+ ⎪-⎝⎭ 利用了第8题结论01limln x x a a x→-=; 10. ln(1)ln 11limlim lnx x x x xx x x→+∞→+∞+-+=⋅ 1111lim ln(1)lim lim ln(1)0x x x x x x x→+∞→+∞→+∞=+=+=; 11. 22223211lim lim 1lim 1222222x xxxxx x x x x x x --→∞→∞→∞⎡⎤-⎛⎫⎛⎫⎛⎫=+=+⎢⎥ ⎪ ⎪ ⎪---⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦1232lim e 22xx x x -→∞-⎛⎫∴= ⎪-⎝⎭; 12. 1221222111ln (1)lim ln(1)2211lim(1)lim (1)lim eex x xxx xx x x xx x x x x →∞⎡⎤++⎢⎥⎣⎦→∞→∞→∞⎡⎤+=+==⎢⎥⎣⎦2121lim lim ln(1)0lne 0e e e 1xx x x x→∞→∞+⋅====;13.令arcsin x u =,则sin x u =,当0x →,0u →,000arcsin 1limlim 1sin sin limx u u x u u x u u→→→===;14.令arctan x u =,则tan x u =,当0x →,0u →,00000arctan 1lim lim lim cos lim limcos 1sin tan sin x u u u u x u u u u u xu u u→→→→→====. 习题2-61. 证明: 若当x →x 0时,αx →0,βx →0,且αx ≠0,则当x →x 0时,αx ~βx 的充要条件是0lim x x →()()()x x x αβα-=0. 证:先证充分性.若0lim x x →()()()x x x αβα-=0,则0lim x x →()(1)()x x βα-=0, 即0()1lim 0()x x x x βα→-=,即0()lim 1()x x x x βα→=. 也即0()lim 1()x x x x αβ→=,所以当0x x →时,()()x x αβ. 再证必要性:若当0x x →时,()()x x αβ,则0()lim 1()x x x x αβ→=, 所以0lim x x →()()()x x x αβα-=0lim x x →()(1)()x x βα-=0()1lim ()x x x x βα→-=011110()lim ()x x x x αβ→-=-=. 综上所述,当x →x 0时,αx ~βx 的充要条件是0lim x x →()()()x x x αβα-=0. 2. 若βx ≠0,0lim x x →βx =0且0lim x x →()()x x αβ存在,证明0lim x x →αx =0. 证:0000()()lim ()lim ()lim lim ()()()x x x x x x x x x x x x x x x αααββββ→→→→==0()lim 00()x x x x αβ→== 即 0lim ()0x x x α→=. 3. 证明: 若当x →0时,fx =ox a ,gx =ox b ,则fx ·gx =o a b x+,其中a ,b 都大于0,并由此判断当x →0时,tan x -sin x 是x 的几阶无穷小量.证: ∵当x →0时, fx =ox a ,gx =ox b ∴00()()lim(0),lim (0)a bx x f x g x A A B B x x →→=≠=≠ 于是: 0000()()()()()()lim lim lim lim 0a b a b a b x x x x f x g x f x g x f x g x AB x x x x x +→→→→⋅=⋅=⋅=≠ ∴当x →0时, ()()()a b f x g x O x +⋅=,∵tan sin tan (1cos )x x x x -=-而当x →0时, 2tan (),1cos ()x O x x O x =-=,由前面所证的结论知, 3tan (1cos )()x x O x -=,所以,当x →0时,tan sin x x -是x 的3阶无穷小量.4. 利用等价无穷小量求下列极限:1 0lim x →sin tan ax bx b ≠0;2 0lim x →21cos kx x-; 3 0lim x→; 4 0lim x→5 0lim x →arctan arcsin x x ;6 0lim x →sin sin e e ax bx ax bx-- a ≠b ; 7 0limx →ln cos 2ln cos3x x ; 8 设0lim x →2()3f x x-=100,求0lim x →fx . 解 00sin (1)lim lim .tan x x ax ax a bx bx b→→== 8由20()3lim 100x f x x →-=,及20lim 0x x →=知必有0lim[()3]0x f x →-=, 即 00lim[()3]lim ()30x x f x f x →→-=-=, 所以 0lim ()3x f x →=. 习题2-71.研究下列函数的连续性,并画出函数的图形:1 fx = 31,01,3,12;x x x x ⎧+≤<⎨-≤≤⎩ 2 fx =,111,1 1.x x x x -≤<⎧⎨<-≥⎩,或 解: 1300lim ()lim(1)1(0)x x f x x f ++→→=+== ∴ fx 在x =0处右连续,又11lim ()lim(3)2x x f x x ++→→=-= ∴ fx 在x =1处连续.又 22lim ()lim(3)1(2)x x f x x f --→→=-== ∴ fx 在x =2处连续.又fx 在0,1,1,2显然连续,综上所述, fx 在0,2上连续.图形如下:图2-12 11lim ()lim 1x x f x x --→→==∴ fx 在x =1处连续.又11lim ()lim 11x x f x -+→-→-== 故11lim ()lim ()x x f x f x -+→-→-≠ ∴ fx 在x =-1处间断, x =-1是跳跃间断点.又fx 在(,1),(1,1),(1,)-∞--+∞显然连续.综上所述函数fx 在x =-1处间断,在(,1),(1,)-∞--+∞上连续.图形如下:图2-22. 说明函数fx 在点x 0处有定义、有极限、连续这三个概念有什么不同又有什么联系 略.3.函数在其第二类间断点处的左、右极限是否一定均不存在试举例说明.解:函数在其第二类间断点处的左、右极限不一定均不存在. 例如0(),010x x f x x x x ≤⎧⎪==⎨>⎪⎩是其的一个第二类间断点,但00lim ()lim 0x x f x x --→→==即在0x =处左极限存在,而001lim ()lim x x f x x++→→==+∞,即在0x =处右极限不存在. 4.求下列函数的间断点,并说明间断点的类型:1 fx = 22132x x x -++;2 fx =sin sin x x x+; 3 fx = ()11x x+; 4 fx = 224x x +-; 5 fx = 1sinx x . 解: 1由2320x x ++=得x =-1, x =-2∴ x =-1是可去间断点,x =-2是无穷间断点.2由sin x =0得πx k =,k 为整数.∴ x =0是跳跃间断点.4由x 2-4=0得x =2,x =-2.∴ x =2是无穷间断点,x =-2是可去间断点. 5 001lim ()lim sin 0,()x x f x x f x x→→==在x =0无定义 故x =0是fx 的可去间断点.5.适当选择a 值,使函数fx = ,0,,0x e x a x x ⎧<⎨+≥⎩在点x =0处连续.解: ∵f 0=a ,要fx 在x =0处连续,必须00lim ()lim ()(0)x x f x f x f +-→→==. 即a =1.6※.设fx = lim x →+∞x xx x a a a a ---+,讨论fx 的连续性. 解: 22101()lim lim sgn()10100x x xx x x a a x a aa f x x x a a a x --→+∞→+∞-<⎧--⎪====>⎨++⎪=⎩ 所以, fx 在(,0)(0,)-∞+∞上连续,x =0为跳跃间断点. 7. 求下列极限:1 2lim x →222x x x +-; 2 0lim x→; 3 2lim x →ln x -1; 4 12lim x →5 lim x e→ln x x . 解: 222222(1)lim 1;2222x x x x →⨯==+-+- 习题2-81. 证明方程x 5-x 4-x 2-3x =1至少有一个介于1和2之间的根.证: 令542()31f x x x x x =----,则()f x 在1,2上连续,且 (1)50f =-<, (2)50f =>由零点存在定理知至少存在一点0(1,2),x ∈使得0()0f x =.即 542000031x x x x ---=, 即方程54231x x x x ---=至少有一个介于1和2之间的根.2. 证明方程ln 1+e x -2x =0至少有一个小于1的正根.证: 令()ln(1)2e x f x x =+-,则()f x 在(,)-∞+∞上连续,因而在0,1上连续, 且 0(0)ln(1)20ln 20e f =+-⨯=>由零点存在定理知至少存在一点0(0,1)x ∈使得0()0f x =.即方程ln(1)20e xx +-=至少有一个小于1的正根.3※. 设fx ∈C -∞,+∞,且lim x →-∞fx =A , lim x →+∞fx =B , A ·B <0,试由极限及零点存在定理的几何意义说明至少存在一点x 0∈-∞,+∞,使得fx 0=0.证: 由A ·B <0知A 与B 异号,不防设A >0,B <0由lim ()0,lim ()0x x f x A f x B →-∞→+∞=>=<,及函数极限的保号性知,10X ∃>,使当1x X <-,有()0,f x >20X ∃<,使当2x X >时,有()0f x <.现取1x a X =<-,则()0f a >,2x b X =>,则()0f b <,且a b <,由题设知()f x 在[,]a b 上连续,由零点存在定理,至少存在一点0(,)x a b ∈使0()0f x =, 即至少存在一点0(,)x ∈-∞+∞使0()0f x =.4.设多项式P n x =x n +a 11n x-+…+a n .,利用第3题证明: 当n 为奇数时,方程P n x =0至少有一实根.证: 122()1n n n n a a a P x x x x x ⎛⎫=++++ ⎪⎝⎭()lim 10n nx P x x →∞∴=>,由极限的保号性知. 0X ∃>,使当X x >时有()0nn P x x>,此时()n P x 与n x 同号,因为n 为奇数,所以2X n 与-2X n 异号,于是(2)n P X -与(2)n P X 异号,以()n P x 在[2,2]X X -上连续,由零点存在定理,至少存在一点0(2,2)X X X ∈-,使0()0n P x =,即()0n P x =至少有一实根.。
微积分曹定华版课后题答案习题详解

第9章习题9-11. 判定下列级数的收敛性:(1) 115n n a ∞=⋅∑(a >0); (2)∑∞=-+1)1(n n n ;(3) ∑∞=+131n n ; (4)∑∞=-+12)1(2n nn; (5) ∑∞=+11ln n n n ; (6)∑∞=-12)1(n n;(7) ∑∞=+11n n n ; (8)(1)21n n nn ∞=-⋅+∑. 解:(1)该级数为等比级数,公比为1a ,且0a >,故当1||1a <,即1a >时,级数收敛,当1||1a≥即01a <≤时,级数发散.(2)Q n S =+++L∴1n ∞=∑发散.(3)113n n ∞=+∑是调和级数11n n ∞=∑去掉前3项得到的级数,而调和级数11n n∞=∑发散,故原级数113n n ∞=+∑发散. (4)Q 1112(1)1(1)222n n nn n n n ∞∞-==⎛⎫+--=+ ⎪⎝⎭∑∑ 而1112n n ∞-=∑,1(1)2m nn ∞=-∑是公比分别为12的收敛的等比级数,所以由数项级数的基本性质知111(1)22n n n n ∞-=⎛⎫-+ ⎪⎝⎭∑收敛,即原级数收敛.(5)Q lnln ln(1)1nn n n =-++ 于是(ln1ln 2)(ln 2ln 3)[ln ln(1)]n S n n =-+-+-+L故lim n n S →∞=-∞,所以级数1ln1n nn ∞=+∑发散. (6)Q 2210,2n n S S +==-∴lim n n S →∞不存在,从而级数1(1)2n n ∞=-∑发散.(7)Q 1lim lim10n n n n U n→∞→∞+==≠∴ 级数11n n n ∞=+∑发散. (8)Q (1)(1)1, lim 21212n n n n n n U n n →∞--==++∴ lim 0n x U →∞≠,故级数1(1)21n n nn ∞=-+∑发散.2. 判别下列级数的收敛性,若收敛则求其和:(1) ∑∞=⎪⎭⎫ ⎝⎛+13121n n n ; (2) ※∑∞=++1)2)(1(1n n n n ; (3) ∑∞=⋅12sin n n n π; (4)πcos2n n ∞=∑. 解:Q (1)1111, 23n n n n ∞∞==∑∑都收敛,且其和分别为1和12,则11123n n n ∞=⎛⎫+ ⎪⎝⎭∑收敛,且其和为1+12=32.(2)Q11121(1)(2)212n n n n n n ⎛⎫=-+ ⎪++++⎝⎭1lim 4n n S →∞=故级数收敛,且其和为14. (3)πsin 2n U n n =,而πsinππ2lim lim 0π222n n n U n→∞→∞=⋅=≠,故级数1πsin2n n n ∞=⋅∑发散. (4)πcos 2n n U =,而4lim limcos2π1k k k U k →∞→∞==,42lim limcos(21)π1k k k U k +→∞→∞=+=-故lim n n U →∞不存在,所以级数πcos2n n ∞=∑发散.3※. 设1nn U∞=∑ (U n >0)加括号后收敛,证明1nn U∞=∑亦收敛.证:设1(0)nn n UU ∞=>∑加括号后级数1n n A ∞=∑收敛,其和为S .考虑原级数1n n U ∞=∑的部分和1n k k S U ∞==∑,并注意到0(1,2,)k U k >=L ,故存在0n ,使又显然1n n S S +<对一切n 成立,于是,{}n S 是单调递增且有上界的数列,因此,极限lim n n S →∞存在,即原级数1nn U∞=∑亦收敛.习题9-21. 判定下列正项级数的收敛性:(1) ∑∞=++1n n n )2)(1(1; (2)∑∞=+1n n n1; (3) ∑∞=++1n n n n )2(2; (4)∑∞=+1n n n )5(12;(5) 111nn a ∞=+∑ (a >0); (6) ∑∞=+1n nb a 1(a , b >0); (7)()∑∞=--+1n a n a n22(a >0); (8)∑∞=-+1n n n 1214; (9) ∑∞=⋅1n nn n 23; (10) ※∑∞=1n nn n !; (11) ∑∞=+⋅⋅⋅⋅+⋅⋅⋅⋅1n n n )13(1074)12(753ΛΛ; (12)∑∞=1n nn3;(13) ※∑∞=1n n n 22)!(2; (14)∑∞=⎪⎭⎫ ⎝⎛+1n nn n 12; (15)∑∞=1πn nn3sin2; (16) ∑∞=1πn n n n 2cos 32.解:(1)因为211(1)(2)n n n <++而211n n ∞=∑收敛,由比较判别法知级数11(1)(2)n n n ∞=++∑收敛.(2)因为lim 10n n n U →∞==≠,故原级数发散.(3)因为21(1)(1)1n n n n n n n +>=+++,而111n n ∞=+∑发散,由比较判别法知,级数12(1)n n n n ∞=++∑发散.(4321n<=,而1n ∞=是收敛的p -级数3(1)2p =>,由比较判别法知,级数n ∞=.(5)因为111lim lim lim(1)111n n n n n n n na a a a a →∞→∞→∞+==-++ 而当1a >时,11n n a ∞=∑收敛,故111nn a ∞=+∑收敛; 当1a =时,11n n a∞=∑=11n ∞=∑发散,故111nn a∞=+∑发散;当01a <<时1lim101n n a →∞=≠+,故1lim1nn a →∞+发散; 综上所述,当01a <≤时,级数1lim 1n n a →∞+发散,当1a >时,1lim 1nn a →∞+收敛. (6)因为1lim lim lim(1)1n n n n n n n n b aa b a b a bb→∞→∞→∞+==-++ 而当1b >时, 11n n b ∞=∑收敛,故11nn a b ∞=+∑收敛; 当1b =时,1111n n n b ∞∞===∑∑发散,故而由0a >, 101a <<+∞+,故11nn a b ∞=+∑也发散; 当01b <<时,11lim 0n n a b a →∞=≠+故11n n a b ∞=+∑发散; 综上所述知,当01b <≤时,级数11n n a b ∞=+∑发散;当b >1时,级数11nn a b∞=+∑收敛. (7)因为lim lim 1n n n→∞→∞=而11n n ∞=∑发散,故级数10)n a ∞=>∑发散. (8)因为434431121lim lim 1212n n n n n n n n→∞→∞++-==-而311n n ∞=∑收敛,故级数21121n n n ∞=+-∑收敛.(9)因为1113233lim lim lim 1(1)232(1)2n n n n n n n n nU n n U n n +++→∞→∞→∞⋅⋅==>+⋅+由达朗贝尔比值判别法知,级数132nnn n ∞=⋅∑发散. (10)因为11(1)!1lim lim lim(1)1(1)!n n n n n n n nU n n e U n n n ++→∞→∞→∞+=⋅=+=>+,由达朗贝尔比值判别法知,级数1!nn n n ∞=∑发散. (11)因为1357(21)(23)4710(31)limlim 4710(31)(34)357(21)n n n nU n n n U n n n +→∞→∞⋅⋅⋅⋅+⋅+⋅⋅⋅⋅+=⋅⋅⋅⋅⋅+⋅+⋅⋅⋅⋅+L L L L232lim1343n n n →∞+==<+,由达朗贝尔比值判别法知原级数收敛.(12)因为111311lim lim lim 1333n n n n n n nU n n U n n ++→∞→∞→∞++=⋅==<,由达朗贝尔比值判别法知,级数13n n n ∞=∑收敛.(13)因为22221221(1)[(1)!]2(1)lim lim lim (!)22n n n n n n n nU n n U n +++→∞→∞→∞++=⋅= 由2212121(1)2(1)1lim lim lim 222ln 22ln 2x x x x x x x x x +++→∞→+∞→+∞+++==⋅⋅2121lim 022(ln 2)x x +→+∞==⋅知2121(1)lim lim 012n n n n n U n U ++→∞→∞+==< 由达朗贝尔比值判别法知,级数221(!)2n n n ∞=∑收敛.(14)因为1lim 1212n n n n →∞==<+,由柯西根值判别法知级数121nn n n ∞=⎛⎫ ⎪+⎝⎭∑收敛. (15)因为ππ2sinsin 33lim lim 1π2π33n n nn n n n n→∞→∞==⋅ 而112233nn n n n ∞∞==⎛⎫= ⎪⎝⎭∑∑是收敛的等比级数,它的每项乘以常数π后新得级数12π3n n n ∞=⋅∑仍收敛,由比较判别法的极限形式知,级数1π2sin3n n n ∞=∑收敛. (16)因为2πcos 322n nn n n ≤而与(12)题类似地可证级数12n n n ∞=∑收敛,由比较判别法知级数1πcos 32nn n n ∞=∑收敛.2. 试在(0,+∞)内讨论x 在什么区间取值时,下列级数收敛:(1) ∑∞=1n nn x ; (2)nn x n ∑∞=⎪⎭⎫⎝⎛123. 解:(1)因为11lim lim lim 11n n n n n n nU x n nxx U n x n ++→∞→∞→∞=⋅==++由达朗贝尔比值判别法知,当1x >时,原级数发散;当01x <<时,原级数收敛; 而当1x =时,原级数变为调11n n∞=∑,它是发散的. 综上所述,当01x <<时,级数1nn x n ∞=∑收敛.(2)因为1313(1)2limlim 22n n n n n nx n U xU x n ++→∞→∞⎛⎫+⋅ ⎪⎝⎭==⎛⎫⋅ ⎪⎝⎭,由达朗贝尔比值判别法知,当12x >即2x >时,原级数发散;当012x<<即02x <<时,原级收敛.而当12x =即 2x =时,原级数变为31n n ∞=∑,而由3lim n n →∞=+∞知31n n ∞=∑发散,综上所述,当02x <<时,级数31()2n n xn ∞=∑收敛.习题9-31. 判定下列级数是否收敛,如果是收敛级数,指出其是绝对收敛还是条件收敛:(1) ∑∞=--1121)1(n nn ; (2)11(1)2(1)2n n nn ∞-=-+-⋅∑; (3) ∑∞=12sin n n nx; (4) 111π(1)sin πn n n n∞+=-∑; (5) ∑∞=-⎪⎭⎫ ⎝⎛-11210121n n n ; (6)∑∞=+-1)1(n n x n ; (7) ∑∞=⋅1!)2sin(n n n x .解:(1)这是一个交错级数121n U n =-, 1lim lim 021n n n U n →∞→∞==-, 1112121n n U U n n +=>=-+ 由莱布尼茨判别法知11(1)21nn n ∞=--∑. 又1111(1)2121n n n n n ∞∞==-=--∑∑,由1121lim 12n n n→∞-=,及11n n ∞=∑发散,知级数1121n n ∞=-∑发散,所以级数11(1)21nn n ∞=--∑条件收敛. (2)因为2111(1)211(1)22(1)2n n n n n ----+-=+-⋅-⋅,故 而112n n ∞=∑收敛,故132n n ∞=∑亦收敛,由比较判别法知11(1)2(1)2n n nn ∞-=-+-⋅∑收敛,所以级数11(1)2(1)2n n n n ∞-=-+-⋅∑绝对收敛.(3)因为22sin 1,nx n n ≤而级数211n n ∞=∑收敛,由比较判别法知21sin n nxn ∞=∑收敛,因此,级数21sin n nxn ∞=∑绝对收敛.(4)因为121ππ|(1)sin |sin πlimlim 11πn n n n n n n n+→∞→∞-==而211n n∞=∑收敛,由比较判别法的极限形式知,级数111π|(1)sin |πn n n n∞+=-∑收敛,从而级数11π(1)sin πn n n+-绝对收敛. (5)因为212121111111210210210n n n n n n ----≤+=+,而级数112nn ∞=∑收敛的等比级数1()2q =;由比值判别法,易知级数211110n n ∞-=∑收敛,因而21111210n n n ∞-=⎛⎫+ ⎪⎝⎭∑收敛,由比较判别法知级数21111210n n n ∞-=-∑收敛,所以原级数21111210n n n ∞-=-∑绝对收敛. (6)当x 为负整数时,级数显然无意义;当x 不为负整数时,此交错级数满足莱布尼茨判别法的条件,故它是收敛的,但因11n x n ∞=+∑发散,故原级数当x 不为负整数时仅为条件收敛. (7)因为sin(2)1!!n x n n ⋅≤由比值判别法知11!n n ∞=∑收敛(Q 1(1)!lim 01!n n n →∞+=),从而由比较判别法知1sin(2)!n n x n ∞=⋅∑收敛,所以级数1sin(2)!n n x n ∞=⋅∑,绝对收敛.2. 讨论级数∑∞=--111)1(n pn n 的收敛性(p >0). 解:当1p >时,由于11111(1)n p p n n n n ∞∞-==-=∑∑收敛,故级数111(1)n p n n ∞-=-∑绝对收敛. 当01p <≤时,由于111,(1)n n p pu u n n +=>=+ lim 0n n u →∞=,由莱布尼茨判别法知交错级数111(1)n p n n ∞-=-∑收敛,然而,当01p <≤时,11111(1)n p p n n n n ∞∞-==-=∑∑发散,故此时,级数111(1)n p n n ∞-=-∑条件收敛.综上所述,当01p <≤时,原级数条件收敛;当p >1时,原级数绝对收敛.3※. 设级数∑∞=12n na及∑∞=12n nb都收敛,证明级数∑∞=1n n n b a 及()∑∞=+12n n n b a 也都收敛.证:因为2222||||110||222n n n n n n a b a b a b +≤≤=+ 而由已知1nn a ∞=∑及21n n b ∞=∑都收敛,故221111,22n n n n a b ∞∞==∑∑收敛,从而2211122n n n a b ∞=⎛⎫+ ⎪⎝⎭∑收敛,由正项级数的比较判别法知1n nn a b∞=∑也收敛,从而级数1n nn a b∞=∑绝对收敛.又由222()2,n n n n n n a b a a b b +=++及2211,n n n n a b ∞∞==∑∑,以及1n n n a b ∞=∑收敛,利用数项级数的基本性质知,221(2)nn n n n aa b b ∞=++∑收剑,亦即21()n n n a b ∞=+∑收敛.习题9-41. 指出下列幂级数的收敛区间:(1) ∑∞=0!n nn x (0!=1); (2)∑∞=0!n nn x n n ; (3) ∑∞=⋅022n n nnx ; (4)∑∞=++-01212)1(n n nn x . (5) ∑∞=⋅+02)2(n n nn x ; (6)∑∞=-0)1(2n n nx n. 解:(1)因为111(1)!limlim lim 011!n n n n na n p a n n +→∞→∞→∞+====+,所以收敛半径r =+∞,幂级数1!n n x n ∞=∑的收敛区间为(,)-∞+∞.(2)因为-111lim lim lim 1e 11n nn n n n na n p a n n +→∞→∞→∞⎛⎫===-= ⎪++⎝⎭,所以收敛半径1e r p ==. 当x =e 时,级数01!!e n n n n n n n n x n n ∞∞===∑∑,此时11(1)n n n u e u n+=+,因为1(1)nn +是单调递增数列,且1(1)n n+<e 所以1n n u u +>1,从而lim 0n n u →∞≠,于是级数当x =e 时,原级数发散.类似地,可证当x =-e 时,原级数也发散(可证lim ||0n n u →∞≠),综上所述,级数!nnn n x n∞=∑的收敛区间为(-e,e).(3)因为2111limlim ()212n n n n a n p a n +→∞→∞===+,所以收敛半径为r =2. 当2x =时,级数221012n n n n x n n∞∞===⋅∑∑是收敛的p 一级数(p =2>1);当x =-2时,级数22011(1)2n nn n n x n n ∞∞===-⋅⋅∑∑是交错级数,它满足莱布尼茨判别法的条件,故它收敛.综上所述,级数202nn n x n∞=⋅∑的收敛区间为[-2,2].(4)此级数缺少偶次幂的项,不能直接运用定理2求收敛半径,改用达朗贝尔比值判别法求收敛区间.令21(1)21n nn x u n +=-+,则22121lim lim 23n n n nu n x x u n +→∞→∞+=⋅=+.当21x <时,即||1x <时,原级数绝对收敛.当21x >时,即||1x >时,级数0||n n u ∞=∑发散,从而210(1)21n nn x n +∞=-+∑发散,当1x =时,级数变为01(1)21nn n ∞=-+∑;当1x =-时,级数变为11(1)21n n n ∞+=-+∑;它们都是交错级数,且满足莱布尼茨判别法的条件,故它们都收敛.综上所述,级数210(1)21n nn x n +∞=-+∑的收敛区间为[-1,1].(5)此级数为(x +2)的幂级数. 因为11limlim 2(1)2n n n n a n p a n +→∞→∞===+. 所以收敛半径12r p==,即|2|2x +<时,也即40x -<<时级数绝对收敛.当|2|2x +>即4x <-或0x >时,原级数发散.当4x =-时,级数变为01(1)nn n ∞=-∑是收敛的交错级数, 当x =0时,级数变为调和级数11n n ∞=∑,它是发散的.综上所述,原级数的收敛区间为[-4,0).(6)此级数(x -1)的幂级数 故收敛半径12r =. 于是当1|1|2x -<即1322x <<时,原级数绝对收敛. 当1|1|2x ->即12x <或32x >时,原级数发散. 当32x =时,原级数变为01n n∞=∑是调和级数,发散. 当12x =时,原级数变为11(1)n n n ∞=-∑,是收敛的交错级数. 综上所述,原级数的收敛区间为13,22⎡⎫⎪⎢⎣⎭. 2. 求下列幂级数的和函数: (1) ∑∞=-1)1(n nn n x ; (2) ∑∞=-1122n n nx ; (3) n n x n n ∑∞=+1)1(1; (4) ∑∞=+0)12(n n xn .解:(1)可求得所给幂级数的收敛半径r =1. 设1()(1)nnn x S x n ∞==-∑,则 1111()(1)(1)1n n n n n n x S x x n x ∞∞-=='⎡⎤'=-=-=-⎢⎥+⎣⎦∑∑ 又当x =1时,原级数收敛,且()S x 在x =1处连续.(2)所给级数的收敛半经r =1,设211()2n n S x nx∞-==∑,当||1x <时,有 于是22222()1(1)x x s x x x '⎛⎫== ⎪--⎝⎭又当1x =±时,原级数发散.故 2122122 (||1)(1)n n x nx x x ∞-==<-∑ (3)可求所给级数的收敛半径为1.令1111()(0)(1)(1)n n n n x x s x x n n x n n +∞∞====≠++∑∑ 令11()(1)n n x g x n n +∞==+∑,则111()1n n g x x x ∞-=''==-∑ 所以0()ln(1)d ln(1)ln(1)xg x x x x x x x =--=+---⎰; 所以1()11ln(1),||1,S x x x x ⎛⎫=+--< ⎪⎝⎭且0x ≠. 当1x ±时,级数为11(1)n n n ∞=+∑和11(1)(1)n n n n ∞=-+∑,它们都收敛.且显然有(0)0S =. 故111ln(1)(1,0)(0,1)()00,1x x S x x x x ⎧⎛⎫+--∈-⋃⎪ ⎪=⎝⎭⎨⎪=±⎩. (4)可求得所给级数的收敛半径为r =1且1x ±时,级数发散,设10()n n S x nx ∞-==∑,则001()d .1xn n s x x x x∞===-∑⎰ 于是211()()1(1)S x x x '==--,即1211(1)n n nx x ∞-==-∑. 所以1101(21)2n n n n n n n xx nx x ∞∞∞-===+=+∑∑∑ 3. 求下列级数的和: (1) ∑∞=125n n n ; (2)∑∞=-12)12(1n n n ; (3) ∑∞=--112212n n n ; (4) 1(1)2n n n n ∞=+∑. 解:(1)考察幂级数21n n n x ∞=∑,可求得其收敛半径1r = ,且当1x ±时,级数的通项2n n u n x =,2lim ||lim n n n u n →∞→∞==+∞,因而lim 0n n u →∞≠,故当1x ±时,级数21n n n x ∞=∑发散,故幂级数21n n n x ∞=∑的收敛区间为(-1,1).设21() (||1)n n S x n x x ∞==<∑,则211()n n S x x n x ∞-==∑ 令2111()n n S x n x∞-==∑,则11011()d x n n n n S x x nx x nx ∞∞-====∑∑⎰. 再令121()n n S x nx∞-==∑,则201()d 1x n n x S x x x x∞===-∑⎰. 故221()(||1)1(1)x S x x x x '⎛⎫==< ⎪--⎝⎭,从而有120()d (1)x x S x x x =-⎰. 于是 213()() (||1)(1)x x S x xS x x x +==<- 取15x =,则223111()11555()5532115n n n S ∞=+===⎛⎫- ⎪⎝⎭∑. (2)考察幂级数21121n n x n ∞=-∑,可求得收敛半径r =1,设 令21111()21n n S x x n ∞-==-∑,则221211()1n n S x x x ∞-='==-∑. 即 1111()(0)ln (,(0)0)21x S x S s x+-==-. 于是 111()ln ,(||<1)21x S x x x +=-,从而取x =则11(21)21n n S n ∞===--∑(3)考察幂级数211(21)n n n x∞-=-∑,可求得其级数半经为r =1,因为 令2111()2n n S x nx∞-==∑,则221201()d 1x n n x S x x xx ∞===-∑⎰.所以212222() (||1)1(1)x x S x x x x '⎛⎫==< ⎪--⎝⎭,于是 取12x =,得 3212111()121102212291()2n n n S ∞-=+-⎛⎫=== ⎪⎛⎫⎝⎭- ⎪⎝⎭∑. (4)考察幂级数1(1)n n n n x∞=+∑,可求得其收敛半径r =1. 设1()(1) (||1)n n S x n n xx ∞==+<∑ 则121011()d xn n n n S x x nx x nx ∞∞+-====∑∑⎰. 又设111()n n S x nx∞-==∑则101()d 1x n n x S x x x x∞===-∑⎰. 从而121()1(1)x S x x x '⎛⎫== ⎪--⎝⎭, 取12x =,则 习题9-51. 将下列函数展开成x 的幂级数:(1) 2cos 2x ; (2) 2sin x ; (3) 2x x -e ; (4) 211x -; (5)πcos()4x -. 解:(1)2201cos 11cos (1)2222(2)!n n n x x x n ∞=+==+-∑ (2)2101sin (1) ()2(21)!2n n n x x x n +∞=⎛⎫=--∞<<+∞ ⎪+⎝⎭∑ (3)22210011e ()(1) ()!!x n n n n n x x x x x n n ∞∞-+===-=--∞<+∞∑∑ (4)211111211x x x ⎡⎤=+⎢⎥--+⎣⎦(5)πππcos cos cos sin sin 444x x x ⎛⎫-=+ ⎪⎝⎭ 2. 将下列函数在指定点处展开成幂级数,并求其收敛区间: (1)x -31,在x 0=1; (2) cos x,在x 0=3π; (3) 3412++x x ,在x 0=1; (4) 21x, 在x 0=3. 解:(1)因为11113212x x =⋅---,而 0111 (||112212nn x x x ∞=--⎛⎫=< ⎪-⎝⎭-∑即13x -<<). 所以100111(1) (13)3222nnn n n x x x x ∞∞+==--⎛⎫=⋅=-<< ⎪-⎝⎭∑∑. 收敛区间为:(-1,3).(2)πππ2π2cos cos ()cos cos()sin sin()333333x x x x ⎡⎤=+-=---⎢⎥⎣⎦ 收敛区间为(,)-∞+∞.(3)211111111()1143213481124x x x x x x =-=⋅-⋅--++++++ 由112x -<且114x -<得13x -<<,故收敛区间为(-1,3) (4)因为011113(1)()333313n n n x x x ∞=-=⋅=-⋅-+∑ 而21011(3)(1)3n n n n x x x ∞+=''⎡⎤-⎛⎫=-=-- ⎪⎢⎥⎝⎭⎣⎦∑ 由313x -<得06x <<. 故收敛区间为(0,6).。
大学微积分习题四答案详解

大学微积分习题四答案详解大学微积分是大多数理工科大学生必修的一门课程,也是他们在学术生涯中的一大挑战。
微积分的学习需要深入理解概念和原理,并通过大量的练习来巩固知识。
在这篇文章中,我将详细解答一些大学微积分习题,帮助读者更好地理解和掌握微积分的知识。
一、定积分的计算首先,我们来看一个关于定积分的问题。
假设有一条曲线y = x^2在区间[0, 2]上,我们需要计算这段曲线与x轴之间的面积。
解答:首先,我们可以将曲线y = x^2分成许多小矩形,每个小矩形的宽度为Δx。
然后,我们可以计算每个小矩形的面积,并将它们相加,即可得到整个曲线与x轴之间的面积。
具体计算步骤如下:1. 将[0, 2]区间分成n个小区间,每个小区间的宽度为Δx = (2-0)/n。
2. 对于每个小区间[i, i+1],我们可以找到该区间内的一个点xi,将其代入曲线方程y = x^2中,得到该点的纵坐标yi = (xi)^2。
3. 计算每个小矩形的面积,即S = Δx * yi。
4. 将所有小矩形的面积相加,即可得到整个曲线与x轴之间的面积。
这个问题的答案是通过求极限得到的,即当n趋向于无穷大时,所得到的面积就是曲线与x轴之间的面积。
计算过程略显繁琐,但可以通过计算机或数值计算方法来近似求解。
二、微分的应用接下来,我们来看一个关于微分的应用问题。
假设有一个圆形的水池,其半径为r,我们需要计算当水池的水位上升h时,水池内的水量的变化量。
解答:首先,我们可以将水池视为一个旋转体,将其切割成许多小圆柱体。
每个小圆柱体的高度为Δh,底面半径为r。
然后,我们可以计算每个小圆柱体的体积,并将它们相加,即可得到水池内的水量的变化量。
具体计算步骤如下:1. 将水池的水位上升h分成n个小区间,每个小区间的高度为Δh = h/n。
2. 对于每个小区间[i, i+1],我们可以找到该区间内的一个高度hi,将其代入圆柱体的体积公式V = πr^2h中,得到该圆柱体的体积Vi = πr^2hi。
《微积分》课后答案(复旦大学出版社(曹定华_李建平_毛志强_著))第三章

第三章习题3-11.设s =12gt 2,求2d d t s t =.解:22221214()(2)2lim lim 22t t t g g ds s t s dt t t t →→=-⨯-==--21lim (2)22t g t g →=+=2.设f (x )=1x,求f '(x 0)(x 0≠0).解:1211()()()f x x x x--'''===00201()(0)f x x x '=-≠3.试求过点(3,8)且与曲线2y x =相切的直线方程。
解:设切点为00(,)x y ,则切线的斜率为002x x y x ='=,切线方程为0002()y y x x x -=-。
由已知直线过点(3,8),得00082(3)y x x -=-(1)又点00(,)x y 在曲线2y x =上,故200y x =(2)由(1),(2)式可解得002,4x y ==或004,16x y ==,故所求直线方程为44(2)y x -=-或168(4)y x -=-。
也即440x y --=或8160x y --=。
4.下列各题中均假定f ′(x 0)存在,按照导数定义观察下列极限,指出A 表示什么:(1)0limx ∆→00()()f x x f x x-∆-∆=A ;(2)f (x 0)=0,0limx x →0()f x x x-=A ;(3)0limh →00()()f x h f x h h+--=A .解:(1)0000000()()[()]()limlim ()x x f x x f x f x x f x f x xx →-→--+--'=-=-- 0()A f x '∴=-(2)000000()()()limlim ()x x x x f x f x f x f x x x x x →→-'=-=--- 0()A f x '∴=-(3)000()()limh f x h f x h h→+-- 00000[()()][()()]lim h f x h f x f x h f x h→+----=000000()()[()]()lim lim h h f x h f x f x h f x h h →-→+-+--=+-000()()2()f x f x f x '''=+=02()A f x '∴=5.求下列函数的导数:(1)y;(2)y;(3)y2.解:(1)12y x==11221()2y x x -''∴===(2)23y x-=225133322()33y x x x ----''∴==-=-=(3)2152362y x x xx-==15661()6y x x -''∴===6.讨论函数y在x =0点处的连续性和可导性.解:00(0)x f →==000()(0)0lim lim 0x x x f x f x x →→→--===∞-∴函数y =在0x =点处连续但不可导。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
f (0) 0 ,依题意知 f ( x0 ) 0 .即有 f (0) f ( x0 ) .由罗尓定理,至少存在一点 (0, x0 ) ,使
得 f ( ) 0 成立,即
a0 n n 1 a1 (n 1) n 2 … an 1 0
成立,这就说明 是方程 a0 nx n 1 a1 (n 1) x n 2 an 1 0 的一个小于 x0 的正根. 7. 设 f(a) = f(c) = f(b),且 a<c<b, f ″(x)在 [a,b] 上存在, 证明在(a,b)内至少存在一点ξ, 使 f ″(ξ) = 0. 证: 显 然 f ( x ) 分 别 在 a , c 和 c, b 上 满 足 罗 尓 定 理 的 条 件 , 从 而 至 少 存 在
x x x
由 e 在 , 上连续,可导, f ( x) 在 a, b 上连续,在 a, b 内可导,知 F ( x) 在 a, b 上连
x
续,在 a, b 内可导,而且 F ( a ) e f ( a ) 0, F (b) e f (b) 0, 即F ( a ) F (b) ,
(4) lim
(a x) x a x ,(a>0); x 0 x2
(6) lim sin x ln x ;
x 0
1 ln(1 ) x ; (7) lim x arc cot x
(9) lim(1 sin x) x ;
x 0
1
(8) lim(
x 0
ex 1 ); x ex 1
x 0
f ( x) 在 0,π 上不连续,
显 然 f ( x) 在
0, π
上 可 导 , 又
f (0) 1, f ( π) 0 , 即 f (0) f ( π) , 且
f ( x) cos x
x (0, π) ,取
π π (0, π) ,有 f ( ) cos cos 0 . 2 2
习题 4-2 1.利用洛必达法则求下列极限: (1) lim
x
sin 3x ; tan 5 x
(2) lim
ex x 1 ; x 0 x (e x 1)
xm am ; x a x n a n ln x ; (5) lim x 0 cot x
(3) lim
a b
由罗尓定理至少存在一点 (a, b) 使 F ( ) 0 . 即 故
e f ( ) e f ( ) 0
而e 0
f ( ) f ( ) 0
即在 a, b 内至少存在一点 ,使得 f ( ) f ( ) 0 . 6.若方程 a0 x n a1 x n 1 an 1 x 0 有一个正根 x0,证明方程
a0 nx n 1 a1 (n 1) x n 2 an 1 0
必有一个小于 x0 的正根. 证 : 令 f ( x ) a0 x a1 x
n n 1
… an 1 x , 显然 f ( x) 在 0, x0 连续 , 在 0, x0 内可导 , 且
显然 f ( x) 在 (0,1), (1, 2) 内连续,又
f (1 0) lim f ( x) lim(1 x) 0,
x 1 x 1
f (1 0) lim f ( x) lim( x 1) 0,即f (1 0) f (1 0) f (1) 0,
cos x π cot x 0 ,则 x sin x 2 π π 5π 即存在 ( , ) ,使 f ( ) 0 成立. 6 6
2
2. 下列函数在指定区间上是否满足罗尔定理的三个条件?有没有满足定理结论中的ξ ?
(1) f ( x) e x 1,
1,1 ; 0, π
微积分 复旦大学出版社 曹定华主编.验证函数 f(x)=lnsinx 在[ , ]上满足罗尔定理的条件,并求出相应的 ,使 f ′(ξ)=0. 6 6
解: 显然 f ( x) ln sin x 在 满足罗尓定理的条件. 令 f ( x)
5π x 5π 上连续,在 π 5π 内可导,且 π f ( ) f ( ) ln 2 , , , 6 6 6 6 6 6
(2) f ( x) x 1 ,
0, 2 ;
sin x, 0 x π (3) f ( x) x0 1,
x2
解: (1) f ( x) e 1 在 1,1 上连续,在 1,1 内可导,且 f ( 1) e 1, f (1) e 1, 即
即 f ( x) 在 x 0 处右连续,在 x 2 处左连续,所以 f ( x) 在 0, 2 上连续. 又
1
本文档由天天learn提供,查看其他章节请点击/html/69/n-69.html
微积分 复旦大学出版社 曹定华主编 课后答案
f ( x) f (1) 1 x lim 1, x 1 x 1 x 1 x 1 f ( x) f (1) 1 x f (1) lim lim 1 x 1 x 1 x 1 x 1 f (1) lim
π 2
1, 2 内至少存在一点 1 ,使 f (1 ) 0 ,即 f ( x) 0 在 1, 2 内至少有一个实根.
同理 f ( x) 0 在 2,3 内也至少有一个实根 2 .又 f ( x) 0 是二次方程,最多有两个 实根,故 f ( x) 0 有两个实根,分别在区间 1, 2 和 2,3 内. 4. 验证拉格朗日中值定理对函数 f ( x) x 2 x 在区间[0,1]上的正确性.
x x
x x a ln a (a x) x ln(a x) (a x) a a x lim (4) lim x 0 x 0 x2 2x a 1 x (a x) ) a x ln 2 a (a x) x ( ln(a x) 2 a x (a x) a x lim x 0 2
x 1 x 1
所以 f ( x) 在 x 1 处连续,而且
f (0 0) lim f ( x) lim (1 x) 1 f (0),
x 0 x 0
f (2 0) lim f ( x) lim ( x 1) 1 f (2),
x2 x2
2 (10) lim ( arctan x) x x π
1
(11)
lim(
x 0
3 e x csc x ; ) 2 x
3 3 2
(12) lim x 2 e x ;
2
x 0
(13) lim ( x x x 1 x) ;
x
1 x 1 (14) lim (1 x) x . x 0 e
x 2
4
本文档由天天learn提供,查看其他章节请点击/html/69/n-69.html
微积分 复旦大学出版社 曹定华主编 课后答案
1 a a 0 ln a 02 a 0 ( 2 ) a 0 ln 2 a 1 a a 2 a 1 ln x sin 2 x 2sin x cos x x lim lim (5) lim lim 2 x 0 cot x x 0 csc x x 0 x 0 x 1 2sin 0 cos 0 0 1 ln x sin x x lim lim tan x (6) lim sin x ln x lim x 0 x 0 csc x x 0 csc x cot x x 0 x sin x lim lim tan x 1 0 0 x 0 x x 0 1 2 x 1 1 1 1 ln(1 ) 1 2 2 1 x x x x lim lim lim 1 (7) lim x arc cot x x x x x 2 x 1 1 1 x 1 x2
综上所述 , 函数 f ( x) 满足罗尓定理的条件 (2), 不满足条件 (1),(3), 有满足定理结论的
, = .
说明方程 f ( x) 0 有几个实根, 并指 3. 不用求出函数 f ( x) ( x 1)( x 2)( x 3) 的导数, 出它们所在的区间. 解: 显然 f ( x) 在 1, 2 上连续 , 在 1, 2 内可导 , 且 f (1) f (2) 0 , 由罗尓定理知 , 在
1 (a, c) , 2 (c, b) ,使得 f (1 ) f ( 2 ) 0 .
3
本文档由天天learn提供,查看其他章节请点击/html/69/n-69.html
微积分 复旦大学出版社 曹定华主编 课后答案
又由题意知 f ( x) 在 1 , 2 上满足罗尓定理的条件,从而至少存在一点 (1 , 2 ) ( a, b) , 使得 f ( ) 0 . 即在 ( a, b) 内至少存在一点 ,使 f ( ) 0 .
1
解:
(1) lim
sin 3 x 3cos 3 x 3 lim lim cos 3x cos 2 5 x x π tan 5 x x π 5sec 2 5 x 5 x π 3 3 (1) (1) 2 5 5 x e x 1 ex 1 ex (2) lim lim lim x 0 x (e x 1) x 0 e x 1 xe x x 0 e x e x xe x 1 1 lim x 0 2 x 2 m m m m x a mx m 1 lim x m n a m n . (3) lim n lim 1 n n xa x a x a nx xa n n