不饱和羧酸和取代羧酸

合集下载

大学有机化学第十章 羧酸和取代羧酸

大学有机化学第十章 羧酸和取代羧酸

O R–C–OH + H OH R–C—O–R* H OH
HO R–C–OH + R*––OH OH R–C—O–R* OH2
–H2O
HO R–C–OR*

羧酸和醇位阻越大↑,反应速度↓,甚至不反应。
酯化的相对速度为
CH3OH > R–CH2OH > R–CHOH R
R > R–C–OH R
CH
R R
KMnO4 /H+
COOH
CH3 R
[O] HOOC
COOH
提问: + R-Cl
AlCl3 0~25 º C
无水
R
δ+ δ- AlCl3 CH2CH2CH2Cl (三)腈的水解 Ar–CH2CN H3O+ Ar–CH2COOH
(四)Grignard试剂法合成羧酸 CH3CH-CH3 CO2 CH3CH-CH3 H2SO4/H2O 低温 CH3CH-CH3 MgX COOMgX COOH
O C—OH
pka 1.46
2. HCOOH COOH COOH
3.77
(+) KMnO4 /H+
4.17
Tollens Ag(银镜) ( )
(+)
( )
CH3COOH
五、 羧酸的制备(补充) (一)伯醇和醛的氧化
RCH2OH [O] RCHO RCOOH
常用的氧化剂:K2Cr2O7、KMnO4、CrO3-冰醋酸 (二)芳烃侧链的氧化
(三)-氢的卤代
CH3COOH + P
Cl2
CH2COOH + HCl Cl CHCl2COOH Cl3CCOOH
提问:请用简便化学方法把它们鉴 别出来

羧酸与取代羧酸

羧酸与取代羧酸

伯醇和仲醇成酯以“酰氧键断裂的机理”:
O CH3 C
-H2O
消除
OH
H+
+ OH HOC2H5
CH3 C OH
CH3
OH C OH
亲核加成 H O+C2H5


+ OH
-H+
CH3 C OC2H5
O CH3 C OC2H5


OH
+
CH3 C OH2 OC2H5

11-28
伯醇和仲醇与酸成酯反应的特点: ①反应总的结果是亲核试剂醇分子中的-OR基取代了羧基中的羟基,是羧基的 亲核取代反应。 ②空间位阻对酯化反应的速度影响很大。 上述反应的中间体(Ⅱ)和 (Ⅲ)都是四面体结构,比较拥挤,如果羧酸和醇的α碳上连接的基团越多, 越大,这些中间体越不稳定,酯化反应越难进行。 酸或醇的烃基体积小、数目少,速度快。反应活性顺序如下:
11-13
问题11-2 分离苯甲酸、苯甲醇和苯酚的混合物。
COOH OH CH2OH
NaOH水溶液
水层 通CO2
溶液 H+ 晶体(苯甲酸) 晶体(苯酚)
醇层(苯甲醇)
羧酸酸性的应用: 分离、鉴别羧酸与酚
在制药工业中将羧酸制成钾盐、钠盐增加 药物的水溶性,提高药效
11-14
问题11-3 乙酸中也含有CH3CO基团,但不发生碘仿反应。为 什么?
AC
OH
性增强
O
当D为推电子基团, 酸
D C O H 性减弱
11-15
(1) 诱导效应
酸性排列顺序
HCOOH > CH3COOH >CH3CH2COOH
pKa 3.77

南昌大学有机化学16 不饱和羧酸和取代羧酸

南昌大学有机化学16 不饱和羧酸和取代羧酸
第十六章 不饱和羧酸和取代羧酸
戴延凤博士 yfdai@
1
16.1 不饱和羧酸
一、不饱和羧酸的制法 芳醛的缩合反应
PhCHO + CH2(COOH)2
吡吡, 六六吡吡 回回
phCH
CHCO2H
PhCHO + (CH3CO)2O
PhCHO + CH3COOEt
CH3CO2Na 180 C
16.9 碳酸衍生物
20
练习: 练习: CH2COOH 1. 以丙二酸二乙酯为原料,合成 以丙二酸二乙酯为原料,
CH2COOH
T.M
(1) EtONa EtOH CH(CO Et) (1) NaOH 分 2 2 CH2(CO2Et)2 (2) ClCH2COOC2H5 CH COOC H (2) H O + 析 3
O CH2CH2OC2H5OC C COOC2H5 CH CH O2 2
C2H5ONa
CH2(CO2Et)2 O
EtONa 0.5 C
o
o
phCH
CHCO2H
5h
phCH
2h
CHCO2Et
2
二、α,β-不饱和羧酸的反应 不饱和羧酸的反应 1,4-加成(共轭体系) 加成(共轭体系) 加成
CH2 CHCOOH
狄尔斯-阿德尔反应(亲双烯体系) 狄尔斯 阿德尔反应(亲双烯体系) 阿德尔反应
三、α,β-不饱和羧酸的用途 不饱和羧酸的用途 甲基丙烯酸甲酯: 甲基丙烯酸甲酯:有机玻璃的原料 丙烯腈 丙烯腈:合成纤维原料
2 2 5
2.以丙二酸二乙酯为原料,合成 CH2CH2COOH 以丙二酸二乙酯为原料, 以丙二酸二乙酯为原料
CH2CH2COOH

第12章 羧酸和取代羧酸

第12章 羧酸和取代羧酸

b-酮酸
芳香酸的脱羧反应较脂肪酸容易,尤其是邻、对位 上连有吸电子基,如:
NO 2 O 2N CO2H NO 2
H2O
NO 2 O 2N NO 2 + CO2

六)二元酸的热解反应
二元酸受热后,由于两个羧基的位置不同,而发生不同的 化学反应,有的失水,有的失羧,有的同时失水失羧。
1、乙二酸和丙二酸------脱羧
3、烷基苯氧化:制备苯甲酸及其部分衍生物
CH3 KMnO4 Cl COOH Cl
4、格氏试剂与CO2反应后水解
O RMgX + O=C=O RCOMgX H 3 O+
RCOOH
5、羧酸衍生物水解:酰卤、酸酐、酯、酰胺、腈
O RC L H 2O O L=X, OCR, OR, NH2(R) O RC OH + HL
系统命名法原则与醛相同。
1. 选择含羧基在内的最长碳链为主链
2. 从羧基碳原子开始用阿拉伯数字标明取代基等的位置 3. 按所含碳原子数目称为某酸,取代基及位次写在某酸 之前。
对于简单的脂肪酸也常用 α、β、γ 等希腊字 母表示取代基的位次;羧基永远作为C-1。
CH3 CH3-CH2-CH-CH2-CO2H
15.7 16-19
羧酸酸性的强弱决定于电离后所成的羧酸根负离子 (即共轭碱)的相对稳定性。
诱导效应、共轭效应对酸性的影响
1. 诱导效应的影响
G CH2COOG
酸性增强
CH2COO-
酸性减弱
G CH2COO-
各取代基的吸电子诱导效应的强弱次序:
NO2> CN> F> Cl> Br> I> C≡CH> OCH 3> OH > C6H5> CH=CH2> H

不饱和羧酸和取代羧酸

不饱和羧酸和取代羧酸
CH3 base CH3(CH 2)9CCO 2CH3 Br CH3(CH2)8CH=CCO2CH3
CH 3
• 2.芳醛的缩合反应(普尔金和脑文格反应)
• 三. a,β-不饱和羧酸的反应 • a,β-不饱和羧酸及其衍生物分子中含有共轭双键体系,与 a,β-不饱和醛酮相似,容易起1,4-加成反应。例如:
OHCCOOH
乙醛酸能形成稳定的水合物 (HO) 2CHCOOH
• 丙酮酸由相应的腈水解得到,能还原土伦试剂,用硝 酸氧化则生成草酸,与稀硫酸加热脱酸生成乙醛,与 浓硫酸加热则生成乙酸,这是a-酮酸的特性反应.
O O O
CH 3CCl
O
NaCN
CH 3CCN
H3O+
CH 3CCOOH
Ag(NH3)2+
O H3C C O H CH2 CH3COH + CO2 O H3C O H O CH3CCH3 + CO2 O O
有的多环β –酮酸加热时不脱羧,可能是由于脱羧生成的烯 醇含有张力很大的桥头双键,不容易生成。 β –酮酸酯是稳 定的。
• 三. γ-酮酸 • 4-戊酮酸是最简单的γ-酮酸,加热容易脱水:
2-羟基丙酸 羟基丙酸 乳酸
COOH OH
2-羟基苯甲酸 邻羟基苯甲酸 水杨酸
COOH HO OH OH
3,4,5-三羟基苯甲酸 没食子酸
COOH CHOH CHOH COOH
2,3-¶¶¶¶¶¶ ¶ ù á , '¶¶¶¶¶¶ ¶ ù á ¶¶á ¶
COOH CHOH CH2 COOH
2-¶¶¶¶¶ ¶ù á ¶¶¶¶¶ ¶ù á ¶¶¶ á
CH2COOH HO-C-COOH CH2COOH

羧酸

羧酸

练习1、只用一种试剂鉴别下列物质的水溶液: 练习 、只用一种试剂鉴别下列物质的水溶液: CH3CH2OH、CH3CHO、HCOOH、CH3COOH 、 、 、 用新制Cu(OH)2 用新制
2.乙二酸 草酸 : 乙二酸(草酸 乙二酸 草酸): (1)结构: 结构: 结构 (2) 性质 性质:
还原性酸;能使酸性 溶பைடு நூலகம்褪色; 还原性酸;能使酸性KMnO4溶液褪色;可作 漂白剂,除锈剂, 漂白剂,除锈剂,除墨水痕迹
+
2HOCH2CH3
浓H2SO4
O C-OCH2CH3
(4)二元羧酸与二元醇: 二元羧酸与二元醇: 二元羧酸与二元醇 ① COOH COOH ② COOH COOH
C-OCH2CH3 O 乙二酸二乙酯
+ 2H2O
+ +
HOHO-CH2 HOHO-CH2
浓H2SO4
OO HOCC OCH2CH2OH +H2O O CH2 O
OH
CH3CHCOOH
① CH CHCOOH 浓H2SO4 CH =CHCOOH+H O + 2 2 3 ②分子间酯化 (分子间脱水) 分子间脱水)
OH OH CH3
OH
(分子内脱水) 分子内脱水)
2 CH3CHCOOH 浓H2SO4 CH3CHCOO-CHCOOH +H2O CHCOO-CHCOOH 普通酯 OH 2 CH3CHCOOH 浓H2SO4 CH3 O CH
= = = =
~ 8 NaOH ?
CH
(2):甲酸酯 甲酸酯
O
有酯基能水解反应 H C-OR 有醛基能发生银镜反应等 -
8、酯的分类: 、酯的分类:
(1)一元羧酸和一元醇形成的酯: 一元羧酸和一元醇形成的酯: 一元羧酸和一元醇形成的酯

有机化学第十三章 取代羧酸

有机化学第十三章 取代羧酸

C HO 浓NaOH CH2OH COOH ’ COOH C anniz z aro 反 应 COOH + COOH

丙酮酸: 最简单的α -酮酸
CH3
O C COOH
CH3 CH3
O 浓 H2SO4 CO + CH3 COOH(脱羰) C COOH O 稀 H2SO4 CO + CH CHO (脱羧) 2 3 C COOH
OH O C6H5C=CHCCH 3 90.0%
2 乙酰乙酸乙酯的分解反应 稀OH-
O O CH3C-CH 2-COC 2H5
浓OH-
O CH3CCH3
酮式分解
O CH3C-OH + 其余 酸式分解
3 α-H的活性:被取代
O O CH3C-CH2-COC 2H5
RONa
O Na+ O CH3C-CH--COC 2H5
稀 OH -

CH3COCHC 2H5 CH3
1. 合成甲基酮 经乙酰乙酸乙酯合成:
引入基团
引入基团
CH3 CH3CO CHCH 2CH 3
CH3CO CH 2CH 3
分析:(1) 产物为甲基酮,合成时一定要经过酮式分解。 (2) 将TM的结构与丙酮进行比较,确定引入基团。 (3) 最后确定合成路线。
O C COOH
CO2
RCHO O
CO2
R
C
CH 3
四 醇酸的制备 1 α-羟基酸 羟基腈水解( “醛的化学性质”)
O R-C-R(H) + HCN
2 β-羟基酸(酯)
OH R-C-R(H) CN
H3O
+
OH α R-C-R(H) COOH

不饱和羧酸和取代羧酸

不饱和羧酸和取代羧酸
O1 C
4
C
3
C
2
OH
+ HL
1,4 加成
OH C L C C C OH L CH C
O OH
HX
XCH2CH2COOH
卤代
H2O CH2 CH COOH HCN
OHCH2CH2COOH
羟基 氰基 氨基
CNCH2CH2COOH
NH3
NH2CH2CH2COOH
CH2
CH COOH + HN(CH2CH2COOH)2
方法改进: 碱性强,位阻大的LDA使烯醇化完全,而其本身又不与酯反应
O CH3COEt + [(CH3)2CH]2NLi
-+
THF
OLi CH2 C OEt
+ [(CH3)2CH]2NH
二异丙氨基锂(LDA) Li
O (CH3)2C CH2
OH
+
O C OEt OLi
O (CH3)2CCH2COEt H2O
3. 羟基睛的水解 分子中同时含有-OH 和-CN, 如何制备?
O CH3CH2CCH3 NaHSO3, NaCN
CH3 CH3CH2C CN OH
H+ CH3 CH3CH2C COOH OH
CH2 CH2 NaCN OH Cl
CH2 CH2 H+ OH CN
CH2CH2COOH OH
4. Reformatsky 反应
COOH OH
COOH
COOH
COOH
>
OH
>
H O O C
>
OH
pKa = 2.69
OH COOH
-
羟基和羧基邻位效应;共轭
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2).氰醇水解
3).瑞佛尔马斯基(Reformatsky)反应
指α-卤代酸酯与醛或酮在惰性溶剂中和锌粉反应,产物水解得β-羟基酸酯的反应。
注:①制备β-羟基酸酯时,金属只能用Zn不能用Mg。α-卤代酸酯通常用α-溴代酸酯。
②醛酮结构不受限制。
③可制备β-羟基酸酯,β-羟基酸,α,β-不饱和羧酸。
比较新的制备羟基酸的方法:
5).诺文葛耳(Knoevenagel)反应
指具有活泼亚甲基的化合物,在碱性试剂存在下和醛发生的加成-消去反应。
含有活泼亚甲基的化合物:
醛:脂肪醛,芳香醛,甚至酮也可以。
3α,β-不饱和羧酸的反应
1).共轭加成
2).D-A反应
1 , 3-丁二烯
丙烯酸甲酯
3-环己烯甲酸甲酯
练习:以环戊二烯和4C以下有机物为原料合成:
第十六章
不饱和羧酸和取代羧酸
(Unsaturated carboxylic acid and Substituted carboxylic acid )

一.不饱和羧酸(Unsaturated carboxylic acid )
定义:羧酸分子中含有不饱和键(双键、叁键)的羧酸。
1α,β-不饱和羧酸的结构
385.6±2.6387.7±3.8390.2±2.9394.8±2.9394.4±3.8
单位:kJ•mol-1
2α,β-不饱和羧酸的制备
1).腈的水解
2).格利雅试剂法
3).α-羟基酸脱水
4).佩金(Perkin)反应
指芳香醛和酸酐在相应羧酸钠(或钾)盐存在下发生的类似于羟醛缩合的反应,最终得到α,β-不饱和羧酸。
Pka=2.96
反应:
乙酰水杨酸
(阿斯匹灵)
五羰基酸(Carbonyl acids)
碳链上有羰基的羧酸。
六β–酮酸酯(β– Keto esters)
1β–酮酸酯的制备
1).克莱森(Claisen)缩合
在醇钠等碱性试剂存在下,两分子酯之间缩合生成β–酮酸酯的反应。
机理:
注:具有两个α-氢的酯用醇钠处理,一般都可顺利地发生酯缩合反应。
聚丙交酯可抽丝作为外科手术缝线,在体内可自动溶化不需拆除。因为这种聚合物在体内缓缓分解为乳酸,对人体无害。
2).聚合反应
3).氧化反应
4).分解反应
四酚酸(Phenolic acids)
定义:羟基连在芳环上的羟基酸。
1水杨酸
工业制法:
科尔伯—施密特反应:
性质:无色晶体,熔点159℃,微溶于水,与Fe3+显红色,酸性较强。
2丙二酸酯合成法
1).合成一元羧酸
2).合成二元羧酸
3).合成酮酸
除乙酰乙酸乙酯,丙二酸二乙酯外还有下列一些含活性亚甲基的试剂:
3乙酰乙酸乙酯和丙二酸二乙酯还可发生下列反应
1).与羰基加成
2).发生迈克尔反应
3).与环氧乙烷反应
八碳酸衍生物
碳酸衍生物可发生类似羧酸衍生物的反应,例:
本章要求:
熟悉α、β不饱和羧酸的结构、命名,掌握其反应:l,4-加成反应,D-A反应。掌握α、β不饱和羧酸的制备:卤代酸去氢卤、Knoevenage1反应、Perkin反应。了解不饱和酸的用途。掌握卤代酸的制法:Hell-Volhard-Zelinsky反应,熟悉其反应:与各种亲核试剂的SN2反应。了解乳酸、苹果酸、柠檬酸的用途。掌握醇酸的制备:卤代酸的水解、氰醇的水解、Reformatsky、环酮的氧化。熟悉醇酸的反应:脱水、降解、与醛反应。熟悉Kolbe-Schmidt反应,水杨酸、乙酰水杨酸、对羟基苯甲酸。了解乙醛酸、丙酮酸,掌握β-酮酸酯的制备:CIaisem缩合,Dieckmann缩合、酮与酯的缩合。掌握乙酰乙酸乙酯的酮一烯醇平衡,β-酮酸酯的烃化和酰化,β-酮酸酯的水解。掌握乙酰乙酸乙酯合成法和丙二酸酯合成法,迈克尔反应。了解碳酸衍生物。
在合成上的应用:
结论:利用达让反应可以合成较醛酮多一个碳原子的醛。
二醇酸(hydroxy—acid)
定义:羟基连在饱和碳原子上的羧酸。
很多醇酸作为生化过程的中间产物存在于天然产物中,例:肌肉中:L-(+)-乳酸,葡萄糖发酵得R-(+)-酒石酸,蔗糖发酵得D-(+)-乳酸。
1羟基酸的制备
1).卤代酸的水解
乙酰乙酸乙酯的酮式与烯醇式是互变异构体。互变异构属于官能团异构。
P493列出了一些β酮酸酯的酮式、烯醇式含量。
2).β酮酸酯的水解
稀碱中成酮水解:
浓碱中成酸水解:
因为碱的浓度大,除可进攻酯羰基外,Fra bibliotek可进攻酮羰基。
七乙酰乙酸乙酯和丙二酸酯合成法
(Methods of Acetoacetic Ester Synthesis and Malonic Ester Synthesis)
1
1.乙酰乙酸乙酯合成法
上述是乙酰乙酸乙酯在合成上的第一个用途:制备甲基酮。
乙酰乙酸乙酯在合成上的第二个用途:制备1,3-二酮。
乙酰乙酸乙酯在合成上的第三个用途:制备1,4-二酮。
乙酰乙酸乙酯在合成上的第四个用途:制备酮酸。
总之:乙酰乙酸乙酯合成法可向合成的目标产物中提供:
练习:以乙酸乙酯为原料合成下列化合物:
解:
二卤代酸( halogenated carboxylic acid )
定义:羧酸碳链上的氢被卤素原子取代得到的取代酸。
α,β—二溴丁酸ω-溴戊酸性质比较特殊。
2,3—二溴丁酸5-溴戊酸
1卤代酸的制法
1).α-卤代酸
2).β-卤代酸
3).γ, δ等卤代酸用二元羧酸的单酯发生汉斯狄克反应
2卤代酸的反应
具有α-H的酮和没有α-H的酯缩合,得到β-酮酸酯。
酯缩合反应是可逆的,可逆反应机理如下:
例:解释下列反应机理
解:
2β酮酸酯的性质
1).酮式—烯醇式平衡
以乙酰乙酸乙酯为例:
说明有两种结构:
实验证明乙酰乙酸乙酯的结构是两种形式的混合物:
上述现象叫互变异构现象,即一个化合物的两种异构体可以相互转变共存在一个平衡体系中的现象。
例:
4).内酯的水解
练习:
解:
β–羟基酸制备还可用如下方法:
练习:完成下列转化
解:
2羟基酸的反应
1).脱水
γ–羟基酸与δ–羟基酸在中性或酸性条件下形成内酯,在碱性条件下可开环形成羧酸盐,酸化后又成内酯:
聚酯
ω-羟基酸(C>9)在极稀溶液内,可形成大环内酯。
在内酯中,五元环张力最小,最稳定。内酯中除五元环内酯外,其它内酯在碱催化下,均可开环聚合。
只有一个α-H,必须用强碱作催化剂,才能使反应进行。
2).交叉克莱森(Claisen)缩合
若两种酯的α-氢不同,缩合后得到一个混合物,没有制备价值。但用一个有α-氢的酯和一个没有α-氢的酯缩合得到一种酯,有制备价值。
常用的无α-氢的酯:
3).迪克曼缩合
迪克曼缩合用来制备五元环,六元环的酮。
4).酮与酯的缩合
1).与碱反应
α-卤代酸
β-卤代酸
注意:
有α-H,在碱作用下,生成α,β-不饱和酸。
γ-卤代酸4-烷基-1 , 4-丁内酯
δ-卤代酸5-烷基-1 , 5-戊内酯
ε–溴代己酸ε–羟基己酸
2).达让(Darzer)反应
指α-卤代酸酯在醇钠或氨基钠作用下与醛酮发生的羟醛缩合反应,产物为αβ-环氧酸酯。
机理:
相关文档
最新文档