量子力学——第四章作业参考答案

合集下载

苏汝铿量子力学(第二版)课后习题(含答案)---第四章4.1-4.4#13(延边大学)三年级

苏汝铿量子力学(第二版)课后习题(含答案)---第四章4.1-4.4#13(延边大学)三年级

4.1.求在动量表象中角动量x L 的矩阵元和2x L 的矩阵元。

解:(1)对于x L 333()31()()()21()()21()()()21()()()2x pp z y z y z y y z y y iip rp ri i p rp r i i p r p r i p p r L ey p z p ed e yp zp e d e i p p e d p pz i p p e d p pz τπτπτππ'-'-'-'--'=-=-∂∂=--∂∂∂∂=--∂∂⎰⎰⎰⎰()()()zy y i p p p p p pzτδ∂∂'=---∂∂(2)对于2x L23232331()()21()()21()()()21)()()()2pp x x z y z y z y z y z y y i ip rp ri i p r p r i i p rp r i i p r p L e L e d e y p z p e d e y p z p y p z p e d e y p z p i p p e p pzτπτπτππ'-'-'-'-'==-=--∂∂=---∂∂⎰⎰⎰⎰3()223221()())()21()()2()()z y z y y z y y zy y r i ip rp r i p p rd i p pe y p z p e d p pz p p e d p pz p p p p p pzττπτπδ-'--'∂∂=---∂∂∂∂=--∂∂∂∂'=---∂∂⎰⎰4.2设厄米算符ˆA ,B 满足22ˆˆ1A B ==,ˆˆˆˆ0AB BA +=,求:(1)在ˆA 表象中,算符ˆA 和ˆB的矩阵表示; (2)在ˆB表象中,算符ˆA 和ˆB 的矩阵表示; (3)在ˆA 表象中,算符ˆB的本征值和本征函数;(4)在ˆB表象中,算符ˆA 的本征值和本征函数; (5)由A 表象到B 的幺正变换矩阵S 。

量子力学课后习题答案

量子力学课后习题答案

量子力学习题及解答第一章 量子理论基础1.1 由黑体辐射公式导出维恩位移定律:能量密度极大值所对应的波长m λ与温度T 成反比,即m λ T=b (常量);并近似计算b 的数值,准确到二位有效数字。

解 根据普朗克的黑体辐射公式dv e chv d kThv v v 11833-⋅=πρ, (1)以及 c v =λ, (2)λρρd dv v v -=, (3)有,118)()(5-⋅=⋅=⎪⎭⎫ ⎝⎛-=-=kThc v v ehc cd c d d dv λλλπλλρλλλρλρρ这里的λρ的物理意义是黑体内波长介于λ与λ+d λ之间的辐射能量密度。

本题关注的是λ取何值时,λρ取得极大值,因此,就得要求λρ 对λ的一阶导数为零,由此可求得相应的λ的值,记作m λ。

但要注意的是,还需要验证λρ对λ的二阶导数在m λ处的取值是否小于零,如果小于零,那么前面求得的m λ就是要求的,具体如下:01151186'=⎪⎪⎪⎭⎫⎝⎛-⋅+--⋅=-kT hc kThce kT hc ehcλλλλλπρ⇒ 0115=-⋅+--kThc ekThcλλ⇒ kThcekThc λλ=--)1(5 如果令x=kThcλ ,则上述方程为 x e x =--)1(5这是一个超越方程。

首先,易知此方程有解:x=0,但经过验证,此解是平庸的;另外的一个解可以通过逐步近似法或者数值计算法获得:x=4.97,经过验证,此解正是所要求的,这样则有xkhc T m =λ 把x 以及三个物理常量代入到上式便知K m T m ⋅⨯=-3109.2λ这便是维恩位移定律。

据此,我们知识物体温度升高的话,辐射的能量分布的峰值向较短波长方面移动,这样便会根据热物体(如遥远星体)的发光颜色来判定温度的高低。

1.2 在0K 附近,钠的价电子能量约为3eV ,求其德布罗意波长。

解 根据德布罗意波粒二象性的关系,可知E=hv ,λh P =如果所考虑的粒子是非相对论性的电子(2c E e μ<<动),那么ep E μ22= 如果我们考察的是相对性的光子,那么E=pc注意到本题所考虑的钠的价电子的动能仅为3eV ,远远小于电子的质量与光速平方的乘积,即eV 61051.0⨯,因此利用非相对论性的电子的能量——动量关系式,这样,便有ph=λnmm m E c hc E h e e 71.01071.031051.021024.1229662=⨯=⨯⨯⨯⨯===--μμ在这里,利用了m eV hc ⋅⨯=-61024.1以及eV c e 621051.0⨯=μ最后,对Ec hc e 22μλ=作一点讨论,从上式可以看出,当粒子的质量越大时,这个粒子的波长就越短,因而这个粒子的波动性较弱,而粒子性较强;同样的,当粒子的动能越大时,这个粒子的波长就越短,因而这个粒子的波动性较弱,而粒子性较强,由于宏观世界的物体质量普遍很大,因而波动性极弱,显现出来的都是粒子性,这种波粒二象性,从某种子意义来说,只有在微观世界才能显现。

量子力学第四章习题new

量子力学第四章习题new

第四章 态和力学量的表象4.1 求在动量表象角动量x L 的矩阵元和2x L 的矩阵元。

解: 动量为p 的本征函数为()3212ieψπ⋅==p r p p在连续情况下,按矩阵元的定义,x L 的矩阵元为()()()()()()()*333331ˆˆˆ2112222i ix x zy pp iiii i ii i yz yzL L d e ypzpe d e y e d ez e d i z i y p p e e d ee d i p i p ψψττπττππττππ∞∞'-⋅⋅''-∞-∞∞∞''-⋅⋅-⋅⋅-∞-∞∞''-⋅⋅-⋅⋅-∞-∞==-⎛⎫∂∂⎛⎫=- ⎪ ⎪∂∂⎝⎭⎝⎭''∂∂=-''∂∂⎰⎰⎰⎰⎰p r p r p pp r p rp r p r p r p r p r p r ()()()()()()()331122iiz yyzz y yz z y z y y z y z p ed p ed i p i p p p i p p i p p i p p p p p p ττππδδδ∞∞∞''-⋅-⋅-∞-∞∂∂''=-''∂∂⎛⎫∂∂'''=-- ⎪ ⎪''∂∂⎝⎭⎛⎫⎛⎫∂∂∂∂''''=---=-- ⎪ ⎪ ⎪ ⎪''∂∂∂∂⎝⎭⎝⎭⎰⎰⎰p p r p p r p p p p p p2x L 的矩阵元:()()()()()()22*23*3*31ˆˆˆ21ˆˆ212p r p r p pp r p r p r p ri ixx zy pp i i z y zy yz i i z yz y y z yzL L d e ypzpe d p p e ypzpe d i p p i p p p p e e d p p i p p ψψττπτππ∞∞'-⋅⋅''-∞-∞∞'⋅⋅-∞'⋅⋅==-⎡⎤⎛⎫∂∂=--⎢⎥ ⎪ ⎪∂∂⎢⎥⎝⎭⎣⎦⎡⎤⎛⎫⎛⎫∂∂∂∂=--⎢⎥ ⎪ ⎪ ⎪ ⎪∂∂∂∂⎢⎥⎝⎭⎝⎭⎣⎦⎰⎰⎰()()()32212r p p p p iz yz y y z y z z yy z i p p i p p ed p p p p p p p p ττπδ∞-∞∞'⋅--∞⎛⎫⎛⎫∂∂∂∂=-- ⎪ ⎪ ⎪ ⎪∂∂∂∂⎝⎭⎝⎭⎛⎫∂∂'=--- ⎪ ⎪∂∂⎝⎭⎰⎰4.2 求一维无限深势阱中粒子的坐标和动量在能量表象中的矩阵元。

量子力学答案(第二版)苏汝铿第四章课后答案4.5-4#3 @

量子力学答案(第二版)苏汝铿第四章课后答案4.5-4#3 @

2 1 2 1 2 1
∴对角化的矩阵为 L x S Lx S
L x 2
1 2 1 2 1 2
0 1 2 1 2

1 1 2 0 1 0 2 1 1 0 1 0 2 1 0 1 0 1 2 2
取 a1
1 ,归一化的 2
1 2 1 ˆ 对应于 L x 的本征值 2 1 2
ˆ 表象的变换矩阵为 ˆ 2 和L ˆ 的共同表象变到 L 由以上结果可知,从 L x Z
1 2 S 0 1 2 1 2 1 2 1 2
ˆA ˆS ˆ 1 ) ( S ˆB ˆ 1 ) ( S ˆ 1 ) ( S ˆA ˆS ˆ 1 ) ˆS ˆS (S ˆB


利用⑴式于⑵,则可以写成
[ A
aa
ˆB ˆ 1 ) ( S ˆB ˆ 1 ) A ] 0 ˆS ˆS (S
a1 ∴ 2a1 a1
a1 由归一化条件 1 (a , 2a , a ) 2a1 4 a1 a1
* 1 * 1 * 1 2
1 2 1 ˆ 的本征值 1 对应于 L 取 a1 ,归一化的 x 2 2 1 2
a1 0 1 0 a 1 当 2 时,有 1 0 1 a 2 a 2 2 a 0 1 0 a 3 3
1 a1 2 a 1 1 (a1 a 3 ) a 2 2 1 a3 a2 2

量子力学教程(第二版)周世勋习题解答

量子力学教程(第二版)周世勋习题解答
整理(10)、(11)、(12)、(13)式,并合并成方程组,得
(10) (11) (12) (13)
ek1a B sin k 2aC cosk 2aD 0 0
k1ek1a B k 2 cosk 2aC k 2 sin k 2a D 0 0
0 sin k 2aC cosk 2aD ek1a F 0
(x) c (x)

④乘 ⑤,得 (x) (x) c2 (x) (x) , 可见,c 2 1 ,所以 c 1
当 c 1时, (x) (x) , (x) 具有偶宇称,
当 c 1时, (x) (x) , (x) 具有奇宇称,
18
当势场满足 U (x) U (x) 时,粒子的定态波函数具有确定的宇称。
3
第一章 绪论
1.1.由黑体辐射公式导出维恩位移定律: mT b, b 2.9 10 3 m0C 。
证明:由普朗克黑体辐射公式:
d
8h c33Βιβλιοθήκη 1hd ,
ekT 1
及 c 、 d c d 得
2
8hc 5
1,
hc
ekT 1
令 x hc ,再由 d 0 ,得 .所满足的超越方程为
kT
d
2
(x)
E
2
(x)

12
Ⅲ: x a
2 2m
d2 dx2
3
(x)
U
(x)
3
(x)
E
3
(x)

由于(1)、(3)方程中,由于U (x) ,要等式成立,必须
1(x) 0 2 (x) 0
即粒子不能运动到势阱以外的地方去。
方程(2)可变为
d
2 2 ( dx2

量子力学智慧树知到答案章节测试2023年泰山学院

量子力学智慧树知到答案章节测试2023年泰山学院

第一章测试1.导致“紫外灾难”的是()A:维恩公式B:巴尔末公式C:瑞利-金斯公式D:普朗克公式答案:C2.量子力学的研究对象是微观物体。

()A:错B:对答案:B3.光电效应实验中,光电子的最大动能与()有关。

A:其余选项都不对。

B:入射光的光强C:入射光的频率D:入射光照射的时间答案:C4.玻尔在()岁时获得诺贝尔物理学奖。

A:50B:37C:45D:26答案:B5.氦原子的动能是(k为玻耳兹曼常数),求T=1K时,氦原子的德布罗意波长为0.37nm。

()A:对B:错答案:A第二章测试1.量子力学的态叠加原理是指()A:波函数描述的相位的叠加;B:波函数的线性叠加;C:两列波振幅的叠加;D:两列波振动位移的叠加.答案:B2.对于一维束缚定态,如果势能具有空间反演不变性,则所有能量本征态都有确定的宇称。

()A:错B:对答案:B3.下列哪种论述不是定态的特点()。

A:任何不含时力学量的平均值都不随时间变化B:几率流密度矢量不随时间变化C:任何力学量的取值都不随时间变化D:几率密度不随时间变化答案:C4.质量为的粒子在一维无限深方势阱中运动,,基态的能量为。

()A:对B:错答案:A5.波函数满足的标准化条件为单值、有限、连续。

()A:对B:错答案:A第三章测试1.若不考虑电子的自旋,氢原子能级n=3的简并度为()。

A:6B:12C:3D:9答案:D2.以下关于厄米算符本征问题说法正确的是()A:厄米算符的本征值不一定为实数;B:厄米算符的属于不同本征值的本征函数彼此正交;C:厄米算符的本征值必为实数;D:厄米算符的本征函数系是完备的答案:BCD3.量子力学中可观测量对应的算符都是厄米算符。

()A:错B:对答案:B4.力学量算符的正交归一本征函数完备系为,本征方程为,若体系的波函数为,则在态中测量力学量F结果为的几率为()。

A:1B:9/4C:1/4D:9/10答案:D5.若在某一力场中力学量F守恒,则力学量F一定取确定值。

量子力学第四章习题(1)

量子力学第四章习题(1)

第四章态叠加原理及力学量的算符表示4-1 下列算符哪些是线性的?为什么? (1) (2) ( )2 (3) (4)4-2 线性算符具有下列性质:,式中C是复数。

下列算符哪些是线性的?(1)(2)(3)(4)(5)(6)4-3 若都是厄米算符,但,试问:(1)是否厄米算符?(2)是否厄米算符?4-4 证明下列算符哪些是厄米算符:4-5 (1)证明(2)4-6试判断下述二算符的线性厄米性,(1)(2)4-7 试证明任意一个算符不可能有两个以上的逆。

又问,算符的情况下,是什么样的算符?4-8 对于一维运动,求的本征函数和本征值。

进而求的本征值。

4-9 若算符有属于本征值为的本征函数,且有:和,证明和也是的本征函数,对应的本征值分别是和。

4-10 试求能使为算符的本征函数的值是什么?此本征函数的本征值是什么?4-11 如果为线性算符的一个本征值,那么为的一个本征值。

一般情况下,设为的多项式,则便为的一个本征值。

试证明之。

4-12 试证明线性算符的有理函数也是线性算符。

4-13 当势能改变一个常数C时,即时,粒子的波函数与时间无关的那部分改变否?能量本征值改变否?4-14 一维谐振子的势能,处于的状态中,其中,问:(1)它的能量有没有确定值?若有,则确定值是多少?(2)它的动量有没有确定值?4-15 在时间时,一个线性谐振子处于用下列波函数所描写的状态:式中是振子的第n个时间无关本征函数。

(a)试求C3的数值。

(b)写出在t时的波函数。

(c)在时振子的能量平均值是什么?在秒时的呢?4-16 证明下列对易关系:,4-17 证明下列对易关系:。

量子力学练习参考解答

量子力学练习参考解答

量子力学练习参考解答第一章 波函数与薛定谔方程1.1,1.2,1.3题解答略。

1.4(a )设一维自由粒子的初态为一个Gauss 波包,222412)(1)0,(απαψxx p i e e x -=证明:初始时刻,0=x ,0p p =[]2)(12α=-=∆x x x[]α2)(12=-=∆p p p2 =∆⋅∆p x证:初始时刻012222===-+∞∞-+∞∞-⎰⎰dx exdx x x x απαψ2122222222απαψα===-∞+∞-∞+∞-⎰⎰dx exdx x x x()22122α=-=∆xx x)0,(x ψ的逆变换为⎰+∞∞--=dx ex p ipx/)0,(21)(ψπϕ=⎰+∞∞---dx eeeipx x x p i/2412220)(121απαπ=2220()22214(/)p p eααπ--22202()()p p p eααϕπ--=因此02)(p dp p p p ==⎰+∞∞-ϕ2222222)(0αϕ +==⎰∞+∞-p dp p p p()α22122 =-=∆p p p2 =∆⋅∆p x注:也可由以下式子计算p 和2p :2222(,0)()(,0)(,0)()(,0)dp x ix dx dxd p x x dxdx ψψψψ+∞*-∞+∞*-∞=-=-⎰⎰1.5 设一维自由粒子的初态为)0,(x ψ,证明在足够长时刻后,()[]⎪⎭⎫⎝⎛⋅⎥⎦⎤⎢⎣⎡⋅-=t mx t imx i t m t x ϕπψ2exp 4exp ,2式中()()⎰+∞∞--=dx e x k ikx0,21ψπϕ是)0,(x ψ的Fourier 变换。

提示:利用()x e e x i i δπααπα=-∞→24/lim。

证:依照平面波的时刻转变规律 ()t kx i ikxe e ω-→ , m k E 22==ω,任意时刻的波函数为()()()dk e k t x mtkkx i 2/221, -+∞∞-⎰=ϕπψ()⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛--⋅=⎰∞+∞-22/2ex p 212t mx k m t i k dk etimx ϕπ(1) 那时刻足够长后(所谓∞→t ),上式被积函数中的指数函数具有δ函数的性质,取m t 2 =α , (2)参照此题的解题提示,即得()()⎰+∞∞--⎪⎭⎫ ⎝⎛-⋅≈k d t mx k k e t m et x i timx δϕππψπ4/2221,2⎪⎭⎫⎝⎛=-t mx e e t m t imx i ϕπ2/4/2 (3) 1.6 依照粒子密度散布ρ和粒子流密度散布j的表示式, ()()()t r t r t r ,,,*ψψρ=()()()()()[]t r t r t r t r mi t r j ,,,,2,**ψψψψ∇-∇-=概念粒子的速度散布v()()()()⎥⎦⎤⎢⎣⎡∇-∇-==t r t r t r t r m i j v ,,,,2**ψψψψρ 证明:0=⨯∇v 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
=⎡ ⎣ p y , lz ⎤ ⎦+⎡ ⎣l y , pz ⎤ ⎦ = 2i px ,
同理 ( p × l + l × p ) y = 2i p y , ( p × l + l × p ) z = 2i pz ,因此
14
p × l + l × p = 2i p 。
2 2 2 2 ⎡ ⎣l , p ⎤ ⎦x = ⎡ ⎣l x , p x ⎤ ⎦+⎡ ⎣l y , px ⎤ ⎦+⎡ ⎣lz , px ⎤ ⎦
可见, ( p × l − l × p ) = p × l − l × p , p × l − l × p 为厄米算符。
+
(4)算符 r × l
( r × l ) x = ylz − zl y ,
( r × l ) x = lz+ y + − l y+ z + = lz y − l y z = ( ylz − i x ) − ( zl y + i x ) = ( r × l ) x − 2i
[ A, BC ] = ABC − BCA = ( ABC + BAC ) − ( BAC + BCA)
= [ A, B ]+ C − B [ A, C ]+
3.8 证明:
( p × l + l × p ) x = p y lz − pz l y + l y p z − l z p y = ( p y lz − lz p y ) + ( l y pz − pz l y )
+
+ + + + +
+
+
+
+
+
( ri p )
+
+ + + + = px x + py y + pz+ z + = px x + p y y + pz z = xpx + yp y + zpz − 3i ≠ r i p
故有 r i p 不是厄米算符。 可以构造出相应的厄米算符 r i p + p i r ,
+ + + + + 1 ⎡⎛ r ⎞ ⎛ r ⎞ ⎤ 1 ⎡ + ⎛ r ⎞ ⎛ r ⎞ ⎤ i i i p p p ⎢⎜ ⎟ +⎜ ⎟ ⎥ = ⎢ ⎜ ⎟ + ⎜ ⎟ i p⎥ 2⎣ r r ⎝ ⎠ ⎝ ⎠ ⎦ ⎢ ⎥ 2⎢ ⎥ ⎣ ⎝r⎠ ⎝r⎠ ⎦
1⎛ r r ⎞ = ⎜ pi + i p ⎟ = pr 。 2⎝ r r ⎠
2
=−
2
⎡ ∂2 1 ∂ 1 ∂ ⎛ ∂ 1 ⎞ 1 ⎤ ⎢ 2 + r ∂r + r ∂r + ⎜ ∂r r ⎟ + r 2 ⎥ = − ⎝ ⎠ ⎣ ∂r ⎦
⎛ ∂2 2 ∂ ⎞ ⎜ 2+ ⎟ r ∂r ⎠ ⎝ ∂r
=−
(e) p = −
2
2
1 ∂ 2 ∂ 。 r r 2 ∂r ∂r
⎡1 ∂ 2 ∂ ∂ ∂ ∂2 ⎤ 1 1 + + r sin θ ⎢ r 2 ∂r ∂r r 2 sin θ ∂θ ∂θ r 2 sin 2 θ ∂φ 2 ⎥ ⎣ ⎦
证明:令 C =
(1) (2)
F = F+ + F−
其中 F+ = 有
(3) (4)
1 1 F + F † ) , F− = ( F − F † ) ( 2 2i 1 † −1 † F + F ) = F+ , F−† = ( ( F − F ) = F− 2 2i
F+† =
(5)
这样利用上述方法,任意一个算符都可以表示为两个厄米算符的和 3.2 解:粒子的坐标 r 和动量 p 为厄米算符。
( p × l − l × p )x ,
2 ( p × l − l × p)y , ⎡ ⎣l , p ⎤ ⎦ z = i ( p × l − l × p ) z ,因此
同理 ⎡ ⎣l , p ⎤ ⎦y = i
i
2 ( p × l − l × p) = ⎡ ⎣l , p ⎤ ⎦。
3.10 证明: (a) pr =
+
x。
同理
( r × l ) y = zlx − xlz ,
( r × l ) y = ( r × l ) y − 2i
+
y,
( r × l ) z = xl y − ylx ,
( r × l ) z = ( r × l ) z − 2i
+ +
z,
故有 ( r × l ) ≠ r × l ,因而算符 r × l 不是厄米算符。 可以构造厄米算符 r × l − l × r ,
im
(ψ n , rHψ n ) −
im
( Hψ n , rψ n )
En (ψ n , rψ n ) −
im
。 En (ψ n , rψ n ) = 0 ( H 为厄米算符)
φ 为 lˆz 的本征态,则有 lˆz φ = lz φ ,其中 lz 为本征值。
1 ˆ ˆ [l y , lz ] 有, i 1 1 φ [ lˆy , lˆz ] φ = φ lˆy lˆz φ − φ lˆz lˆy φ i i 1 lz φ lˆy φ − lz φ lˆy φ = 0 。 i
ˆ = 根据对易关系 l x
1 lˆx = i 1 = i
同理
1 lˆy = φ [ lˆz , lˆx ] φ = 0 。 i ˆ Y (θ , ϕ ) = l ( l + 1) 3.15 解:粒子处于 Ylm (θ , ϕ ) 状态下,有 l lm
(1)角动量算符 l = r × p
+ + lx = ypz − zp y ,则 lx+ = pz+ y + − p y z = pz y − p y z = ypz − zp y = lx ;
同理 l y = zpx − xpz ,则 l y = p x z − pz x = px z − pz x = zpx − xpz = l y ; 同理 l z = xp y − ypx ,则 lz = p y x − px y = p y x − px y = xp y − ypx = l z ; 故有 l = l , l 为厄米算符(当然, l x 、 l y 和 l z 也是厄米算符) 。 (2)算符 r i p = xpx + yp y + zpz
( r × l − l × r ) x = ( ylz + lz y ) − ( zl y + l y z ) ,
13
( r × l − l × r ) y = ( zlx + lx z ) − ( xlz + lz x ) , ( r × l − l × r ) z = ( xl y + l y x ) − ( ylx + lx y ) ,


=
m ,n =0 ∞
∑C ⎡ ⎣( −i ) x
mn
m −1
p n + xpx m −1 p n − x m p n +1 ⎤ ⎦
=
m ,n =0 ∞
∑C ∑C

mn
⎡ ⎣ 2 ( −i ⎡ ⎣ m ( −i
) x m−1 p n + x 2 px m−2 p n − x m p n+1 ⎤ ⎦ = ... ) x m−1 p n + x m p n − x m p n+1 ⎤ ⎦
∂ F。 ∂x
(8)
=
m ,n =0
mn
= −i
m,n =0
∑C
mn
mx m −1 p n = −i
同理,可得 [ x, F ] = i 3.4 证明:
∂ F。 ∂p
(9)
[ AB, C ] = ABC − CAB = ( ABC + ACB ) − ( ACB + CAB )
= A [ B, C ]+ − [ A, C ]+ B
+
px ) − ( pz l y + i px )
= ( p × l ) x − 2i px ≠ ( p × l ) x 。
同理
( p × l ) y = pz l x − px l z ,
( p × l ) y == ( p × l ) y − 2i
+
py ≠ ( p × l ) y ,
( p × l ) z = pxl y − p y lx ,
第四章作业参考答案
[曾谨言著《量子力学教程》(第二版) 习题 3: BA) , D = ( AB − BA) ,有 2 2i 1 1 1 † C † = ( AB + BA ) = ( B † A† + A† B † ) = ( AB + BA ) = C 2 2 2 − 1 − 1 1 † D† = ( AB − BA) = ( B† A† − A† B† ) = ( AB − BA) = D 2i 2i 2i 可见, C 、 D 都是厄米算符 对于一个给定的算符 F ,可以将其分成两部分
∂ ∂ ∂r ⎞ ⎛ ∂ ⎞ ⎛ ∂ + 1 − r − 1 ⎟ = −i ⎜ r − r − ⎟ = i 。 ∂r ∂r ∂r ⎠ ⎝ ∂r ⎠ ⎝ ∂r
2
(d) p = −
2 r
2
⎛ ∂ 1⎞ ⎜ + ⎟ =− ⎝ ∂r r ⎠
相关文档
最新文档