专题:圆形磁场问题
圆形磁场的聚焦问题 精品课件

B
C.
M 2R
D.
M 2R
O
2R
N
O
R 2R N
M
O
N
……以速率 v 沿纸面各个方向由小孔O射入磁场
2R 2R
2R
2R
O
O
R R 2R
2R
O
2R
2R
O
R 2R
A.
B.
C.
D.
例、如图,半径为 r=3×10-2m的圆形区域内有一匀强磁场
B=0.2T,一带正电粒子以速度v0=106m/s的从a点处射入磁
0
解:(1) R1+R1sin30º = L/2 得R1 = L/3 R2- R2cos60º = L/2 得:R2 = L。
qBL (1) m ≥v0≥
qBL 3m
a
b
R1
O
v 0
R2 B c
d
例2、如图所示,一足够长的矩形区域abcd内充满方向 垂直纸面向里的、磁感应强度为B的匀强磁场,在ad 边中点O,方向垂直磁场向里射入一速度方向跟ad边 夹角θ=30°、大小为v 的带正电粒子,已知粒子质 量为m,电量为q,ad边长为L,ab边足够长,粒子 重力不计,求:(2)如果带电粒子不受上述v 大小范 围的限制,求粒子在磁场中运动的最长时间.
例2、如图所示,一足够长的矩形区域abcd内充满方 向垂直纸面向里的、磁感应强度为B的匀强磁场,在 ad边中点O,方向垂直磁场向里射入一速度方向跟 ad边夹角θ=30°、大小为v 的带正电粒子,已知 粒子质量为m,电量为q,ad边长为L,ab边足够 长,粒子重力不计,求:(1)粒子能从ab边上射出 磁场的v0大小范围.
分析:从O点向各个方向发射的粒子在磁场中做匀速圆周
磁场中最小面积问3题

磁场中最小面积问题一、磁场范围为圆形例1. 在如图所示的平面直角坐标系xoy中,有一个圆形区域的匀强磁场(图中未画出),磁场方向垂直于xoy平面,O点为该圆形区域边界上的一点。
现有一质量为m,带电量为+q的带电粒子(重力不计)从O点为以初速度vo沿+x方向进入磁场,已知粒子经过y轴上p点时速度方向与+y方向夹角为θ=30º,OP=L 求:⑴磁感应强度的大小和方向⑵该圆形磁场区域的最小面积。
二、磁场范围为矩形例2.如图所示,第四象限内有互相正交的匀强电场E与匀强磁场B1,E的大小为0.5×103V/m, B1大小为0.5T;第一象限的某个矩形区域内,有方向垂直纸面向里的匀强磁场B2,磁场的下边界与x轴重合.一质量m=1×10-14kg、电荷量q=1×10-10C的带正电微粒以某一速度v沿与y轴正方向成60°角从M点沿直线运动,经P点进入处于第一象限内的磁场B2区域。
一段时间后,微粒经过y轴上的N点并与y轴正方向成60°角的方向飞出,M点的坐标为(0,-10),N点的坐标为(0,30).不计粒子重力,g取10m/s2.(1)请分析判断匀强电场E的方向并求微粒运动速度的v大小;(2)匀强磁场B2的大小为多大?;(3) B2磁场区域的最小面积为多少?三、磁场范围为三角形例3如图5,一个质量为,带电量的粒子在BC边上的M点以速度垂直于BC边飞入正三角形ABC。
为了使该粒子能在AC边上的N点(CM=CN)垂真于AC边飞出ABC,可在适当的位置加一个垂直于纸面向里,磁感应强度为B的匀强磁场。
若此磁场仅分布在一个也是正三角形的区域内,且不计粒子的重力。
试求:(1)粒子在磁场里运动的轨道半径r及周期T;(2)该粒子在磁场里运动的时间t;(3)该正三角形区域磁场的最小边长;四、磁场范围为树叶形v的初速例4.如图,ABCD是边长为a的正方形。
质量为m、电荷量为e的电子以大小为度沿纸面垂直于BC变射入正方形区域。
专题:圆形磁场问题

B v0
长,偏转角度越大。而弧小于半
aα r
O
b
个圆周时,弦越长则弧越长。
R
sin = r/R = 37º,
α
最大偏转角为 2 = 74º。
例题:如图所示,在真空中半径r=3.0×10-2 m的圆 形区域内,有磁感应强度B=0.2 T,方向如图的匀强 磁场,一批带正电的粒子以初速度v0=1.0×106 m/s, 从磁场边界上直径ab的一端a沿着各个方向射入磁场, 且初速度方向与磁场方向都垂直,该粒子的比荷为q/m
r
O
所以磁场区域的下边界也是半径为r,圆心为(0,r)的
圆弧应是磁场区域的下边界。
两边界之间图形的面积即为所求。图中的阴影区域面 积,即为磁场区域面积:
S
2( 1 4
r2
r2 2
)
(
2
1)
m2v02 e2B2
例题:(2009年浙江卷)如图,在xOy平面内与y轴平行的匀
强电场,在半径为R的圆内还有与xOy平面垂直的匀强磁场。
T=2qπBm, 运动时间 tm=22πα×T=2qαB·m,
又 sinα=Rr =35,∴tm=6.4×10-8 s.
一点发散成平行
R r
R r
平行会聚于一点
结论4:如果在圆形匀强磁场区域的 边界上某点向磁场发射速率相同的 带电粒子,且粒子在磁场中运动的 轨道半径与磁场区域半径相同,那 么粒子射出磁场时运动方向一定相 同.反之,粒子以相同速度平行射 人这样的磁场,粒子就能会聚于磁 场边界上的某点。
为多大?(不考虑电子间的相互作用)
y
v0
O
O1
x
O2 O3
O5O4 On
解2: 磁场上边界如图线所示。
圆形磁场中的几个典型问题的相关规律练习

圆形磁场中的几个典型问题的相关规律练习一、当圆形磁场的半径与圆轨迹半径相等时,即“磁聚焦”存在两条特殊规律规律一:带电粒子从圆形有界磁场边界上某点射入磁场,如果圆形磁场的半径与圆轨迹半径相等,则粒子的出射速度方向与圆形磁场上入射点的切线方向平行,如甲图所示。
规律二:平行射入圆形有界磁场的相同带电粒子,如果圆形磁场的半径与圆轨迹半径相等,则所有粒子都从磁场边界上的同一点射出,并且出射点的切线与入射速度方向平行,如乙图所示。
【典型题目练习】1.如图所示,在半径为R 的圆形区域内充满磁感应强度为B 的匀强磁场,MN 是一竖直放置的感光板.从圆形磁场最高点P 垂直磁场射入大量的带正电,电荷量为q ,质量为m ,速度为v 的粒子,不考虑粒子间的相互作用力,关于这些粒子的运动以下说法正确的是( )A .只要对着圆心入射,出射后均可垂直打在MN 上B .对着圆心入射的粒子,其出射方向的反向延长线不一定过圆心C .对着圆心入射的粒子,速度越大在磁场中通过的弧长越长,时间也越长D .只要速度满足qBR v m,沿不同方向入射的粒子出射后均可垂直打在MN 上 2.如图所示,长方形abed 的长ad =0.6m ,宽ab =0.3m ,O 、e 分别是ad 、bc 的中点,以e 为圆心eb 为半径的四分之一圆弧和以O 为圆心Od 为半径的四分之一圆弧组成的区域内有垂直纸面向里的匀强磁场(边界上无磁场)磁感应强度B=0.25T 。
一群不计重力、质量m=3×10-7kg 、电荷量q=+2×10-3C 的带正电粒子以速度v =5×102m/s 沿垂直ad 方向且垂直于磁场射人磁场区域,则下列判断正确的是( )A .从Od 边射入的粒子,出射点全部分布在Oa 边B .从aO 边射入的粒子,出射点全部分布在ab 边C .从Od 边射入的粒子,出射点分布在ab 边D .从ad 边射人的粒子,出射点全部通过b 点3.如图所示,在坐标系xOy 内有一半径为a 的圆形区域,圆心坐标为O 1(a ,0),圆内分布有垂直纸面向里的匀强磁场,在直线y =a 的上方和直线x =2a 的左侧区域内,有一沿x 轴负方向的匀强电场,场强大小为E ,一质量为m 、电荷量为+q (q >0)的粒子以速度v 从O 点垂直于磁场方向射入,当入射速度方向沿x 轴方向时,粒子恰好从O 1点正上方的A 点射出磁场,不计粒子重力,求:(1)磁感应强度B 的大小;(2)粒子离开第一象限时速度方向与y 轴正方向的夹角;(3)若将电场方向变为沿y 轴负方向,电场强度大小不变,粒子以速度v 从O 点垂直于磁场方向、并与x轴正方向夹角θ=300射入第一象限,求粒子从射入磁场到最终离开磁场的总时间t。
数学圆法巧解磁场中的临界问题(解析版)

数学圆法巧解磁场中的临界问题一、应用技巧1.“放缩圆”法适用条件速度方向一定,大小不同粒子源发射速度方向一定,大小不同的带电粒子进入匀强磁场时,这些带电粒子在磁场中做匀速圆周运动的轨迹半径随速度的变化而变化轨迹圆圆心共线如图所示(图中只画出粒子带正电的情景),速度v越大,运动半径也越大。
可以发现这些带电粒子射入磁场后,它们运动轨迹的圆心在垂直初速度方向的直线PP′上界定方法以入射点P为定点,圆心位于PP′直线上,将半径放缩作轨迹圆,从而探索出临界条件,这种方法称为“放缩圆”法1如图所示,一束电子以大小不同的速率沿图示方向垂直飞入横截面是一正方形的匀强磁场区域,下列判断正确的是()A.电子在磁场中运动时间越长,其轨迹线越长B.电子在磁场中运动时间越长,其轨迹线所对应的圆心角越大C.在磁场中运动时间相同的电子,其轨迹线不一定重合D.电子的速率不同,它们在磁场中运动时间一定不相同【答案】 BC【解析】 由t=θ2πT知,电子在磁场中运动时间与轨迹对应的圆心角成正比,所以电子在磁场中运动的时间越长,其轨迹线所对应的圆心角θ越大,电子飞入匀强磁场中做匀速圆周运动,轨迹线弧长s=rθ,运动时间越长,θ越大,但半径r不一定大,s也不一定大,故A错误,B正确.由周期公式T=2πmqB知,电子做圆周运动的周期与电子的速率无关,所以电子在磁场中的运动周期相同,若它们在磁场中运动时间相同,但轨迹不一定重合,比如:轨迹4与5,它们的运动时间相同,但它们的轨迹对应的半径不同,由r= mvqB可知它们的速率不同,故C正确,D错误.2.“旋转圆”法适用条件速度大小一粒子源发射速度大小一定、方向不同的带电粒子进入匀强磁场时,它们在磁场中做匀速圆周运动的半径相同,若射定,方向不同入初速度为v0,则圆周运动半径为R=mv0qB。
如图所示轨迹圆圆心共圆带电粒子在磁场中做匀速圆周运动的圆心在以入射点P为圆心、半径R=mvqB的圆上界定方法将一半径为R=mv0qB的圆以入射点为圆心进行旋转,从而探索粒子的临界条件,这种方法称为“旋转圆”法2如图所示为圆形区域的匀强磁场,磁感应强度为B,方向垂直纸面向里,边界跟y轴相切于坐标原点O。
圆形磁场复习题

圆形磁场问题复习题学校:___________姓名:___________班级:___________考号:___________一、多选题(共1小题,每小题5.0分,共5分)1.(多选)如图所示,两个横截面分别为圆形和正方形的区域内有磁感应强度相同的匀强磁场,圆的直径和正方形的边长相等,两个电子分别以相同的速度分别飞入两个磁场区域,速度方向均与磁场方向垂直,进入圆形磁场的电子初速度方向对准圆心;进入正方形磁场的电子初速度方向垂直于边界,从中点进入。
则下面判断正确的是()A.两电子在两磁场中运动时,其半径一定相同B.两电子在磁场中运动的时间有可能相同C.进入圆形磁场区域的电子可能先飞离磁场D.进入圆形磁场区域的电子可能后飞离磁场四、计算题(共17小题,每小题18.0分,共306分)2.如图所示,在平面直角坐标系xOy中的第一象限内存在磁感应强度大小为B,方向垂直于坐标平面向内的有界圆形匀强磁场区域(图中未画出);在第二象限内存在与x轴平行的匀强电场.一粒子源固定在x轴上的A点,A点坐标为(-L,0).粒子源沿y轴正方向释放出速度大小为v的电子,电子恰好能通过y轴上的C点,C点坐标为(0,2L),电子经过磁场偏转后方向恰好垂直ON,ON是与x轴正方向成15°角的射线.(电子的质量为m,电荷量为e,不考虑粒子的重力和粒子之间的相互作用.)求:(1)第二象限内电场强度E的大小和方向;(2)电子离开电场时的速度方向与y轴正方向的夹角θ;(3)粗略画出电子在电场和磁场中的轨迹;(4)圆形磁场的最小半径R min.3.如图所示,平行板电容器上板M带正电,两板间电压恒为U,极板长为(1+)d,板间距离为2d,在两板间有一圆形匀强磁场区域,磁场边界与两板及右侧边缘线相切,P点是磁场边界与下板N的切点,磁场方向垂直于纸面向里,现有一带电微粒从板的左侧进入磁场,若微粒从两板的正中间以大小为v0水平速度进入板间电场,恰做匀速直线运动,经圆形磁场偏转后打在P点。
圆形有界磁场中“磁聚焦”规律(有答案)

mv 0.3m 知,在磁场中圆周运动的半径与圆形磁场磁场的半径相等,从 Oa 入射 qB
的粒子,出射点一定在 b 点;从 Od 入射的粒子,经过四分之一圆周后到达 be,由于边界无 磁场,将沿 be 做匀速直线运动到达 b 点;选项 D 正确。 3.解析: (1)当粒子速度沿 x 轴方向入射,从 A 点射出磁场时,几何关系知:r=a; 由 qvB m
2mE L ,区域Ⅲ的圆心坐标为(0, ) 、磁场方向垂直于 xOy 平面向外; qL 2 L ) 、磁场方向垂直于 xOy 平面向里。两个质量均为 m、电荷量 2
区域Ⅳ的圆心坐标为(0,
3 L 3 2 3 均为 q 的带正电粒子 M、N,在外力约束下静止在坐标为( L , ) 、 ( L, L) 2 2 2 4
qBR ,沿不同方向入射的粒子出射后均可垂直打在 MN 上 m
2.如图所示,长方形abed的长ad=0.6m,宽ab=0.3m,O、e分别是ad、bc的中点,以e为圆 心eb为半径的四分之一圆弧和以O为圆心Od为半径的四分之一 圆弧组成的区域内有垂直纸面向里的匀强磁场(边界上无磁场) 磁感应强度B=0.25T。一群不计重力、质量m=3×10-7kg、电荷量 q=+2×10-3C的带正电粒子以速度v=5×102m/s沿垂直ad方向且垂 直于磁场射人磁场区域,则下列判断正确的是( A.从Od边射入的粒子,出射点全部分布在Oa边 B.从aO边射入的粒子,出射点全部分布在ab边 C.从Od边射入的粒子,出射点分布在ab边 D.从ad边射人的粒子,出射点全部通过b点 3.如图所示,在坐标系 xOy 内有一半径为 a 的圆形区域,圆心坐标为 O1(a,0) ,圆内分 布有垂直纸面向里的匀强磁场,在直线 y=a 的上方和直线 x=2a 的左侧区域内,有一沿 x 轴 负方向的匀强电场,场强大小为 E,一质量为 m、电荷量为+q(q>0)的粒子以速度 v 从 O 点垂直于磁场方向射入,当入射速度方向沿 x 轴方向时,粒子恰好从 O1 点正上方的 A 点射 出磁场,不计粒子重力,求: (1)磁感应强度 B 的大小; (2)粒子离开第一象限时速度方向与 y 轴正方向的夹角; (3)若将电场方向变为沿 y 轴负方向,电场强度大小不变,粒子以速度 v 从 O 点垂直于磁 场方向、并与 x 轴正方向夹角θ=300 射入第一象限,求粒子从射入磁场到最终离开磁场的总
高考物理试题库 专题3.11 圆形边界磁场问题(基础篇)(解析版)

(选修3-1)第三部分磁场专题3.11 圆形边界磁场问题(基础篇)一.选择题1.(2019合肥三模)图示为一粒子速度选择器原理示意图。
半径为l0cm的圆柱形桶内有一匀强磁场,磁感应强度大小为1.0×10-4T,方向平行于轴线向外,圆桶的某直径两端开有小孔,粒子束以不同角度由小孔入射,将以不同速度从另一个孔射出。
有一粒子源发射出速度连续分布、比荷为2.0×1011C/kg的带正电粒子,若某粒子出射的速度大小为×106m/s,粒子间相互作用及重力均不计,则该粒子的入射角θ为()A. B. C. D.【参考答案】B【命题意图】本题以带电粒子射入圆形匀强磁场区域做匀速圆周运动为情景,考查洛伦兹力、牛顿运动定律及其相关知识点。
【解题思路】画出粒子在圆形匀强磁场区域运动轨迹,如图所示,由图中几何关系可得rcosθ=R,由洛伦兹力提供向心力,qvB=m2vr,q/m=2.0×1011C/kg,联立解得θ=45°,选项B正确。
【方法归纳】对于带电粒子在有界匀强磁场中的运动,首先根据题述情景画出带电粒子运动轨迹,根据几何关系得出轨迹半径r (或r 的表达式),然后利用洛伦兹力等于向心力列方程解答。
2.(多选)(2019·广东省惠州市模拟)如图所示,在半径为R 的圆形区域内充满磁感应强度为B 的匀强磁场,MN 是一竖直放置的感光板.从圆形磁场最高点P 以速度v 垂直磁场正对着圆心O 射入带正电的粒子,且粒子所带电荷量为q 、质量为m ,不考虑粒子重力,关于粒子的运动,以下说法正确的是( )A .粒子在磁场中通过的弧长越长,运动时间也越长B .射出磁场的粒子其出射方向的反向延长线也一定过圆心OC .射出磁场的粒子一定能垂直打在MN 上D .只要速度满足v =qBR m ,入射的粒子出射后一定垂直打在MN 上【参考答案】 BD【名师解析】 速度不同的同种带电粒子在磁场中做匀速圆周运动的周期相等,对着圆心入射的粒子,速度越大在磁场中轨道半径越大,弧长越长,轨迹对应的圆心角θ越小,由t =θ2πT 知,运动时间t 越小,故A 错误;带电粒子的运动轨迹是圆弧,根据几何知识可知,对着圆心入射的粒子,其出射方向的反向延长线一定过圆心,故B 正确;速度不同,半径不同,轨迹对应的圆心角不同,对着圆心入射的粒子,出射后不一定垂直打在MN 上,与粒子的速度有关,故C 错误;速度满足v =qBR m 时,粒子的轨迹半径为r =mvqB =R ,入射点、出射点、O 点与轨迹的圆心构成菱形,射出磁场时的轨迹半径与最高点的磁场半径垂直,粒子一定垂直打在MN 板上,故D 正确.3.(6分)(2019湖北武汉武昌5月调研)如图所示,真空中,垂直于纸面向里的匀强磁场只在两个同心圆所夹的环状区域存在(含边界),两圆的半径分别为R 、3R ,圆心为O .一重力不计的带正电粒子从大圆边缘的P 点沿PO 方向以速度v 1射入磁场,其运动轨迹如图,轨迹所对的圆心角为120°.若将该带电粒子从P 点射入的速度大小变为v 2时,不论其入射方向如何,都不可能进入小圆内部区域,则v 1:v 2至少为( )A.B.C.D.2【参考答案】B【命题意图】本题以带电粒子在圆环形磁场区域的运动为情景,意在考查洛伦兹力和牛顿运动定律及其相关知识点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
最大偏转角为 2 = 74º。
例题:如图所示,在真空中半径 r = 3.0×10 - 2 m 的圆 形区域内,有磁感应强度 B= 0.2 T,方向如图的匀强
磁场,一批带正电的粒子以初速度v0=1.0×106
m/s,
从磁场边界上直径 ab 的一端 a 沿着各个方向射入磁场, 且初速度方向与磁场方向都垂直,该粒子的比荷为
y
v0 O
O1 O2 O3 O5 O4
x
解2: 磁场上边界如图线所示。 设P(x,y)为磁场下边界上的 一点,经过该点的电子初速度与x 轴夹角为 ,则由图可知: x = rsin, y = r-rcos , 得: x2 + (y-r)2 = r2。
y
P (x,y)
v0
O
θ r
r
x
O
所以磁场区域的下边界也是半径为r,圆心为(0,r)的 圆弧应是磁场区域的下边界。 两边界之间图形的面积即为所求。图中的阴影区域面 积,即为磁场区域面积:
是(其中
1/4圆弧,B选项中曲线为半径是L/2的圆)( A )
mv 0 ,A、C、D选项中曲线均为半径是L的 B0 qL
圆形磁场临界问题
例题:如图,环状匀强磁场围成的中空区域内有自由运动的
带电粒子,但由于环状磁场的束缚,只要速度不很大,都 不会穿出磁场的外边缘。设环状磁场的内半径为R1=0.5m, 外半径为 R2=1.0m,磁场的磁感应强度 B=1.0T,若被缚 的带电粒子的荷质比为 q/m=4×107C/kg,中空区域中带 电粒子具有各个方向的速度。试计算: B (1)粒子沿环状的半径方向 R2 射入磁场,不能穿越磁场的最 R1 大速度。 O (2)所有粒子不能穿越磁 场的最大速度。 R2
一点发散成平行
平行会聚ቤተ መጻሕፍቲ ባይዱ一点
结论4:如果在圆形匀强磁场区域的 边界上某点向磁场发射速率相同的 带电粒子,且粒子在磁场中运动的 轨道半径与磁场区域半径相同,那 么粒子射出磁场时运动方向一定相 同.反之,粒子以相同速度平行射 人这样的磁场,粒子就能会聚于磁 场边界上的某点。
R
r R
r
磁会聚
平行飞入,定点会聚
(1)圆形匀强磁场区域的最小面积; (2)C点到b点的距离h。
O2 y
A v b O O1 60° 30° x v h
E
解:(1) 反向延长vb交y 轴于O2 点,作∠bO2 O的角平分
线交x 轴于O1 , O1即为圆形轨道的圆心,半径为R =
OO1 =mv/qB,画出圆形轨迹交b O2于A点,如图虚线
y R P v θ
y
R
v A
C O
O/
R
Q x
O/
O
x
解析:(1)由mg=qE得E=mg/q;由qvB=mv2/r,r=R得 B=mv/qR,方向垂直于纸面向外 (2)这束带电微粒都通过坐标原点。 方法一:从任一点P水平进入磁场的带电微粒在磁场中做半径为R 的匀速圆周运动,其圆心位于其正下方的Q点,这束带电微粒进 入磁场后的圆心轨迹是如图的虚线半圆,此圆圆心是坐标原点O。 方法二:从任一点P水平进入磁场的带电微粒在磁场中做半径为R 的匀速圆周运动。P点与O′点的连线与y轴的夹角为θ ,其圆心Q 的坐标为(-Rsinθ ,Rcosθ ),圆周运动轨迹方程 x Rsinθ y Rcosθ R 解得:x=0 y=0(原点O)和x=-Rsinθ y=R(1+cosθ )(P 点)
q/m=1.0×108 C/kg,不计粒子重力.
(1)粒子的轨迹半径;
(2)粒子在磁场中运动的最长时间;
(sin37°=0.6,cos37°=0.8)
[ 解析 ]
(1) 由牛顿第二 定律可求得粒子在磁场中运动的半
v0 2 径. qv0B= m , R R= mv0 - = 5.0× 10 2 m. qB
B r O 2R r N
b
x
例题:如图,质量为m、带电量为+q的粒子以速度v从O点沿 y 轴正方向射入磁感应强度为B的圆形匀强磁场区域,磁 场方向垂直纸面向外,粒子飞出磁场区域后,从b处穿过 x轴,速度方向与 x 轴正方向的夹角为30º,同时进入场 强为E、方向沿与与x轴负方向成60º角斜向下的匀强电场 中,通过了b点正下方的C点。不计重力,试求:
eB
(2)由几何关系得:圆心角:α = θ
t
v
m T 2 eB
O1
(3)由如图所示几何关系可知, tan
2
r R
mv tan 所以:r eB 2
结论2:对准圆心射入,速度越大,偏转角和 圆心角都越小,运动时间越短。
例题:在圆形区域的匀强磁 场的磁感应强度为B,一群速 率不同的质子自A点沿半径方 向射入磁场区域,如图所示, 已知该质子束中在磁场中发 生偏转的最大角度为1060,圆 形磁场的区域的半径为R,质 子的质量为m,电量为e,不 计重力,则该质子束的速率 范围是多大? 3BeR v 4m
O4 O3 O2
O1
例题(多选)如图虚线所示区域内有方向垂直于纸面的匀
强磁场,一束速度大小各不相同的质子正对该区域的圆 心O射入这个磁场;结果,这些质子在该磁场中运动的
时间有的较长,有的较短,其中运动时间较长的粒子
(
CD )
B v O s1 θ1 R1 s2
A.射入时的速度一定较大 B.在该磁场中运动的路程一定较长 C.在该磁场中偏转的角度一定较大 D.从该磁场中飞出的速度一定较小
h 2vt 4 3mv / qE
2
圆形磁场多次碰撞问题
例题:平行金属板M、N间距离为d。其上有一内壁光滑的半 径为R的绝缘圆筒与N板相切,切点处有一小孔S。圆筒内 有垂直圆筒截面方向的匀强磁场,磁感应强度为B。电子 与孔S及圆心O在同一直线上。M板内侧中点处有一质量为 m,电荷量为e的静止电子,经过M、N间电压为U的电场加 速后射入圆筒,在圆筒壁上碰撞n次后,恰好沿原路返回
一轮专题复习
带电粒子在圆形磁场中 的运动
任其春
带电粒子在圆形匀强磁场中的运动往往涉及粒子 轨迹圆与磁场边界圆的两圆相交问题。
v α
B
O θ
边 界 圆
边 界 圆
B O C A
B
O'
θ O′
轨 迹 圆
θ+ α = π
轨迹圆
两圆心连线OO′与点C共线。
结论1:对准圆心射入,必定沿着圆心射出。
例题:电视机的显像管中,电子束的偏转是用磁偏转 技术实现的。电子束经过电压为U的加速电场后,进入 一圆形匀强磁场区,如图所示。磁场方向垂直于圆面。 磁场区的中心为O,半径为r。当不加磁场时,电子束 将通过O点而打到屏幕的中心M点。为了让电子束射到 屏幕边缘P,需要加磁场,使电子束偏转一已知角度θ, 此时磁场的磁感应强度B应为多少?
θ/2
θ
例题:如图,虚线所围圆形区域内有方向垂直纸面向里的 匀强磁场B。电子束沿圆形区域的直径方向以速度v射入
磁场,经过磁场区后,电子束运动的方向与原入射方向 成θ角。设电子质量为m,电荷量为e,不计电子之间的 相互作用力及所受的重力。求: r B (1)电子在磁场中运动轨迹的半径R; v O (2)电子在磁场中运动的时间t; θ (3)圆形磁场区域的半径r。 mv R 解:(1) R θ/2
解 :质点在磁场中圆周运动半径为 a r=mv/Bq。质点在磁场区域中的轨道是 1/4 圆周,如图中M、N两点间的圆弧 。 在通过 M、N两点的不同的圆中,最小 的一个是以MN 连线为直径的圆周。 O 圆形磁场区域的最小半径R=MN/2= 2 mv/qB
形区域内,试求这圆形磁场区域的最小半径。重力忽略 y 不计。 v0 M
所示。最小的圆形磁场区域是以OA为直径的圆,
3 mv OA = 2r = qB
hsin 30º =vt qE 2 1 h cos 30º= ·t 2 m ∴t=2mv/qE· tan 30º
Smin =
r2
3 m2v2 = 4q2B2
(2) b到C 受电场力作用,做类平抛运动
O2
y
A v b O O1 60° E 30° x v h
2 m2v0 1 2 r2 S 2( r ) ( 1) 2 2 4 2 2 eB
例题:(2009年浙江卷)如图,在xOy平面内与y轴平行的匀
强电场,在半径为R的圆内还有与xOy平面垂直的匀强磁场。 在圆的左边放置一带电微粒发射装置,它沿x轴正方向发 射出一束具有相同质量m、电荷量q(q>0)和初速度v的带 电微粒。发射时,这束带电微粒分布在0<y<2R的区间内。 已知重力加速度大小为g。 (1)从A点射出的带电微粒平行于x轴从C点进入有磁场区 域,并从坐标原点O沿y轴负方向离开,求电场强度和磁感 应强度的大小与方向。 y (2)请指出这束带电微粒与x轴相 带 点 微 交的区域,并说明理由。 粒 R 发 Av O/ (3)在这束带电磁微粒初速度变为 射 C 装 2v,那么它们与x轴相交的区域又在 置 O 哪里?并说明理由。 x
θ2
R2
结论3:运动速度v相同,方向不同,弧长越长对应 时间越长。(直径对应的弧最长)
例题:如图,半径为 r=3×10-2m的圆形区域内有一匀强磁 场B=0.2T,一带正电粒子以速度v0=106m/s的从a点处射入 磁场,该粒子荷质比为q/m=108C/kg,不计重力。若要使
粒子飞离磁场时有最大的偏转角,其入射时粒子的方向应 如何(以v0与oa的夹角表示)?最大偏转角多大? 解析:R=mv/Bq=5×102m>r 说明:半径确定时,通过的弧越 长,偏转角度越大。而弧小于半 个圆周时,弦越长则弧越长。 sin = r/R = 37º,
到出发点。(不考虑重力,设碰撞过程中无动能损失) 求: ⑴电子到达小孔S时的速度大小; O R ⑵电子第一次到达S所需要的时间; N S ⑶电子第一次返回出发点所需的时间。