大学物理质点力学习题
大学物理-质点运动学-习题及答案

大学物理-质点运动学-习题及答案第1章质点运动学习题及答案1.|r ?|与r ? 有无不同t d d r 和dr dt 有无不同 t d d v 和dv dt有无不同其不同在哪里试举例说明.解: |r ?|与r ? 不同. |r ?|表示质点运动位移的大小,而r ?则表示质点运动时其径向长度的增量;t d d r 和dr dt 不同. t d d r 表示质点运动速度的大小,而dr dt则表示质点运动速度的径向分量;t d d v 和dv dt 不同. t d d v 表示质点运动加速度的大小, 而dv dt则表示质点运动加速度的切向分量. 2.质点沿直线运动,其位置矢量是否一定方向不变质点位置矢量方向不变,质点是否一定做直线运动解: 质点沿直线运动,其位置矢量方向可以改变;质点位置矢量方向不变,质点一定做直线运动.3.匀速圆周运动的速度和加速度是否都恒定不变圆周运动的加速度是否总是指向圆心,为什么解: 由于匀速圆周运动的速度和加速度的方向总是随时间发生变化的,因此,其速度和加速度不是恒定不变的;只有匀速圆周运动的加速度总是指向圆心,故一般来讲,圆周运动的加速度不一定指向圆心.4.一物体做直线运动,运动方程为2362x t t =-,式中各量均采用国际单位制,求:(1)第二秒内的平均速度(2)第三秒末的速度;(3)第一秒末的加速度;(4)物体运动的类型。
解: 由于: 232621261212x(t )t t dx v(t )t t dtdv a(t )t dt=-==-==- 所以:(1)第二秒内的平均速度: 1(2)(1)4()21x x v ms --==- (2)第三秒末的速度:21(3)1236318()v ms -=?-?=-(3)第一秒末的加速度:2(1)121210()a ms -=-?=(4)物体运动的类型为变速直线运动。
5.一质点运动方程的表达式为2105(t t t =+r i j ),式中的,t r 分别以m,s 为单位,试求;(1)质点的速度和加速度;(2)质点的轨迹方程。
大学物理题库-第1章-质点运动学(含答案解析)

大学物理题库 第一章 质点运动学一、选择题:1、在平面上运动的质点,如果其运动方程为j bt i at r22+= (其中b a ,为常数),则该质点作[ ](A ) 匀速直线运动 (B ) 变速直线运动 (C ) 抛物线运动 (D ) 一般曲线运动2、质点以速度124-⋅+=s m t v 作直线运动,沿质点运动方向作ox 轴,并已知s t 3=时,质点位于m x 9=处,则该质点的运动方程为[ ](A) t x 2= (B) 2214t t x += (C) 123143-+=t t x (D) 123143++=t t x3、某雷达刚开机时发现一敌机的位置在j i96+处,经过3秒钟后,该敌机的位置在处,若i 、j分别表示直角坐标系中y x ,的单位矢量,则敌机的平均速度为[ ](A )j i 36+ (B )j i 36-- (C )j i -2 (D )j i +-24、质点沿半径为R 的圆周作匀速率运动,每T 秒转一圈.在2T 时间间隔中,其平均速度大小与平均速率大小分别为(A) 2πR /T , 2πR/T . (B) 0 , 2πR /T(C) 0 , 0. (D) 2πR /T , 0. [ ]5、一质点在平面上作一般曲线运动,其瞬时速度为v,瞬时速率为v ,某一时间内的平均速度为v,平均速率为v ,它们之间的关系必定有:(A )v v v,v == (B )v v v,v =≠(C )v v v,v ≠≠(D )v v v,v ≠=[ ] 6、一运动质点的位置矢量为)y ,x (r,其速度大小为[ ](A)dt dr (B )dt r d (C )dt r d (D )dtr d (E )22)()(dt dydt dx +7、某物体的运动规律为t kv dtdv2-=,式中的k 为大于零的常数,当0=t 时,初速度为0v ,则速度v 与时间t 的函数关系是:[ ](A )0221v kt v += (B ) 0221v kt v +-=(C ) 021211v kt v += (D ) 021211v kt v +-=8、一质点作直线运动,某时刻的瞬时速度=v 2 m/s ,瞬时加速度2/2s m a -=,则一秒钟后质点的速度(A) 等于零. (B) 等于-2 m/s .ji 612+(C) 等于2 m/s . (D) 不能确定. [ ] 9、质点作曲线运动,r 表示位置矢量,v 表示速度,a表示加速度,S 表示路程,a 表示切向加速度,下列表达式中,(1) a t = d /d v , (2) v =t r d /d , (3) v =t S d /d , (4) t a t =d /d v.(A) 只有(1)、(4)是对的. (B) 只有(2)、(4)是对的. (C) 只有(2)是对的.(D) 只有(3)是对的. [ ] 10、一质点在运动过程中,0=dtr d ,而=dtdv常数,这种运动属于[ ] (A )初速为零的匀变速直线运动; (B )速度为零而加速度不为零的运动; (C )加速度不变的圆周运动; (D )匀变速率圆周运动。
大学物理-质点运动学(答案)

第一章 力和运动(质点运动学)一. 选择题:[ B ]1、一质点沿x 轴作直线运动,其v t 曲线如图所示,如t =0时,质点位于坐标原点,则t = s 时,质点在x 轴上的位置为(A) 5m . (B) 2m .(C) 0. (D) 2 m .(E) 5 m.(1 2.5)22(21)122()x m =+⨯÷-+⨯÷=提示:[ C ]2、如图所示,湖中有一小船,有人用绳绕过岸上一定高度处的定滑轮拉湖中的船向岸边运动.设该人以匀速率0v 收绳,绳不伸长、湖水静止,则小船的运动是 (A) 匀加速运动. (B) 匀减速运动.(C) 变加速运动. (D) 变减速运动. (E) 匀速直线运动. 提示:如图建坐标系,设船离岸边x 米,222l h x =+22dl dxlxdt dt= 22dx l dl x h dldt x dt x dt+==0dlv dt=- 220dx h x v i v i dt x +==-rr r2203v h dv dv dxa i dt dx dt x==⋅=-r rr r[ D ]3、一运动质点在某瞬时位于矢径()y x r ,ϖ的端点处, 其速度大小为1 4.5432.52-112t (s)v (m/s)v ϖxo(A) t r d d (B) tr d d ϖ(C) t rd d ϖ (D) 22d d d d ⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛t y t x提示:22, dx dy dx dy v i j v dt dt dt dt ⎛⎫⎛⎫⎛⎫=+∴=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭r r v[ B ]4、质点沿半径为R 的圆周作匀速率运动,每T 秒转一圈.在2T 时间间隔中,其平均速度大小与平均速率大小分别为(A) 2R /T , 2R/T . (B) 0 , 2R /T(C) 0 , 0. (D) 2R /T , 0.提示:平均速度大小:0rv t∆==∆v r 平均速率:2s R v t T∆==∆π [ B ]5、在相对地面静止的坐标系内,A 、B 二船都以2 m/s 速率匀速行驶,A 船沿x 轴正向,B 船沿y 轴正向.今在A 船上设置与静止坐标系方向相同的坐标系(x 、y 方向单位矢用i ϖ、j ϖ表示),那么在A 船上的坐标系中,B 船的速度(以m/s 为单位)为(A) 2i ϖ+2j ϖ. (B) 2i ϖ+2j ϖ. (C) -2i ϖ-2j ϖ. (D) 2i ϖ-2j ϖ.提示:2(2)B A B A v v v j i →→→=+=+-r r r r r地地[ D ]6、某人骑自行车以速率v 向西行驶,今有风以相同速率从北偏东30o方向吹来,人感到风从哪个方向吹来(A)北偏东30 (B)北偏西60 (C) 北偏东60 (D) 北偏西30提示:根据v r 风对人=v r 风对地+v r地对人,三者的关系如图所示:这是个等边三角形,∴人感到风从北偏西300方向吹来。
《大学物理学》质点运动学练习题

《大学物理学》质点运动学练习题一、选择题1.质点沿轨道AB 作曲线运动,速率逐渐减小,图中哪一种情况正确地表示了质点在C 处的加速度? ( )(A ) (B ) (C ) (D )【提示:由于质点作曲线运动,所以,加速度的方向指向曲线的内侧,又速率逐渐减小,所以加速度的切向分量与运动方向相反】2. 一质点沿x 轴运动的规律是542+-=t t x (SI 制)。
则前三秒内它的 ( ) (A )位移和路程都是3m ;(B )位移和路程都是-3m ; (C )位移是-3m ,路程是3m ; (D )位移是-3m ,路程是5m 。
【提示:将t =3代入公式,得到的是t=3时的位置,位移为t =3时的位置减去t =0时的位置;显然运动规律是一个抛物线方程,可利用求导找出极值点:24d xt dt=-,当t =2时,速度0d xv dt==,所以前两秒退了4米,后一秒进了1米,路程为5米】 3.一质点的运动方程是cos sin r R t i R t j ωω=+,R 、ω为正常数。
从t =ωπ/到t =ωπ/2时间内(1)该质点的位移是 ( ) (A ) -2R i ; (B ) 2R i ; (C ) -2j; (D ) 0。
(2)该质点经过的路程是 ( ) (A ) 2R ; (B ) R π; (C ) 0; (D ) R πω。
【提示:轨道方程是一个圆周方程(由运动方程平方相加可得圆方程),t =π/ω到t =2π/ω时间内质点沿圆周跑了半圈,位移为直径,路程半周长】4. 一细直杆AB ,竖直靠在墙壁上,B 端沿水平方向以速度v滑离墙壁,则当细杆运动到图示位置时,细杆中点C 的速度( )(A )大小为2v,方向与B 端运动方向相同; (B )大小为2v,方向与A 端运动方向相同;(C )大小为2v, 方向沿杆身方向; (D )大小为θcos 2v,方向与水平方向成 θ 角。
【提示:C 点的坐标为sin 2cos 2C C l x l y θθ⎧=⎪⎪⎨⎪=⎪⎩,则cos 2sin 2cx cy l d v dt l d v dt θθθθ⎧=⋅⎪⎪⎨⎪=⋅⎪⎩,有中点C 的速度大小:2C l d v dt θ=⋅。
(完整版)大学物理01质点运动学习题解答

第一章质点运动学一选择题1.以下说法中,正确的选项是:()A.一物体若拥有恒定的速率,则没有变化的速度;B.一物体拥有恒定的速度,但仍有变化的速率;C.一物体拥有恒定的加快度,则其速度不行能为零;D. 一物体拥有沿x 轴正方向的加快度而有沿x 轴负方向的速度。
解:答案是 D。
2.长度不变的杆 AB,其端点 A 以 v0匀速沿 y 轴向下滑动, B 点沿 x 轴挪动,则 B 点的速率为:()A . v0 sinB .v0 cos C.v0 tan D.v0 / cos解:答案是 C。
简要提示:设 B 点的坐标为 x, A 点的坐标为 y,杆的长度为l,则x2y2l 2对上式两边关于时间求导:dx dy0,因dxv,dyv0,所以2 x 2 ydtdt dt dt2xv2yv0 = 0即v=v0 y/x =v0tan所以答案是 C。
3.如图示,路灯距地面高为 H,行人身高为 h,若人以匀速 v 背向路灯行走,灯y人头A H vv0hθvx影sB选择题 3图选择题 2图则人头影子挪动的速度u 为()H h Hv h HA.vB.H H h H h 解:答案是 B 。
简要提示:设人头影子到灯杆的距离为 x ,则x s h , x Hs , x H H hdx H ds HvuH h dt Hdt h所以答案是 B 。
4. 某质点作直线运动的运动学方程为x = 3t-5t 3 + 6 (SI),则该质点作A. 匀加快直线运动,加快度沿 x 轴正方向.B. 匀加快直线运动,加快度沿 x 轴负方向.C. 变加快直线运动,加快度沿 x 轴正方向.D. 变加快直线运动,加快度沿x 轴负方向.()解: 答案是 D5. 一物体从某一确立高度以v 0 的初速度水平抛出,已知它落地时的速度为v t ,那么它的运动时间是: ()v t - v 0v t v 0v t2 22v v 0 v t A.B.C.gD.2 gg2 g解:答案是 C 。
大学物理试题库 质点力学 Word 文档

第一章 质点运动学一、运动的描述(量)---位矢、位移、速度、加速度,切向加速度、法向加速度、轨迹1、质点沿X 轴方向运动,其运动方程为x=2t 2+4t-3(SI),则质点任意时刻的速度表达式为v t =____________,加速度表达式a t =____________,前两秒的位移大小为____________,路程为____________。
2、质点的运动方程为x=2t,y=1o-2t 2(SI ),则质点的轨迹方程为____________,t=2s 时,质点位置=r ____________,速度v =____________。
3、质点作半径为R 的圆周运动,其运动方程为S=2t 2,(切向、法向的单位矢量分别为0τ 和0n ),则 t 时刻质点速率 v=____________,速度v=____________, 切向加速度大小τa =____________,法向加速度大小n a =____________, 总加速度a =____________。
4、下列表述中正确的是:( )A :在曲线运动中,质点的加速度一定不为零;B :速度为零时,加速度一定为零;C :质点的加速度为恒矢量时,其运动轨迹运动为直线;D :质点在X 轴上运动,若加速度a<0,则质点一定做减速运动。
5、 质点作直线运动的运动学方程为x =3t -5t 3 + 6 (SI),则该质点作( )A :匀加速直线运动,加速度沿x 轴正方向.B :匀加速直线运动,加速度沿x 轴负方向.C :变加速直线运动,加速度沿x 轴正方向.D :变加速直线运动,加速度沿x 轴负方向.6、一质点沿x 轴作直线运动,其v -t 曲线如图所示,如t =0时,质点位于坐标原点,则t =4.5 s 时,质点在x 轴上的位置为 ( ) (A) 5m . (B) 2m . (C) 0. (D) -2 m . (E) -5 m. 7、在x 轴上作变加速直线运动的质点,已知其初速度为0v ,初始位置为x 0,加速度Ct a =(其中C 为常量),则其速度与时间的关系为=v __________,运动学方程为=x ____________.8、一质点在XOY 平面内运动,其运动方程为j t i t r )210(42-+=,质点的位置矢量与速度矢量恰好垂直的时刻为__________。
《大学物理》质点力学例题(浙大)

质点力学例题1.一质点沿x 轴方向运动,其加速度随时间的变化关系为 a = 3 + 2t (SI),如果初始时质点的速度为5 m/s ,则当 t = 3 s 时,质点的速度v = __________ m/s 。
)m/s (23)3(5d )23(53023=++=++=⎰t t t t v2.质量为0.25 kg 的质点,受力F = t i (SI )的作用,式中t 为时间,t = 0 s 时该质点以v 0 = 2j m/s 的速度通过坐标原点,则该质点任意时刻的位置矢量是__________。
i F a t m 4==j i 222+=t v j i r t t 2323+=3.已知一质点的运动方程为 r = 2 t i +(2 - t2)j (SI ),则t = 2 s 时质点的位置矢量为__________,2秒末的速度为__________。
j i r 24-= j i 42-=v4.一个具有单位质量的质点在力场 F = ( t 2 - 4t ) i + ( 12t - 6 ) j (SI )中运动,设该质点在t = 0时位于原点,且速度为零。
则t 时刻该质点的位置矢量r = ____________。
j i r )32()32121(2334t t t t -+-=5.一质点从静止出发沿半径 R = 1 ( m )的圆周运动,其角加速度随时间t 的变化规律是 α = 12t 2 - 6t (SI)。
则质点的角速度ω =_________,法向加速度a n =_________,切向加速度a τ =_________。
230234d )612(t t t t tt-=-=⎰ω t t R a 6122-==ατ 2232)34(t t R a n -==ω6.一质点在水平面内以顺时针方向沿半径为2 m 的圆形轨道运动,质点的角速度与时间的关系为ω = kt 2(其中k 为常数),已知质点在第二秒末的线速度为32 m/s ,则在t = 0.5 s 时,该质点的切向加速度a τ = _______;法向加速度a n = _______。
大学物理---力学部分练习题及答案解析

大学物理---力学部分练习题及答案解析一、选择题1、某质点作直线运动的运动学方程为x =3t -5t 3+ 6 (SI),则该质点作(A) 匀加速直线运动,加速度沿x 轴正方向.(B) 匀加速直线运动,加速度沿x 轴负方向.(C) 变加速直线运动,加速度沿x 轴正方向.(D) 变加速直线运动,加速度沿x 轴负方向. [ D ]2、一质点沿x 轴作直线运动,其v t 曲线如图所示,如t =0时,质点位于坐标原点,则t = 4.5 s 时,质点在x 轴上的位置为(A) 5m . (B) 2m .(C) 0. (D)2 m . (E) 5 m.[ B ]3、 一质点在平面上运动,已知质点位置矢量的表示式为 j bt i at r 22+=(其中a 、b 为常量), 则该质点作(A) 匀速直线运动. (B) 变速直线运动.(C) 抛物线运动. (D)一般曲线运动. [ B ]4、一质点在x 轴上运动,其坐标与时间的变化关系为x =4t-2t 2,式中x 、t 分别以m 、s为单位,则4秒末质点的速度和加速度为 ( B )(A )12m/s 、4m/s 2; (B )-12 m/s 、-4 m/s 2 ;(C )20 m/s 、4 m/s 2 ; (D )-20 m/s 、-4 m/s 2;5. 下列哪一种说法是正确的 ( C )(A )运动物体加速度越大,速度越快(B )作直线运动的物体,加速度越来越小,速度也越来越小(C )切向加速度为正值时,质点运动加快(D )法向加速度越大,质点运动的法向速度变化越快6、一运动质点在某瞬时位于矢径()y x r , 的端点处, 其速度大小为(A) t r d d (B) tr d d(C) t r d d (D) 22d d d d ⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛t y t x [ D ] 1 4.5432.52-112t v (m/s)7.用水平压力F 把一个物体压着靠在粗糙的竖直墙面上保持静止.当F逐渐增大时,物体所受的静摩擦力f ( B )(A) 恒为零.(B) 不为零,但保持不变.(C) 随F 成正比地增大.(D) 开始随F 增大,达到某一最大值后,就保持不变11、某物体的运动规律为t k t 2d /d v v -=,式中的k 为大于零的常量.当0=t 时,初速为v 0,则速度v 与时间t 的函数关系是 (A) 0221v v +=kt , (B) 0221v v +-=kt , (C) 02121v v +=kt , (D) 02121v v +-=kt [ C ] 12、质量为20 g 的子弹沿X 轴正向以 500 m/s 的速率射入一木块后,与木块一起仍沿X 轴正向以50 m/s 的速率前进,在此过程中木块所受冲量的大小为(A) 9 N·s . (B) -9 N·s .(C)10 N·s . (D) -10 N·s . [ A ]13、在水平冰面上以一定速度向东行驶的炮车,向东南(斜向上)方向发射一炮弹,对于炮车和炮弹这一系统,在此过程中(忽略冰面摩擦力及空气阻力)(A) 总动量守恒.(B) 总动量在炮身前进的方向上的分量守恒,其它方向动量不守恒.(C) 总动量在水平面上任意方向的分量守恒,竖直方向分量不守恒.(D) 总动量在任何方向的分量均不守恒. [ C ]14、质量为m 的小球,沿水平方向以速率v 与固定的竖直壁作弹性碰撞,设指向壁内的方向为正方向,则由于此碰撞,小球的动量增量为(A) mv . (B) 0.(C) 2mv . (D) –2mv . [ D ]15、对于一个物体系来说,在下列的哪种情况下系统的机械能守恒?(A) 合外力为0.(B) 合外力不作功.(C) 外力和非保守内力都不作功.(D) 外力和保守内力都不作功. [ C ]16、下列叙述中正确的是(A)物体的动量不变,动能也不变.(B)物体的动能不变,动量也不变.(C)物体的动量变化,动能也一定变化.(D)物体的动能变化,动量却不一定变化.[ A ]17.考虑下列四个实例.你认为哪一个实例中物体和地球构成的系统的机械能不守恒?(A)物体作圆锥摆运动.(B)抛出的铁饼作斜抛运动(不计空气阻力).(C)物体在拉力作用下沿光滑斜面匀速上升.(D)物体在光滑斜面上自由滑下.[ C ]18.一子弹以水平速度v0射入一静止于光滑水平面上的木块后,随木块一起运动.对于这一过程正确的分析是(A) 子弹、木块组成的系统机械能守恒.(B) 子弹、木块组成的系统水平方向的动量守恒.(C) 子弹所受的冲量等于木块所受的冲量.(D) 子弹动能的减少等于木块动能的增加.[ B ]19、一光滑的圆弧形槽M置于光滑水平面上,一滑块m自槽的顶部由静止释放后沿槽滑下,不计空气阻力.对于这一过程,以下哪种分析是对的?(A) 由m和M组成的系统动量守恒.(B) 由m和M组成的系统机械能守恒.(C) 由m、M和地球组成的系统机械能守恒.(D) M对m的正压力恒不作功.[ C ]20.关于刚体对轴的转动惯量,下列说法中正确的是(A)只取决于刚体的质量,与质量的空间分布和轴的位置无关.(B)取决于刚体的质量和质量的空间分布,与轴的位置无关.(C)取决于刚体的质量、质量的空间分布和轴的位置.(D)只取决于转轴的位置,与刚体的质量和质量的空间分布无关.[ C ]21.刚体角动量守恒的充分而必要的条件是(A) 刚体不受外力矩的作用.(B) 刚体所受合外力矩为零.(C) 刚体所受的合外力和合外力矩均为零.(D) 刚体的转动惯量和角速度均保持不变. [ B ]22. 对一个作简谐振动的物体,下面哪种说法是正确的?(A) 物体处在运动正方向的端点时,速度和加速度都达到最大值;(B) 物体位于平衡位置且向负方向运动时,速度和加速度都为零;(C) 物体位于平衡位置且向正方向运动时,速度最大,加速度为零;(D) 物体处在负方向的端点时,速度最大,加速度为零。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
R
N
f
而 f k N
在切线上有 由此三式可得
f m dv
dt
dv dt
k
v2 R
由此得
v dv t k dt
v v0 2
0R
v v0R
R v0kt
而在时间内物体经历的路程为
s
t 0
vdt
v0R
t 0
dt
R v0kt
R ln1 v0kt k R
例 2. 有一根匀质的软绳盘堆在光滑水平板圆孔 A 的 周围,其端部从小孔伸出很小的一段,然后让其拖 着盘堆的绳子下落,求其运动方程。
(3) 势能
1)保守力
2)势能
Ek
1 2
mv2
Ek
1 2
N i 1
mvi2
重力势能 弹性势能 引力势能
Ep mgh
Ep
Ep
1 kx2
2
G
Mm
r
(4) 动能定理
质点的动能定理
A
Ek 2
Ek1
Ek
1 2
mv22
1 2
mv12
质点系的动能定理
A外 A内 Ek
(5) 机械能守恒定律及能量守恒
机械能守恒定律: 只有保守内力做功时,质点系的机械能保持不变.
Fdt
dp
I
t 0
Fdt
p2
p1
3、动量守恒定律
(1) 两个质点的动量守恒定律 P1 P2 恒矢量 (2) 质点系的动量守恒定律 P1 P2 Pn 恒矢量 (3) 动量守恒定律的成立条件 F ex 0
动能定理 功能原理
(1) 功
dA F dS
(2) 动能
质点的动能
质点系的动能
v
M
m m t v T
M m m t dv
dv
P
M m m
T
M mmt
t
g
dt
v
dv
0
T
T Pdt 0 M mmt
T
gdt
0
T
T
v PT ln M m gT mM
例4. 两根长度分别为 l1 , l2的轻绳竖直悬挂两个
质量分别m1 , m2 的小球,突然 打击
惯性、惯性系、力的概念
F dp , p mv dt
当 m 为常量时
F ma
第三定律
F12 F21
2、非惯性参考系和惯性力
(1) 非惯性系中牛顿动力学方程
F F贯 ma
(2) 几种常见的惯性力:平动惯性力、惯性离心力、科里奥利5力
3、用牛顿运动定律解题的基本思路
两类问题:已知运动求力
关键是加速度
o
A
解: 变质量问题。 设 t 时刻下垂部分的质量为 m ,
端点处的坐标为 x 。
若绳质量线密度为 λ,则有 m=λx。
x
忽略所有摩擦力,则下垂部分软绳 只受
本身重力作用,有
mg d (mv ) v dm m dv
dt
dt dt
将 m=λx 代入,得
gx v dx x dv dx
dt
dx dt
大学物理习题课
——质点力学部分
1
质点运动学
1、理想模型:质点、质点系
2、运动的描述:
位置矢量
r r(t)
位移矢量 速度 加速度
r r2 (t t) r1(t) v dr
dt
a dv dt
r xi yj zk
v
dx
i
dy
j
dz
k
dt dt dtaBiblioteka d2 dtx2
i
d2y dt 2
j
d2 dt
3
2
3
求运动方程: 由 v(x) dx 2 gx 分离变量,积分: dt 3
x dx t
0
x
0
2 g dt, 3
x(t) 1 gt 2 , 6
dx 1 v(t) gt.
dt 313
例3 一质量M的水桶,开始时静止,桶中装水m,以恒定作用力P 将桶从井中提出,桶中水以不变速率从桶中漏出,经T时间后桶 变空。求:变成空桶瞬时,桶速度等于多少?
能量守恒定律: 一个孤立系统经历任何变化时,该系统的所有能量的总和不改变.
9
例1 光滑的水平桌面上放置一固定的圆环带,半径为 R ,一物体贴着圆环带内
侧运动,物体与环带间的滑动摩擦系数为 k.设物体在某一时刻经A点时速率为v0
求此后t时刻物体的速率以及从A点开始所经过的路程.
v
A
解答提示
对物体在法向有
dv dt
et
Ret
3
4、相对运动
伽利略变换式
rpo rpo roo vpo vpo voo apo apo aoo
5、质点运动问题的求解
正问题: rv
dr
a dv
反问题: rv vvdt
dt
v avdt
dt av
——求导 ——积分
4
质点动力学
1、牛顿运动定律
第一定律 第二定律
16
l1 ma11n• T1 v0 T2 m1 g
对m1列竖直方向的方程:
T1 T2 m1 g m1
v02 l1
(1)
选m1在其中瞬时静止的平动非惯性系:
x P
解:设t时刻速度为v, t+dt时刻速度为v+dv, 根据动量定理
M m
t 到t+dt时间内的冲量
P
M
m
m T
t
g
dt
t时刻的动量
M m m t v
T
t+dt时刻的动量
M
m
m T
t
dt v
dv
m T
dt
v
由动量定理
P
M
m
m T
t
g
dt
M
m
m T
t
dt
v
dv
m T
dt
z
2
k
矢量性、瞬时性、相对性
2
3、几种常见的运动
匀加速直线运动 a 恒矢量
抛体运动 ax=0 ay= -g
v v0 at
r
r0
v0t
1 2
at
2
圆周运动 匀速圆周运动
变速圆周运动
角速度: d v
dt R
角加速度: d
dt
法向加速度:
an
v2 R
en
R
2en
切向加速度:
at
v2 xv dv
12
dx
gx v dx x dv dx v 2 xv dv
dt
dx dt
dx
等式两边乘 xdx ,约去λ,整理得:
gx 2dx v 2 xdx x 2vdv d (vx)2
2
等式两边积分,有
x
g
x 2dx
1
vx
d (vx)2
0
20
1 gx 3 1 v 2 x 2 即 v( x) 2 gx
a
已知力求运动
解题步骤:
(1) 认物体 (2) 看运动 (3) 分析力(多体问题采用隔离法) (4) 列方程(常采用直角坐标分量式) (5) 求解、讨论
概括为:“四个什么” 什么物体,在什么力作用下, 对什么参考系,作什么运动。6
动量定理及动量守恒
1、动量 p mv
冲量 Fdt
2、动量定理
(1) 微分形式 (2) 积分形式
l1 m1 •
v0
球1,使之获得水平速度v0 ,求该瞬时 两绳中的张力。
【解】以地面为参考系:
l2
m1作半径为 l1 的圆周运动,
m2•
在打击m1的瞬时,竖直方向有
l1 ma11n• T1 v0 T2 m1 g
法向加速度
法向力 T1 ,
a1n
v02 l1
重力 m1 g 和下面绳的拉力 T2。
(该瞬时m2 静止)。