大学物理试题库 质点力学 Word 文档

合集下载

(完整版)大学物理题库

(完整版)大学物理题库

第1章 质点运动学一、选择题 1. 一物体在位置1的矢径是 r 1, 速度是1v . 如图1-1-1所示.经∆t 时间后到达位置2,其矢径是 r 2, 速度是2v .则在∆t 时间内的平均速度是 [ ] (A) )(2112v v - (B) )(2112v v + (C) t r r ∆-12 (D) t r r ∆+12 2. 关于加速度的物理意义, 下列说法正确的是 [ ] (A) 加速度是描述物体运动快慢的物理量(B) 加速度是描述物体位移变化率的物理量(C) 加速度是描述物体速度变化的物理量(D) 加速度是描述物体速度变化率的物理量 3. 一质点作曲线运动, 任一时刻的矢径为 r , 速度为v , 则在∆t 时间内[ ] (A) v v ∆=∆ (B) 平均速度为∆∆r t (C) r r ∆=∆ (D) 平均速度为t r ∆∆ 4. 一质点作抛体运动, 忽略空气阻力, 在运动过程中, 该质点的t d d v 和td d v 的变化情况为 [ ] (A) t d d v 的大小和t d d v 的大小都不变 (B) t d d v 的大小改变, t d d v 的大小不变 (C) t d d v 的大小和t d d v 的大小均改变 (D) t d d v 的大小不变, td d v 的大小改变 5. 下面各种判断中, 错误的是[ ] (A) 质点作直线运动时, 加速度的方向和运动方向总是一致的(B) 质点作匀速率圆周运动时, 加速度的方向总是指向圆心(C) 质点作斜抛运动时, 加速度的方向恒定(D) 质点作曲线运动时, 加速度的方向总是指向曲线凹的一边6 下列表述中正确的是[ ] (A) 质点作圆周运动时, 加速度一定与速度垂直(B) 物体作直线运动时, 法向加速度必为零(C) 轨道最弯处法向加速度最大(D) 某时刻的速率为零, 切向加速度必为零7 一物体作匀变速直线运动, 则[ ] (A) 位移与路程总是相等(B) 平均速率与平均速度总是相等(C) 平均速度与瞬时速度总是相等(D) 平均加速度与瞬时加速度总是相等图1-1-18. 在地面上以初速v 0、抛射角θ 斜向上抛出一物体, 不计空气阻力.问经过多长时间后速度的水平分量与竖直分量大小相等, 且竖直分速度方向向下?[ ] (A) )cos (sin 0θθ+gv (B) )cos 2(sin 0θθ-g v (C) )sin (cos 0θθ-g v (D) g0v 9. 从离地面高为h 处抛出一物体,在下列各种方式中,从抛出到落地时间内位移数值最大的一种是 [ ] (A) 自由下落 (B) 以初速v 竖直下抛 (C) 以初速v 平抛 (D) 以初速v 竖直上抛10. 作圆周运动的物体[ ] (A) 加速度的方向必指向圆心 (B) 切向加速度必定等于零(C) 法向加速度必定等于零 (D) 总加速度必定不总等于零11. 质点作变速直线运动时, 速度及加速度的关系为[ ] (A) 速度为0, 加速度一定也为0(B) 速度不为0, 加速度也一定不为0(C) 加速度很大, 速度也一定很大(D) 加速度减小, 速度的变化率也一定减小12. 下列几种情况中, 哪种情况是不可能的?[ ] (A) 物体具有向东的速度和向东的加速度(B) 物体具有向东的速度和向西的加速度(C) 物体具有向东的速度和向南的加速度(D) 物体具有变化的加速度和恒定的速度 13. 一质点在平面上运动, 已知质点位置矢量的表示式为j t b i t a r 22+=(其中a 、b为常量) , 则该质点作[ ] (A) 匀速直线运动 (B) 变速直线运动(C) 抛物曲线运动 (D) 一般曲线运动14 . 一质点在xOy 平面内运动, 其运动方程为Rt t R x ωω+=sin ,R t R y +=ωcos , 式中R 、ω均为常数.当y 达到最大值时该质点的速度为[ ] (A) 0,0==y x v v (B) 0,2==y x R v v ω(C) ωR y x -==v v ,0 (D) ωωR R y x -==v v ,215. 物体不能出现下述哪种情况?[ ] (A) 运动中, 瞬时速率和平均速率恒相等(B) 运动中, 加速度不变, 速度时刻变化(C) 曲线运动中, 加速度越来越大, 曲率半径总不变(D) 曲线运动中, 加速度不变, 速率也不变16. 某物体的运动规律为t k t2d d v v -=, 式中k 为常数.当t = 0时,初速度为0v .则速度v 与时间t 的函数关系是[ ] (A) 0221v v +=t k (B) 0221v v +-=t k(C) 02121v v +=t k (D) 02121v v +-=t k17. 如图1-1-33所示,站在电梯内的人, 看到用细绳连接的质量不同的两物体跨过电梯内的一个无摩擦的定滑轮而处于“平衡”状态, 由此他断定电梯作加速运动, 其加速度的[ ] (A) 大小为g , 方向向上(B) 大小为g , 方向向下(C) 大小为g /2, 方向向上(D) 大小为g /2, 方向向下二、填空题 1. 一辆汽车以10 m.s -1的速率沿水平路面直前进, 司机发现前方有一孩子开始刹车,以加速度-0.2m.s -2作匀减速运动,则刹后1 min 内车的位移大小是 .2. 一质点沿半径为R 的圆周运动一周回到原地, 质点在此运动过程中,其位移大小为 ,路程是 .3. 如图1-2-3所示,甲、乙两卡车在一狭窄的公路上同向行驶,甲车以10 m.s -1速度匀速行驶, 乙车在后. 当乙车发现甲车时, 车速度为15 m.s -1,相距1000m .为避免相撞,乙车立即作匀减速行驶,其加速度大小至少应为 .4. 一质点沿x 轴作直线运动,其t v -曲线如图1-2-5所示.若t =0时质点位于坐标原点,则t =4.5 s 时,质点在x 轴上的位置为 .5. 一质点沿x 轴作直线运动, 在t = 0时, 质点位于x 0 =2 m处. 该质点的速度随时间变化的规律为2312t -=v ( t 以s 计). 当质点瞬时静止时,其所在位置为 ,加速度为 .6. 已知一个在xOy 平面内运动的物体的速度为j t i 82-=v .已知t = 0时它通过(3, -7)位置.则该物体任意时刻的位置矢量为 .7 距河岸(看成直线)300 m 处有一艘静止的船,船上的探照灯以转速为1m inr 1-⋅=n 转动,当光束与岸边成30°角时,光束沿岸边移动的速率=v .8 一物体作如图1-2-15所示的斜抛运动,测得在轨道A 点处速度v的大小为v ,其方向与水平方向夹角成30°.则物体在A 点的切向加速度的大小τa = ,轨道的曲率半径=ρ .图1-2-3图1-1-33 1s m -⋅/v 1221345.25.4()t 1-第2章 动力学基本定律一、选择题1. 下列说法中正确的是[ ] (A) 运动的物体有惯性, 静止的物体没有惯性(B) 物体不受外力作用时, 必定静止(C) 物体作圆周运动时, 合外力不可能是恒量(D) 牛顿运动定律只适用于低速、微观物体2. 下列诸说法中, 正确的是[ ] (A) 物体的运动速度等于零时, 合外力一定等于零(B) 物体的速度愈大, 则所受合外力也愈大(C) 物体所受合外力的方向必定与物体运动速度方向一致(D) 以上三种说法都不对3. A 、B 两质点m A >m B , 受到相等的冲量作用, 则[ ] (A) A 比B 的动量增量少 (B) A 与B 的动能增量相等(C) A 比B 的动量增量大 (D) A 与B 的动量增量相等4. 如图2-1-4所示,物体在力F 作用下作直线运动, 如果力F 的量值逐渐减小, 则该物体的[ ] (A) 速度逐渐减小, 加速度逐渐减小(B) 速度逐渐减小, 加速度逐渐增大(C) 速度继续增大, 加速度逐渐减小(D) 速度继续增大, 加速度逐渐增大5. 对一运动质点施加以恒力, 质点的运动会发生什么变化?[ ] (A) 质点沿着力的方向运动 (B) 质点仍表现出惯性(C) 质点的速率变得越来越大 (D) 质点的速度将不会发生变化6. 一物体作匀速率曲线运动, 则[ ] (A) 其所受合外力一定总为零 (B) 其加速度一定总为零(C) 其法向加速度一定总为零 (D) 其切向加速度一定总为零 7. 牛顿第二定律的动量表示式为t m F d )d(v =, 即有tm t m F d d d d v v +=.物体作怎样的运动才能使上式中右边的两项都不等于零, 而且方向不在一直线上?[ ] (A) 定质量的加速直线运动 (B) 定质量的加速曲线运动(C) 变质量的直线运动 (D) 变质量的曲线运动8. 如图2-1-8所,质量相同的两物块A 、B 用轻质弹簧连接后, 再用细绳悬吊着, 当系统平衡后, 突然将细绳剪断, 则剪断后瞬间[ ] (A) A 、B 的加速度大小均为g(B) A 、B 的加速度均为零(C) A 的加速度为零, B 的加速度大小为2gF 图2-1-4 图2-1-8 1m 2m(D) A 的加速度大小为2g , B 的加速度为零9. 假设质量为70 kg 的飞机驾驶员由于动力俯冲得到7g 的净加速度, 问作用于驾驶员上的力最接近于下列的哪一个值?[ ] (A) 10 N (B) 70 N (C) 490 N (D) 4800 N10. 如图2-1-10所示,升降机内地板上放有物体A, 其上再放另一物体B, 二者的质量分别为A m 、B m .当升降机以加速度a 向下加速运动时(a <g ), 物体A 对升降机地板的压力为 [ ] (A) g m A (B) g m m )(B A + (C) ))((B A a g m m ++ (D) ))((B A a g m m -+ 11. 一质量为60 kg 的人静止在一个质量为600 kg 且正以-1s m 2⋅的速率向河岸驶近的木船上, 河水是静止的, 其阻力不计.现人相对于船以一水平速度v 沿船的前进方向向河岸跳去, 该人起跳后, 船速减为原来的一半, 这说明v 值为[ ] (A) -1s m 2⋅ (B) -1s m 12⋅ (C) -1s m 20⋅ (D) -1s m 11⋅ 12. 牛顿定律和动量守恒定律的适用范围为[ ] (A) 仅适用于宏观物体(B) 仅适用于宏观, 低速物体(C) 牛顿定律适用于宏观低速物体, 动量守恒定律普遍适用(D) 牛顿定律适用于宏观低速物体, 动量守恒定律适用于宏观物体13. 一炮弹由于特殊原因在飞行中突然炸成两块, 其中一块作自由下落, 则另一块着地点[ ] (A) 比原来更远 (B) 比原来更近(C) 仍和原来一样 (D) 条件不足不能判定14. 如图2-1-14所示,停在空中的气球的质量和人的质量相等.如果人沿着竖直悬挂在气球上的绳梯向上爬高m 1,不计绳梯的质量, 则气球将[ ] (A) 向上移动m 1 (B) 向下移动m 1(C) 向上移动m 5.0 (D) 向下移动m 5.015. 用锤压钉不易将钉压入木块, 用锤击钉则很容易将钉击入木块,这是因为[ ] (A) 前者遇到的阻力大, 后者遇到的阻力小(B) 前者动量守恒, 后者动量不守恒(C) 后者锤的动量变化大, 给钉的作用力就大(D) 后者锤的动量变化率大, 给钉的作用力就大16. 有两个同样的木块, 从同一高度自由下落, 在下落途中, 一木块被水平飞来的子弹击中, 并陷入其中.子弹的质量不能忽略, 若不计空气阻力, 则 [ ] (A) 两木块同时到达地面 (B) 被击木块先到达地面 (C) 被击木块后到达地面 (D) 不能确定哪块木块先到达地面图2-1-10 a A B图2-1-16图2-1-1417 将一物体提高10 m, 下列哪种情形下提升力所做的功最小?[ ] (A) 以-1s m 5⋅的速度匀速上升(B) 以-1s m 10⋅的速度匀速提升(C) 将物体由静止开始匀加速提升10 m, 速度达到-1s m 5⋅(D) 使物体从-1s m 10⋅的初速度匀减速上升10 m, 速度减为-1s m 5⋅18. 质点系的内力可以改变[ ] (A) 系统的总质量 (B) 系统的总动量(C) 系统的总动能 (D) 系统的总角动量19. 作用在质点组的外力的功与质点组内力做功之和量度了[ ] (A) 质点组动能的变化(B) 质点组内能的变化(C) 质点组内部机械能与其它形式能量的转化(D) 质点组动能与势能的转化20. 在一般的抛体运动中, 下列说法中正确的是[ ] (A) 最高点动能恒为零(B) 在升高的过程中, 物体动能的减少等于物体的势能增加和克服重力 所作功之和(C) 抛射物体机械能守恒, 因而同一高度具有相同的速度矢量(D) 在抛体和地球组成的系统中, 物体克服重力做的功等于势能的增加21. 有A 、B 两个相同的物体, 处于同一位置, 其中物体A 水平抛出, 物体B 沿斜面无摩擦地自由滑下, 则[ ] (A) A 先到达地面, 两物体到达地面时的速率不相等(B) A 先到达地面, 两物体到达地面时的速率相等(C) B 先到达地面, 两物体到达地面时的速率不相等(D) B 先到达地面, 两物体到达地面时的速率相等22. 将一小球系在一端固定的细线(质量不计)上, 使小球在竖直平面内作圆周运动,作用在小球上的力有重力和细线的拉力.将细线、小球和地球一起看作一个系统, 不考虑空气阻力及一切摩擦, 则[ ] (A) 重力和拉力都不做功, 系统的机械能守恒(B) 因为重力和拉力都是系统的内力, 故系统的机械能守恒(C) 因为系统不受外力作用,这样的系统机械能守恒(D) 以上说法都不对23. 关于保守力, 下面说法正确的是[ ] (A) 只有保守力作用的系统动能和势能之和保持不变(B) 只有合外力为零的保守内力作用系统机械能守恒(C) 保守力总是内力(D) 物体沿任一闭合路径运动一周, 作用于它的某种力所做之功为零, 则该力称为保守力24. 在下列叙述中,错误的是[ ] (A) 保守力做正功时相应的势能将减少(B) 势能是属于物体体系的(C) 势能是个相对量,与参考零点的选择有关(D) 势能的大小与初、末态有关, 与路径无关25. 如图2-1-25所示,劲度系数-1m N 1000⋅=k 的轻质弹簧一端固定在天花板上, 另一端悬挂一质量为m = 2 kg 的物体, 并用手托着物体使弹簧无伸长.现突然撒手, 取-2s m 10⋅=g , 则弹簧的最大伸长量为[ ] (A) 0.01 m (B) 0.02 m (C) 0.04 m (D) 0.08 m26. 在弹性范围内, 如果将弹簧的伸长量增加到原来的3倍, 则弹性势能将增加到原来的[ ] (A) 6倍 (B) 8倍 (C) 9倍 (D) 12倍27. 从地面发射人造地球卫星的速度称为发射速度v 0, 卫星绕地球运转的速度称为环绕速度v , 已知rgR 2=v (R 为地球半径, r 为卫星离地心距离), 忽略卫星在运动过程中的阻力, 对于发射速度v 0[ ] (A) v 越小相应的v 0越大 (B) 01v v ∝(C) v 越大相应的v 0越大 (D) 0v v ∝ 28. 设一子弹穿过厚度为l 的木块其初速度大小至少为v .如果木块的材料不变, 而厚度增为2l , 则要穿过这木块, 子弹的初速度大小至少要增为[ ] (A) 2v (B) v 2 (C) v 21 (D) 2v 29. 如图2-1-29所示,用铁锤将一铁钉击入木板, 设铁钉受到的阻力与其进入木块的深度成正比, 铁锤两次击钉的速度相同, 第一次将钉击入木板内1cm, 则第二次能将钉继续击入的深度为[ ] (A) 0.4cm (B) 0.5cm (C) 1cm (D) 1.4cm30. 如图2-1-30所示,一被压缩的弹簧, 两端分别连接A 、B两个不同的物体, 放置在光滑水平桌面上, 设m A = 2m B , 由静止释放. 则物体A 的动能与物体B 的动能之比为 [ ] (A) 1 : 1 (B) 2 : 1 (C) 1 : 2 (D) 1 : 431. 关于功的概念有以下几种说法:(1) 保守力做正功时,系统内相应的势能增加.(2) 质点运动经一闭合路径,保守力对质点做的功为零.(3) 作用力和反作用力大小相等、方向相反,所以两者所做的功的代数和必然为零. 在上述说法中[ ] (A) (1)、(2)是正确的 (B) (2)、(3)是正确的(C) 只有(2)是正确的 (D) 只有(3)是正确的32 关于机械能守恒条件和动量守恒条件有以下几种说法,其中正确的是[ ] (A) 不受力作用的系统,其动量和机械能必然守恒(B) 所受合外力为零、内力都是保守力的系统,其机械能必然守恒(C) 不受外力,而内力都是保守力的系统,其动量和机械能必然同时守恒(D) 外力对一个系统做的功为零,则该系统的机械能和动量必然同时守恒图2-1-3033. 一力学系统由两个质点组成,它们之间只有引力作用,若两质点所受外力的矢量和为零,则此系统[ ] (A) 动量、机械能以及对一轴的角动量守恒(B) 动量、机械能守恒,但角动量是否守恒不能断定(C) 动量守恒,但机械能和角动量守恒与否不能断定(D) 动量和角动量守恒,但机械能是否守恒不能断定34. 一质量为0m 的弹簧振子,水平放置静止在平衡位置,如图2-1-34所示.一质量为m 的子弹以水平速度v射入振子中,并随之一起运动.如果水平面光滑,此后弹簧的最大势能为 [ ] (A) 221v m (B) )(2022m m m +v (C) 220202)(v m m m m + (D) 2022v m m 35. 物体在恒力F 作用下作直线运动, 在∆t 1时间内速度由0增加到v , 在∆t 2时间内速度由v 增加到v 2, 设F 在∆t 1时间内做的功是A 1, 冲量是1I , 在∆t 2时间内做的功是A 2, 冲量是2I 。

大学物理《力学1·质点运动学》复习题及答案

大学物理《力学1·质点运动学》复习题及答案

[]
6.在相对地面静止的坐标系内, A、B 二船 都以 3ms1 的速率匀速行驶, A 船沿 x 轴正 向, B 船沿 y 轴正向,今在船 A 上设置与静 止坐标系方向相同的坐标系 ( x、y方向单 位矢量i、j用表示 ), 那么在 A 船上的坐标 系中, B 船的速度(以 m·s1 为单位)为
(A) 3i 3 j, (C) 3i 3 j,
(B) 3i 3 j, (D) 3i 3 j,
[]
7.一运动质点在某瞬时位于矢径r (x,y) 的端 点处,其速度大小为
( A ) dr dt
(B) dr dt
dr (C )
dt
(D)

dx dt
2


dy dt
H
H'
的高度
S
A 15 cm
30cm M
o
C
解:先求质点的位置
t 2s,
s 20 2 5 22 60 (m)( 在大圆)
v ds / dt 20 10t ,
v(2) 40 m/s
a
t 2s时
at dv / dt 10m/s
an
an v2 / R
an
160 / 3m/ s2。
解:根据机械能守 恒定律,小球与斜
h
v2
面碰撞时的速度
H
H'

v1 2 gh
S
h 为小球碰撞前自由下落的距离。
因为是完全弹性碰撞,小球弹射的速度大 小为
v2 v1 2 gh
v2的方向是沿水平方向,故小球与斜面碰 撞后作平抛运动,弹出的水平距离为
s v2t 式中t 2(H h ) g

大学物理试题库 质点力学 Word 文档

大学物理试题库 质点力学 Word 文档

第一章 质点运动学一、运动的描述(量)---位矢、位移、速度、加速度,切向加速度、法向加速度、轨迹1、质点沿X 轴方向运动,其运动方程为x=2t 2+4t-3(SI),则质点任意时刻的速度表达式为v t =____________,加速度表达式a t =____________,前两秒的位移大小为____________,路程为____________。

2、质点的运动方程为x=2t,y=1o-2t 2(SI ),则质点的轨迹方程为____________,t=2s 时,质点位置=r ____________,速度v =____________。

3、质点作半径为R 的圆周运动,其运动方程为S=2t 2,(切向、法向的单位矢量分别为0τ 和0n ),则 t 时刻质点速率 v=____________,速度v=____________, 切向加速度大小τa =____________,法向加速度大小n a =____________, 总加速度a =____________。

4、下列表述中正确的是:( )A :在曲线运动中,质点的加速度一定不为零;B :速度为零时,加速度一定为零;C :质点的加速度为恒矢量时,其运动轨迹运动为直线;D :质点在X 轴上运动,若加速度a<0,则质点一定做减速运动。

5、 质点作直线运动的运动学方程为x =3t -5t 3 + 6 (SI),则该质点作( )A :匀加速直线运动,加速度沿x 轴正方向.B :匀加速直线运动,加速度沿x 轴负方向.C :变加速直线运动,加速度沿x 轴正方向.D :变加速直线运动,加速度沿x 轴负方向.6、一质点沿x 轴作直线运动,其v -t 曲线如图所示,如t =0时,质点位于坐标原点,则t =4.5 s 时,质点在x 轴上的位置为 ( ) (A) 5m . (B) 2m . (C) 0. (D) -2 m . (E) -5 m. 7、在x 轴上作变加速直线运动的质点,已知其初速度为0v ,初始位置为x 0,加速度Ct a =(其中C 为常量),则其速度与时间的关系为=v __________,运动学方程为=x ____________.8、一质点在XOY 平面内运动,其运动方程为j t i t r )210(42-+=,质点的位置矢量与速度矢量恰好垂直的时刻为__________。

《大学物理》质点力学例题(浙大)

《大学物理》质点力学例题(浙大)

质点力学例题1.一质点沿x 轴方向运动,其加速度随时间的变化关系为 a = 3 + 2t (SI),如果初始时质点的速度为5 m/s ,则当 t = 3 s 时,质点的速度v = __________ m/s 。

)m/s (23)3(5d )23(53023=++=++=⎰t t t t v2.质量为0.25 kg 的质点,受力F = t i (SI )的作用,式中t 为时间,t = 0 s 时该质点以v 0 = 2j m/s 的速度通过坐标原点,则该质点任意时刻的位置矢量是__________。

i F a t m 4==j i 222+=t v j i r t t 2323+=3.已知一质点的运动方程为 r = 2 t i +(2 - t2)j (SI ),则t = 2 s 时质点的位置矢量为__________,2秒末的速度为__________。

j i r 24-= j i 42-=v4.一个具有单位质量的质点在力场 F = ( t 2 - 4t ) i + ( 12t - 6 ) j (SI )中运动,设该质点在t = 0时位于原点,且速度为零。

则t 时刻该质点的位置矢量r = ____________。

j i r )32()32121(2334t t t t -+-=5.一质点从静止出发沿半径 R = 1 ( m )的圆周运动,其角加速度随时间t 的变化规律是 α = 12t 2 - 6t (SI)。

则质点的角速度ω =_________,法向加速度a n =_________,切向加速度a τ =_________。

230234d )612(t t t t tt-=-=⎰ω t t R a 6122-==ατ 2232)34(t t R a n -==ω6.一质点在水平面内以顺时针方向沿半径为2 m 的圆形轨道运动,质点的角速度与时间的关系为ω = kt 2(其中k 为常数),已知质点在第二秒末的线速度为32 m/s ,则在t = 0.5 s 时,该质点的切向加速度a τ = _______;法向加速度a n = _______。

大学物理力学题库及答案(考试常考)

大学物理力学题库及答案(考试常考)

一、选择题:(每题3分)1、某质点作直线运动的运动学方程为x =3t -5t 3 + 6 (SI),则该质点作(A) 匀加速直线运动,加速度沿x 轴正方向.(B) 匀加速直线运动,加速度沿x 轴负方向.(C) 变加速直线运动,加速度沿x 轴正方向.(D) 变加速直线运动,加速度沿x 轴负方向. [ ]2、一质点沿x 轴作直线运动,其v -t 曲线如图所示,如t =0时,质点位于坐标原点,则t =4.5 s 时,质点在x 轴上的位置为(A) 5m . (B) 2m. (C) 0. (D) -2 m . (E) -5 m. [ b ]3、图中p 是一圆的竖直直径pc 的上端点,一质点从p 开始分别沿不同的弦无摩擦下滑时,到达各弦的下端所用的时间相比较是(A) 到a 用的时间最短.(B) 到b 用的时间最短.(C) 到c 用的时间最短.(D) 所用时间都一样. [ d ]4、 一质点作直线运动,某时刻的瞬时速度=v 2 m/s ,瞬时加速度2/2s m a -=,则一秒钟后质点的速度(A) 等于零. (B) 等于-2 m/s .(C) 等于2 m/s . (D) 不能确定. [ d ]5、 一质点在平面上运动,已知质点位置矢量的表示式为 j bt i at r 22+=(其中a 、b 为常量), 则该质点作(A) 匀速直线运动. (B) 变速直线运动.(C) 抛物线运动. (D)一般曲线运动. [ ]6、一运动质点在某瞬时位于矢径()y x r , 的端点处, 其速度大小为 (A) t r d d (B) t r d d (C) t r d d (D) 22d d d d ⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛t y t x [ ]7、 质点沿半径为R 的圆周作匀速率运动,每T 秒转一圈.在2T 时间间隔中,其平均速度大小与平均速率大小分别为-12O a p(A) 2πR /T , 2πR/T . (B) 0 , 2πR /T(C) 0 , 0. (D) 2πR /T , 0. [ ]8、 以下五种运动形式中,a 保持不变的运动是(A) 单摆的运动. (B) 匀速率圆周运动.(C) 行星的椭圆轨道运动. (D) 抛体运动.(E) 圆锥摆运动. [ ]9、对于沿曲线运动的物体,以下几种说法中哪一种是正确的:(A) 切向加速度必不为零.(B) 法向加速度必不为零(拐点处除外).(C) 由于速度沿切线方向,法向分速度必为零,因此法向加速度必为零.(D) 若物体作匀速率运动,其总加速度必为零. (E) 若物体的加速度a 为恒矢量,它一定作匀变速率运动. [ ]10、 质点作曲线运动,r 表示位置矢量,v 表示速度,a 表示加速度,S 表示路程,a 表示切向加速度,下列表达式中,(1) a t = d /d v , (2) v =t r d /d , (3) v =t S d /d , (4) t a t =d /d v .(A) 只有(1)、(4)是对的.(B) 只有(2)、(4)是对的.(C) 只有(2)是对的.(D) 只有(3)是对的. [ ]11、 某物体的运动规律为t k t 2d /d v v -=,式中的k 为大于零的常量.当0=t 时,初速为v 0,则速度v 与时间t 的函数关系是(A) 0221v v +=kt , (B) 0221v v +-=kt , (C) 02121v v +=kt , (D) 02121v v +-=kt [ ] 12、 一物体从某一确定高度以0v 的速度水平抛出,已知它落地时的速度为t v ,那么它运动的时间是(A) g t 0v v -. (B) gt 20v v - . (C)()g t 2/1202v v -. (D) ()g t 22/1202v v - . [ ] 13v ,瞬时速率为v ,某一时间内的平均速度为v(A )v v v,v == (B )v v v,v =≠(C )v v v,v ≠≠ (D )v v v,v ≠= [ d ]14、在相对地面静止的坐标系内,A 、B 二船都以2 m/s 速率匀速行驶,A 船沿x 轴正向,B 船沿y 轴正向.今在A 船上设置与静止坐标系方向相同的坐标系(x 、y 方向单位矢用i 、j 表示),那么在A 船上的坐标系中,B 船的速度(以m/s为单位)为 (A) 2i +2j . (B) -2i +2j . (C) -2i -2j . (D) 2i -2j . [ ]15、一条河在某一段直线岸边同侧有A 、B 两个码头,相距1 km .甲、乙两人需要从码头A 到码头B ,再立即由B 返回.甲划船前去,船相对河水的速度为4 km/h ;而乙沿岸步行,步行速度也为4 km/h .如河水流速为 2 km/h, 方向从A到B ,则(A) 甲比乙晚10分钟回到A . (B) 甲和乙同时回到A .(C) 甲比乙早10分钟回到A . (D) 甲比乙早2分钟回到A .[ ]16、一飞机相对空气的速度大小为 200 km/h, 风速为56 km/h ,方向从西向东.地面雷达站测得飞机速度大小为 192 km/h ,方向是(A) 南偏西16.3°. (B) 北偏东16.3°.(C) 向正南或向正北. (D) 西偏北16.3°.(E) 东偏南16.3°. [ ]17、 下列说法哪一条正确?(A) 加速度恒定不变时,物体运动方向也不变.(B) 平均速率等于平均速度的大小.(C) 不管加速度如何,平均速率表达式总可以写成(v 1、v 2 分别为初、末速率) ()2/21v v v +=.(D) 运动物体速率不变时,速度可以变化. [ ]18、 下列说法中,哪一个是正确的?(A) 一质点在某时刻的瞬时速度是2 m/s ,说明它在此后1 s 内一定要经过2 m的路程.(B) 斜向上抛的物体,在最高点处的速度最小,加速度最大.(C) 物体作曲线运动时,有可能在某时刻的法向加速度为零.(D) 物体加速度越大,则速度越大. [ c ]19、 某人骑自行车以速率v 向西行驶,今有风以相同速率从北偏东30°方向吹来,试问人感到风从哪个方向吹来?(A) 北偏东30°. (B) 南偏东30°.(C) 北偏西30°. (D) 西偏南30°.c]20、在升降机天花板上拴有轻绳,其下端系一重物,当升降机以加速度a 1上升时,绳中的张力正好等于绳子所能承受的最大张力的一半,问升降机以多大加速度上升时,绳子刚好被拉断?(A) 2a 1. (B) 2(a 1+g ).(C) 2a 1+g .(D) a 1+g . [ ]21、 水平地面上放一物体A ,它与地面间的滑动摩擦系数为μ.现加一恒力F 如图所示.欲使物体A 有最大加速度,则恒力F 与水平方向夹角θ 应满足(A) sin θ =μ. (B) cos θ =μ. (C) tg θ =μ. (D) ctg θ =μ. [ ]22、 一只质量为m 的猴,原来抓住一根用绳吊在天花板上的质量为M 的直杆,悬线突然断开,小猴则沿杆子竖直向上爬以保持它离地面的高度不变,此时直杆下落的加速度为 (A) g . (B) g M m . (C) g M m M +. (D) g mM m M -+ . (E) g M m M -. [ ]23、如图所示,质量为m 的物体A 用平行于斜面的细线连结置于光滑的斜面上,若斜面向左方作加速运动,当物体开始脱离斜面时,它的加速度的大小为(A) g sin θ. (B) g cos θ.(C) g ctg θ. (D) g tg θ. [ ]24、如图所示,一轻绳跨过一个定滑轮,两端各系一质量分别为m 1和m 2的重物,且m 1>m 2.滑轮质量及轴上摩擦均不计,此时重物的加速度的大小为a .今用一竖直向下的恒力g m F 1=代替质量为m 1的物体,可得质量为m 2的重物的加速度为的大小a ′,则(A) a ′= a (B) a ′> a(C) a ′< a (D) 不能确定. [ ]25、升降机内地板上放有物体A ,其上再放另一物体B ,二者的质量分别为M A 、a 1M B .当升降机以加速度a 向下加速运动时(a <g ),物体A 对升降机地板的压力在数值上等于(A) M A g. (B) (M A +M B )g.(C) (M A +M B )(g +a ). (D) (M A +M B )(g -a ). [ ]26、如图,滑轮、绳子质量及运动中的摩擦阻力都忽略不计,物体A 的质量m 1大于物体B 的质量m 2.在A 、B 运动过程中弹簧秤S 的读数是(A) .)(21g m m + (B) .)(21g m m -(C) .22121g m m m m + (D) .42121g m m m m + [ ]27、如图所示,质量为m 的物体用细绳水平拉住,静止在倾角为θ的固定的光滑斜面上,则斜面给物体的支持力为(A) θcos mg . (B) θsin mg . (C) θcos mg . (D) θsin mg . [ ] 28、光滑的水平桌面上放有两块相互接触的滑块,质量分别为m 1和m 2,且m 1<m 2.今对两滑块施加相同的水平作用力,如图所示.设在运动过程中,两滑块不离开,则两滑块之间的相互作用力N应有 (A) N =0. (B) 0 < N < F.(C) F < N <2F. (D) N > 2F. [ ]29、 用水平压力F 把一个物体压着靠在粗糙的竖直墙面上保持静止.当F 逐渐增大时,物体所受的静摩擦力f(A) 恒为零.(B) 不为零,但保持不变.(C) 随F 成正比地增大.(D) 开始随F 增大,达到某一最大值后,就保持不变 [ ]30、两个质量相等的小球由一轻弹簧相连接,再用一细绳悬挂于天花板上,处于静止状态,如图所示.将绳子剪断的瞬间,球1和球2的加速度分别为(A) a 1=g,a 2=g. (B) a 1=0,a 2=g.(C) a 1=g,a 2=0. (D) a 1=2g,a 2=0.[ ]31、竖立的圆筒形转笼,半径为R ,绕中心轴OO '转动,物块A 紧靠在圆筒的内壁上,物块与圆筒间的摩擦系数为μ,要使1物块A 不下落,圆筒转动的角速度ω至少应为 (A) R g μ (B)g μ(C) Rg μ (D)R g [ ]32、 一个圆锥摆的摆线长为l ,摆线与竖直方向的夹角恒为θ,如图所示.则摆锤转动的周期为(A) g l . (B) gl θcos . (C) g l π2. (D) g l θπcos 2 . [ ] 33、一公路的水平弯道半径为R ,路面的外侧高出内侧,并与水平面夹角为θ.要使汽车通过该段路面时不引起侧向摩擦力,则汽车的速率为(A) Rg . (B) θtg Rg .(C) θθ2sin cos Rg . (D) θctg Rg [ ]34、 一段路面水平的公路,转弯处轨道半径为R ,汽车轮胎与路面间的摩擦系数为μ,要使汽车不致于发生侧向打滑,汽车在该处的行驶速率(A) 不得小于gR μ. (B) 不得大于gR μ.(C) 必须等于gR 2. (D) 还应由汽车的质量M 决定. [ ]35、 在作匀速转动的水平转台上,与转轴相距R 处有一体积很小的工件A ,如图所示.设工件与转台间静摩擦系数为μs ,若使工件在转台上无滑动,则转台的角速度ω应满足(A) Rg s μω≤. (B) R g s 23μω≤. (C) R g s μω3≤. (D) Rg s μω2≤. [ ]36、质量为m 的质点,以不变速率v 沿图中正三角形ABC 的水平光滑轨道运动.质点越过A 角时,轨道作用于质点的冲量的大小为(A) m v . (B) m v .(C) m v . (D) 2m v .[ ]37、一炮弹由于特殊原因在水平飞行过程中,突然炸裂成两块,其中一块作θ l ωO R A A23自由下落,则另一块着地点(飞行过程中阻力不计)(A) 比原来更远. (B) 比原来更近.(C) 仍和原来一样远. (D) 条件不足,不能判定. [ ]38、 如图所示,砂子从h =0.8 m 高处下落到以3 m /s 的速率水平向右运动的传送带上.取重力加速度g =10 m /s 2.传送带给予刚落到传送带上的砂子的作用力的方向为(A)与水平夹角53°向下. (B) 与水平夹角53°向上.(C)与水平夹角37°向上.(D) 与水平夹角37°向下. [ b ]39、 质量为20 g 的子弹沿X 轴正向以 500 m/s 的速率射入一木块后,与木块一起仍沿X 轴正向以50 m/s 的速率前进,在此过程中木块所受冲量的大小为(A) 9 N·s . (B) -9 N·s .(C)10 N·s . (D) -10 N·s . [ ]40、质量分别为m A 和m B (m A >m B )、速度分别为A v 和B v (v A > v B )的两质点A 和B ,受到相同的冲量作用,则(A) A 的动量增量的绝对值比B 的小.(B) A 的动量增量的绝对值比B 的大.(C) A 、B 的动量增量相等.(D) A 、B 的速度增量相等. [ ]41、在水平冰面上以一定速度向东行驶的炮车,向东南(斜向上)方向发射一炮弹,对于炮车和炮弹这一系统,在此过程中(忽略冰面摩擦力及空气阻力)(A) 总动量守恒.(B) 总动量在炮身前进的方向上的分量守恒,其它方向动量不守恒.(C) 总动量在水平面上任意方向的分量守恒,竖直方向分量不守恒.(D) 总动量在任何方向的分量均不守恒. [ ]42、 质量为20 g 的子弹,以400 m/s 的速率沿图示方向射入一原来静止的质量为980 g 的摆球中,摆线长度不可伸缩.子弹射入后开始与摆球一起运动的速率为 (A) 2 m/s . (B) 4 m/s . (C) 7 m/s . (D) 8 m/s . [ ]43、A 、B 两木块质量分别为m A 和m B ,且m B =2m A ,两者用一轻弹簧连接后静止于光滑水平桌面上,如图所示.若用外力将两木块压近使弹簧被压缩,然后将外力撤去,则此后两木块运动动能之比E KA /E KB 为(A) 21. (B) 2/2. (C) 2. (D) 2. [ ]44、质量为m 的小球,沿水平方向以速率v 与固定的竖直壁作弹性碰撞,设指向壁内的方向为正方向,则由于此碰撞,小球的动量增量为(A) m v . (B) 0.(C) 2m v . (D) –2m v . [ ]45、机枪每分钟可射出质量为20 g 的子弹900颗,子弹射出的速率为800 m/s ,则射击时的平均反冲力大小为(A) 0.267 N . (B) 16 N .(C)240 N . (D) 14400 N . [ ]46、人造地球卫星,绕地球作椭圆轨道运动,地球在椭圆的一个焦点上,则卫星的(A)动量不守恒,动能守恒.(B)动量守恒,动能不守恒.(C)对地心的角动量守恒,动能不守恒.(D)对地心的角动量不守恒,动能守恒. [ ]47、一质点作匀速率圆周运动时,(A) 它的动量不变,对圆心的角动量也不变.(B) 它的动量不变,对圆心的角动量不断改变.(C) 它的动量不断改变,对圆心的角动量不变.(D) 它的动量不断改变,对圆心的角动量也不断改变. [ ]48、一个质点同时在几个力作用下的位移为: k j i r 654+-=∆ (SI) 其中一个力为恒力k j i F 953+--= (SI),则此力在该位移过程中所作的功为(A) -67 J . (B) 17 J .(C) 67 J . (D) 91 J . [ ]49、质量分别为m 和4m 的两个质点分别以动能E 和4E 沿一直线相向运动,它们的总动量大小为(A) 2mE 2 (B) mE 23.(C) mE 25. (D) mE 2)122(- [ ]m A m B[ ]51、已知两个物体A 和B 的质量以及它们的速率都不相同,若物体A 的动量在数值上比物体B 的大,则A 的动能E KA 与B 的动能E KB 之间(A) E KB 一定大于E KA . (B) E KB 一定小于E KA .(C) E KB =E KA . (D) 不能判定谁大谁小. [ ]52、对于一个物体系来说,在下列的哪种情况下系统的机械能守恒?(A) 合外力为0.(B) 合外力不作功.(C) 外力和非保守内力都不作功.(D) 外力和保守内力都不作功. [ ]53、下列叙述中正确的是(A)物体的动量不变,动能也不变.(B)物体的动能不变,动量也不变.(C)物体的动量变化,动能也一定变化.(D)物体的动能变化,动量却不一定变化. [ a ]54、作直线运动的甲、乙、丙三物体,质量之比是 1∶2∶3.若它们的动能相等,并且作用于每一个物体上的制动力的大小都相同,方向与各自的速度方向相反,则它们制动距离之比是(A) 1∶2∶3. (B) 1∶4∶9.(C) 1∶1∶1. (D) 3∶2∶1.(E) 3∶2∶1. [ ]55、 速度为v 的子弹,打穿一块不动的木板后速度变为零,设木板对子弹的阻力是恒定的.那么,当子弹射入木板的深度等于其厚度的一半时,子弹的速度是(A) v 41. (B) v 31. (C) v 21. (D) v 21. [ ]56、 考虑下列四个实例.你认为哪一个实例中物体和地球构成的系统的机械能不守恒?(A) 物体作圆锥摆运动.(B) 抛出的铁饼作斜抛运动(不计空气阻力).(C) 物体在拉力作用下沿光滑斜面匀速上升.(D) 物体在光滑斜面上自由滑下. [ ]57、一竖直悬挂的轻弹簧下系一小球,平衡时弹簧伸长量为d .现用手将小球托住,使弹簧不伸长,然后将其释放,不计一切摩擦,则弹簧的最大伸长量(A) 为d . (B) 为d 2.(C) 为2d .(D) 条件不足无法判定. [ ]58、A 、B 两物体的动量相等,而m A <m B ,则A 、B 两物体的动能(A) E KA <E K B . (B) E KA >E KB .(C) E KA =E K B . (D) 孰大孰小无法确定. [ ]59、如图所示,一个小球先后两次从P 点由静止开始,分别沿着光滑的固定斜面l 1和圆弧面l 2下滑.则小球滑到两面的底端Q 时的(A) 动量相同,动能也相同.(B) 动量相同,动能不同.(C) 动量不同,动能也不同.(D) 动量不同,动能相同. [ ]60、一物体挂在一弹簧下面,平衡位置在O 点,现用手向下拉物体,第一次把物体由O 点拉到M 点,第二次由O点拉到N 点,再由N 点送回M 点.则在这两个过程中(A) 弹性力作的功相等,重力作的功不相等. (B) 弹性力作的功相等,重力作的功也相等. (C) 弹性力作的功不相等,重力作的功相等. (D) 弹性力作的功不相等,重力作的功也不相等. [ ]61、物体在恒力F 作用下作直线运动,在时间∆t 1内速度由0增加到v ,在时间∆t 2内速度由v 增加到2 v ,设F 在∆t 1内作的功是W 1,冲量是I 1,在∆t 2内作的功是W 2,冲量是I 2.那么,(A) W 1 = W 2,I 2 > I 1. (B) W 1 = W 2,I 2 < I 1.(C) W 1 < W 2,I 2 = I 1. (D) W 1 > W 2,I 2 = I 1. [ ]62、两个质量相等、速率也相等的粘土球相向碰撞后粘在一起而停止运动. 在此过程中,由这两个粘土球组成的系统,(A) 动量守恒,动能也守恒.(B) 动量守恒,动能不守恒.(C) 动量不守恒,动能守恒.(D) 动量不守恒,动能也不守恒. [ ]63、 一子弹以水平速度v 0射入一静止于光滑水平面上的木块后,随木块一起运动.对于这一过程正确的分析是(A) 子弹、木块组成的系统机械能守恒.(B) 子弹、木块组成的系统水平方向的动量守恒.(C) 子弹所受的冲量等于木块所受的冲量.(D) 子弹动能的减少等于木块动能的增加. [ ]64、一光滑的圆弧形槽M 置于光滑水平面上,一滑块m 自槽的顶部由静止释放后沿槽滑下,不计空气阻力.对于这一过程,以下哪种分析是对的?(A) 由m 和M 组成的系统动量守恒.(B) 由m 和M 组成的系统机械能守恒.(C) 由m 、M 和地球组成的系统机械能守恒.(D) M 对m 的正压力恒不作功. [ c ]65、两木块A 、B 的质量分别为m 1和m 2,用一个质量不计、劲度系数为k 的弹簧连接起来.把弹簧压缩x 0并用线扎住,放在光滑水平面上,A 紧靠墙壁,如图所示,然后烧断扎线.判断下列说法哪个正确.(A) 弹簧由初态恢复为原长的过程中,以A 、B 、弹簧为系统,动量守恒.(B) 在上述过程中,系统机械能守恒.(C) 当A 离开墙后,整个系统动量守恒,机械能不守恒.(D) A 离开墙后,整个系统的总机械能为2021kx ,总动量为零. [ ] 66、两个匀质圆盘A 和B 的密度分别为A ρ和B ρ,若ρA >ρB ,但两圆盘的质量与厚度相同,如两盘对通过盘心垂直于盘面轴的转动惯量各为J A 和J B ,则(A) J A >J B . (B) J B >J A .(C) J A =J B . (D) J A 、J B 哪个大,不能确定. [ ]67、 关于刚体对轴的转动惯量,下列说法中正确的是(A )只取决于刚体的质量,与质量的空间分布和轴的位置无关.(B )取决于刚体的质量和质量的空间分布,与轴的位置无关.(C )取决于刚体的质量、质量的空间分布和轴的位置.(D )只取决于转轴的位置,与刚体的质量和质量的空间分布无关.[ ]6568、 均匀细棒OA 可绕通过其一端O 而与棒垂直的水平固定光滑轴转动,如图所示.今使棒从水平位置由静止开始自由下落,在棒摆动到竖直位置的过程中,下述说法哪一种是正确的? (A) 角速度从小到大,角加速度从大到小.(B) 角速度从小到大,角加速度从小到大.(C) 角速度从大到小,角加速度从大到小.(D) 角速度从大到小,角加速度从小到大. [ ]69、 一圆盘绕过盘心且与盘面垂直的光滑固定轴O 以角速度ω按图示方向转动.若如图所示的情况那样,将两个大小相等方向相反但不在同一条直线的力F 沿盘面同时作用到圆盘上,则圆盘的角速度ω (A) 必然增大. (B) 必然减少.(C) 不会改变. (D) 如何变化,不能确定. [ ]70、 有一半径为R 的水平圆转台,可绕通过其中心的竖直固定光滑轴转动,转动惯量为J ,开始时转台以匀角速度ω0转动,此时有一质量为m 的人站在转台中心.随后人沿半径向外跑去,当人到达转台边缘时,转台的角速度为(A) 02ωmRJ J +. (B) ()02ωR m J J +. (C) 02ωmRJ . (D) 0ω. [ ] 71、 如图所示,一水平刚性轻杆,质量不计,杆长l=20 cm ,其上穿有两个小球.初始时,两小球相对杆中心O 对称放置,与O 的距离d =5 cm ,二者之间用细线拉紧.现在让细杆绕通过中心O 的竖直固定轴作匀角速的转动,转速为ω 0,再烧断细线让两球向杆的两端滑动.不考虑转轴的和空气的摩擦,当两球都滑至杆端时,杆的角速度为(A) 2ω 0. (B)ω 0.(C) 21 ω 0. (D)041ω. [ d ] 72、 刚体角动量守恒的充分而必要的条件是(A) 刚体不受外力矩的作用.(B) 刚体所受合外力矩为零.(C) 刚体所受的合外力和合外力矩均为零.(D) 刚体的转动惯量和角速度均保持不变. [ b ]73、 一块方板,可以绕通过其一个水平边的光滑固定轴自由转动.最初板自由下垂.今有一小团粘土,垂直板面撞击方板,并粘在板上.对粘土和方板系统,如果忽略空气阻力,在碰撞中守恒的量是(A) 动能. (B) 绕木板转轴的角动量.68、69、(C) 机械能. (D) 动量. [ ]74、如图所示,一匀质细杆可绕通过上端与杆垂直的水平光滑固定轴O 旋转,初始状态为静止悬挂.现有一个小球自左方水平打击细杆.设小球与细杆之间为非弹性碰撞,则在碰撞过程中对细杆与小球这一系统(A) 只有机械能守恒.(B) 只有动量守恒.(C) 只有对转轴O 的角动量守恒.(D) 机械能、动量和角动量均守恒. [ ]75、质量为m 的小孩站在半径为R 的水平平台边缘上.平台可以绕通过其中心的竖直光滑固定轴自由转动,转动惯量为J .平台和小孩开始时均静止.当小孩突然以相对于地面为v 的速率在台边缘沿逆时针转向走动时,则此平台相对地面旋转的角速度和旋转方向分别为(A) ⎪⎭⎫ ⎝⎛=R J mR v 2ω,顺时针. (B) ⎪⎭⎫ ⎝⎛=R J mR v 2ω,逆时针. (C) ⎪⎭⎫ ⎝⎛+=R mR J mR v 22ω,顺时针. (D) ⎪⎭⎫ ⎝⎛+=R mR J mR v 22ω,逆时针. [ ]76、 一水平圆盘可绕通过其中心的固定竖直轴转动,盘上站着一个人.把人和圆盘取作系统,当此人在盘上随意走动时,若忽略轴的摩擦,此系统(A) 动量守恒.(B) 机械能守恒.(C) 对转轴的角动量守恒.(D) 动量、机械能和角动量都守恒.(E) 动量、机械能和角动量都不守恒. [ ]77、光滑的水平桌面上有长为2l 、质量为m 的匀质细杆,可绕通过其中点O 且垂直于桌面的竖直固定轴自由转动,转动惯量为231ml ,起初杆静止.有一质量为m 的小球在桌面上正对着杆的一端,在垂直于杆长的方向上,以速率v 运动,如图所示.当小球与杆端发生碰撞后,就与杆粘在一起随杆转动.则这一系统碰撞后的转动角速度是(A) 12v l . (B) l 32v . (C) l 43v . (D) lv 3. [ ]78、如图所示,一静止的均匀细棒,长为L 、质量为M ,可绕通过棒的端点且垂直于棒长的光滑固定轴O 在水平面内转动,转动惯量为231ML .一质量为m 、速率为v 的子弹在水平面内沿与棒垂直的方向射出并穿出棒的自由端,设穿过棒后子弹的速率为v 21,则此时棒的角速度应为 (A) ML m v . (B) MLm 23v . (C) MLm 35v . (D) ML m 47v . [ ] 79、光滑的水平桌面上,有一长为2L 、质量为m 的匀质细杆,可绕过其中点且垂直于杆的竖直光滑固定轴O 自由转动,其转动惯量为31mL 2,起初杆静止.桌面上有两个质量均为m 的小球,各自在垂直于杆的方向上,正对着杆的一端,以相同速率v 相向运动,如图所示.当两小球同时与杆的两个端点发生完全非弹性碰撞后,就与杆粘在一起转动,则这一系统碰撞后的转动角速度应为 (A) L 32v . (B) L54v . (C) L 76v . (D) L98v . (E) L712v . [ ] 80、花样滑冰运动员绕通过自身的竖直轴转动,开始时两臂伸开,转动惯量为J 0,角速度为ω0.然后她将两臂收回,使转动惯量减少为31J 0.这时她转动的角速度变为(A) 31ω0. (B) ()3/1 ω0. (C) 3 ω0. (D) 3 ω0. [ ]二、填空题:81、一物体质量为M ,置于光滑水平地板上.今用一水平力F 通过一质量为m 的绳拉动物体前进,则物体的加速度a =______________,绳作用于物体上的力T =_________________.82、图所示装置中,若两个滑轮与绳子的质量以及滑轮与其轴之间的摩擦都忽略不计,/绳子不可伸长,则在外力F 的作用下,物体m 1和m 2的加速78、v 俯视图79、O v俯视图 8183、在如图所示的装置中,两个定滑轮与绳的质量以及滑轮与其轴之间的摩擦都可忽略不计,绳子不可伸长,m 1与平面之间的摩擦也可不计,在水平外力F 的作用下,物体m 1与m 2的加速度a =______________,绳中的张力T =_________________.84、如果一个箱子与货车底板之间的静摩擦系数为μ,当这货车爬一与水平方向成θ角的平缓山坡时,要不使箱子在车底板上滑动,车的最大加速度 a max =_______________________________________.85、一物体质量M =2 kg ,在合外力i t F )23(+= (SI )的作用下,从静止开始运动,式中i 为方向一定的单位矢量, 则当t=1 s 时物体的速度1v =__________.86、设作用在质量为1 kg 的物体上的力F =6t +3(SI ).如果物体在这一力的作用下,由静止开始沿直线运动,在0到2.0 s 的时间间隔内,这个力作用在物体上的冲量大小I=__________________.87、一质量为m 的小球A ,在距离地面某一高度处以速度v 水平抛出,触地后反跳.在抛出t 秒后小球A 跳回原高度,速度仍沿水平方向,速度大小也与抛出时相同,如图.则小球A 与地面碰撞过程中,地面给它的冲量的方向为________________,冲量的大小为____________________.88、两个相互作用的物体A 和B ,无摩擦地在一条水平直线上运动.物体A 的动量是时间的函数,表达式为 P A = P 0 – b t ,式中P 0 、b 分别为正值常量,t 是时间.在下列两种情况下,写出物体B 的动量作为时间函数的表达式:83、87大学物理力学题库及答案(考试常考)(1) 开始时,若B 静止,则 P B 1=______________________;(2) 开始时,若B的动量为 – P 0,则P B 2 = _____________.89、有两艘停在湖上的船,它们之间用一根很轻的绳子连接.设第一艘船和人的总质量为250 kg , 第二艘船的总质量为500 kg ,水的阻力不计.现在站在第一艘船上的人用F = 50 N 的水平力来拉绳子,则5 s 后第一艘船的速度大小为_________;第二艘船的速度大小为______.90、质量为m 的小球自高为y 0处沿水平方向以速率v 0抛出,与地面碰撞后跳起的最大高度为21y 0,水平速率为21v 0,则碰撞过程中 (1) 地面对小球的竖直冲量的大小为 ________________________;(2) 地面对小球的水平冲量的大小为________________________.91、质量为M 的平板车,以速度v 在光滑的水平面上滑行,一质量为m 的物 体从h 高处竖直落到车子里.两者一起运动时的速度大小为_______________.92、如图所示,质量为M 的小球,自距离斜面高度为h 处自由下落到倾角为30°的光滑固定斜面上.设碰撞是完全弹性的,则小球对斜面的冲量的大小为________,方向为____________________________. 93、一质量为m 的物体,以初速0v 从地面抛出,抛射角θ=30°,如忽略空气阻力,则从抛出到刚要接触地面的过程中(1) 物体动量增量的大小为________________,(3) 物体动量增量的方向为________________.y 21y大学物理力学题库及答案(考试常考)94、如图所示,流水以初速度1v 进入弯管,流出时的速度为2v ,且v 1=v 2=v .设每秒流入的水质量为q ,则在管子转弯处,水对管壁的平均冲力大小是______________,方向__________________.(管内水受到的重力不考虑)95、质量为m 的质点,以不变的速率v 经过一水平光滑轨道的︒60弯角时,轨道作用于质点的冲量大小I=________________.96、质量为m 的质点,以不变的速率v 经过一水平光滑轨道的︒60弯角时,轨道作用于质点的冲量大小I=________________.97、质量为M 的车以速度v 0沿光滑水平地面直线前进,车上的人将一质量为m 的物体相对于车以速度u 竖直上抛,则此时车的速度v =______.98、一质量为30 kg 的物体以10 m·s -1的速率水平向东运动,另一质量为20 kg 的物体以20 m·s -1的速率水平向北运动。

大学物理题库-第1章-质点运动学(含答案解析)

大学物理题库-第1章-质点运动学(含答案解析)

大学物理题库 第一章 质点运动学一、选择题:1、在平面上运动的质点,如果其运动方程为j bt i at r22+= (其中b a ,为常数),则该质点作[ ](A ) 匀速直线运动 (B ) 变速直线运动 (C ) 抛物线运动 (D ) 一般曲线运动2、质点以速度124-⋅+=s m t v 作直线运动,沿质点运动方向作ox 轴,并已知s t 3=时,质点位于m x 9=处,则该质点的运动方程为[ ](A) t x 2= (B) 2214t t x += (C) 123143-+=t t x (D) 123143++=t t x3、某雷达刚开机时发现一敌机的位置在j i96+处,经过3秒钟后,该敌机的位置在处,若i 、j分别表示直角坐标系中y x ,的单位矢量,则敌机的平均速度为[ ](A )j i 36+ (B )j i 36-- (C )j i -2 (D )j i +-24、质点沿半径为R 的圆周作匀速率运动,每T 秒转一圈.在2T 时间间隔中,其平均速度大小与平均速率大小分别为(A) 2πR /T , 2πR/T . (B) 0 , 2πR /T(C) 0 , 0. (D) 2πR /T , 0. [ ]5、一质点在平面上作一般曲线运动,其瞬时速度为v,瞬时速率为v ,某一时间内的平均速度为v,平均速率为v ,它们之间的关系必定有:(A )v v v,v == (B )v v v,v =≠(C )v v v,v ≠≠(D )v v v,v ≠=[ ] 6、一运动质点的位置矢量为)y ,x (r,其速度大小为[ ](A)dt dr (B )dt r d (C )dt r d (D )dtr d (E )22)()(dt dydt dx +7、某物体的运动规律为t kv dtdv2-=,式中的k 为大于零的常数,当0=t 时,初速度为0v ,则速度v 与时间t 的函数关系是:[ ](A )0221v kt v += (B ) 0221v kt v +-=(C ) 021211v kt v += (D ) 021211v kt v +-=8、一质点作直线运动,某时刻的瞬时速度=v 2 m/s ,瞬时加速度2/2s m a -=,则一秒钟后质点的速度(A) 等于零. (B) 等于-2 m/s .ji 612+(C) 等于2 m/s . (D) 不能确定. [ ] 9、质点作曲线运动,r 表示位置矢量,v 表示速度,a表示加速度,S 表示路程,a 表示切向加速度,下列表达式中,(1) a t = d /d v , (2) v =t r d /d , (3) v =t S d /d , (4) t a t =d /d v.(A) 只有(1)、(4)是对的. (B) 只有(2)、(4)是对的. (C) 只有(2)是对的.(D) 只有(3)是对的. [ ] 10、一质点在运动过程中,0=dtr d ,而=dtdv常数,这种运动属于[ ] (A )初速为零的匀变速直线运动; (B )速度为零而加速度不为零的运动; (C )加速度不变的圆周运动; (D )匀变速率圆周运动。

大学物理质点力学习题

大学物理质点力学习题

dv dt
et
Ret
3
4、相对运动
伽利略变换式
rpo rpo roo vpo vpo voo apo apo aoo
5、质点运动问题的求解
正问题: rv
dr
a dv
反问题: rv vvdt
dt
v avdt
dt av
——求导 ——积分
4
质点动力学
1、牛顿运动定律
第一定律 第二定律
x P
解:设t时刻速度为v, t+dt时刻速度为v+dv, 根据动量定理
M m
t 到t+dt时间内的冲量
P
M
m
m T
t
g
dt
t时刻的动量
M m m t v
T
t+dt时刻的动量
M
m
m T
t
dt v
dv
m T
dt
v
由动量定理
P
M
m
m T
t
g
dt
M
m
m T
t
dt
v
dv
m T
dt
大学物理习题课
——质点力学部分
1
质点运动学
1、理想模型:质点、质点系
2、运动的描述:
位置矢量
r r(t)
位移矢量 速度 加速度
r r2 (t t) r1(t) v dr
dt
a dv dt
r xi yj zk
v
dx
i
dy
j
dz
k
dt dt dt
a
d2 dt
x
2
i
d2y dt 2

《大学物理》质点力学例题(浙大)

《大学物理》质点力学例题(浙大)

质点力学例题1.一质点沿x 轴方向运动,其加速度随时间的变化关系为 a = 3 + 2t (SI),如果初始时质点的速度为5 m/s ,则当 t = 3 s 时,质点的速度v = __________ m/s 。

)m/s (23)3(5d )23(53023=++=++=⎰t t t t v2.质量为0.25 kg 的质点,受力F = t i (SI )的作用,式中t 为时间,t = 0 s 时该质点以v 0 = 2j m/s 的速度通过坐标原点,则该质点任意时刻的位置矢量是__________。

i F a t m 4==j i 222+=t v j i r t t 2323+=3.已知一质点的运动方程为 r = 2 t i +(2 - t2)j (SI ),则t = 2 s 时质点的位置矢量为__________,2秒末的速度为__________。

j i r 24-= j i 42-=v4.一个具有单位质量的质点在力场 F = ( t 2 - 4t ) i + ( 12t - 6 ) j (SI )中运动,设该质点在t = 0时位于原点,且速度为零。

则t 时刻该质点的位置矢量r = ____________。

j i r )32()32121(2334t t t t -+-=5.一质点从静止出发沿半径 R = 1 ( m )的圆周运动,其角加速度随时间t 的变化规律是 α = 12t 2 - 6t (SI)。

则质点的角速度ω =_________,法向加速度a n =_________,切向加速度a τ =_________。

230234d )612(t t t t tt-=-=⎰ω t t R a 6122-==ατ 2232)34(t t R a n -==ω6.一质点在水平面内以顺时针方向沿半径为2 m 的圆形轨道运动,质点的角速度与时间的关系为ω = kt 2(其中k 为常数),已知质点在第二秒末的线速度为32 m/s ,则在t = 0.5 s 时,该质点的切向加速度a τ = _______;法向加速度a n = _______。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章 质点运动学一、运动的描述(量)---位矢、位移、速度、加速度,切向加速度、法向加速度、轨迹1、质点沿X 轴方向运动,其运动方程为x=2t 2+4t-3(SI),则质点任意时刻的速度表达式为v t =____________,加速度表达式a t =____________,前两秒的位移大小为____________,路程为____________。

2、质点的运动方程为x=2t,y=1o-2t 2(SI ),则质点的轨迹方程为____________,t=2s 时,质点位置=r ____________,速度v =____________。

3、质点作半径为R 的圆周运动,其运动方程为S=2t 2,(切向、法向的单位矢量分别为0τ 和0n ),则 t 时刻质点速率 v=____________,速度v=____________, 切向加速度大小τa =____________,法向加速度大小n a =____________, 总加速度a =____________。

4、下列表述中正确的是:( )A :在曲线运动中,质点的加速度一定不为零;B :速度为零时,加速度一定为零;C :质点的加速度为恒矢量时,其运动轨迹运动为直线;D :质点在X 轴上运动,若加速度a<0,则质点一定做减速运动。

5、 质点作直线运动的运动学方程为x =3t -5t 3 + 6 (SI),则该质点作( )A :匀加速直线运动,加速度沿x 轴正方向.B :匀加速直线运动,加速度沿x 轴负方向.C :变加速直线运动,加速度沿x 轴正方向.D :变加速直线运动,加速度沿x 轴负方向.6、一质点沿x 轴作直线运动,其v -t 曲线如图所示,如t =0时,质点位于坐标原点,则t =4.5 s 时,质点在x 轴上的位置为 ( ) (A) 5m . (B) 2m . (C) 0. (D) -2 m . (E) -5 m. 7、在x 轴上作变加速直线运动的质点,已知其初速度为0v ,初始位置为x 0,加速度Ct a =(其中C 为常量),则其速度与时间的关系为=v __________,运动学方程为=x ____________.8、一质点在XOY 平面内运动,其运动方程为j t i t r )210(42-+=,质点的位置矢量与速度矢量恰好垂直的时刻为__________。

9、质点作半径为m R 5.0=的圆周运动,其角坐标与时间的关系为:()SI t t 33+=θ,t=2 s 时,则质点的角坐标为__________、角速度为__________和角加速度为__________。

10、质点作曲线运动的方程为)(4,22SI t y t x -==,则其轨迹方程为__________ t 时刻质点的切向加速度=τa __ ____,法向加速度a n =__ ____ 。

11、一船以速率30km/h 向正东直线行驶,另一小艇在其前方以速率40km/h 向正北方向直线行驶,则在船上观察到小艇的速率为__________、方向为__________。

-12、火车停止时窗上雨痕向前倾斜0θ角,火车以速率1v 前进时窗上的雨痕向后倾斜1θ角,火车加快以另一速率2v 前进时窗上的雨痕向后倾斜2θ角,求1v 与2v 的比值为__ ____.二、运动学的两类问题----求导、积分1、有一质点沿XOY 平面上作平抛运动,其运动方程为25,3t y t x == (SI) .(1) 写出t 时刻质点的位置矢量表达式;(2) 写出t 时刻质点速度的表达式,并计算s t 4=时质点的速度;(3) 写出t 时刻质点加速度的表达式;2、一质点作圆周运动,轨道半径为R,其运动方程用角量表示为2210t t +=θ(SI ),求:(1)其角速度和角加速度(2)切向加速度和法向加速度3、一石子从空中由静止落下,其加速度为a=A-Bv(A 、B 为常数),试求:(1)石子下落速度v 与时间t 的函数关系 ;(2) 石子下落的运动方程(即y 与t 的函数关系)。

(取竖直向下方向为Y 轴正向,设t=0时y 0=0,v 0=0)4、质点沿x 轴运动,其加速度和位置的关系为 a =2+62x (SI ), 质点在x =0处,速度为101s m -⋅,试求质点在任何坐标处的速度值.5、在x 轴上作变加速直线运动的质点,已知其初速度为0v ,初始位置为x 0,加速度2Ct a =(其中C 为常量),求:(1)其速度与时间的关系,(2)其运动学方程。

6、在离水面高h 米的岸上,有人用绳子拉船靠岸,船在离岸S 处,如题1-4图所示.当人以0v (m ·1-s )的速率收绳时,试求船运动的速度和加速度的大小. 图1-4第二章 质点动力学一、牛顿定律的理解(瞬时性、矢量性、独立性、惯性)1、[ ]两个质量相等的小球由一轻弹簧相连接,再用一细绳悬挂于天花板上,处于静止状态,如图所示。

将绳子剪断的瞬间,球1和球2的加速度分别为:(A )g a g a ==21, (B )g a a ==21,0(C )0,21==a g a (D )0,221==a g a2、做斜抛运动的物体,当到达最高点时的加速度为--------。

3、[ ]在升降机天花板上拴有轻绳,其下端系一重物,当升降机以加速度a 1上升时,绳中的张力正好等于绳子所能承受的最大张力的一半,问升降机以多大加速度上升时,绳子刚好被拉断? (A) 2a 1. (B) 2(a 1+g ). (C) 2a 1+g . (D) a 1+g .4、[ ]质量为m 的物体自空中落下,它除受重力外,还受到一个与速度平方成正比的阻力的作用,比例系数为k ,k 为正值常量.该下落物体的收尾速度(即最后物体作匀速运动时的速度)将是 A) k mg . (B) k g 2 . (C) gk . (D) gk .5、小球以2m/s 的初速度水平抛出后做平抛运动,设当地的重力加速度为10m/s 2,则2秒后小球的速度大小为-------------加速度大小为 -----------。

6、一个质量为m 1的物体拴在绳长L 1的轻绳上,绳的另一端固定在一个光滑桌面的钉子上,另一物体质量为m 2,用长为L 2的绳与m 1连接,二者均在桌面上做匀速圆周运动,假设m 1、m 2的角速度为ω,求各段绳子上的张力7、如果货车底板与放置其上的一个箱子之间的静摩擦系数为μ,当货车爬上与水平方向成θ角的斜坡时,为了不致使箱子在底板上滑动,则货车的最大加速度为多少?二、力的效果的时间积累---动量定理1、[ ] 质量m 、速度大小为v 的质点,在受某个力的作用后,其速度的大小未变,但方向改变了θ角,则这个力的冲量大小为:(A )2cos 2θmv (B) 2sin 2θmv (C) 2cos θmv (D) 2sin θmv2、一物体质量为10 kg ,受到方向不变的力F =30+40t (SI)作用,在开始的两秒内,此力冲量的大小等于_____________;若物体的初速度大小为10 m/s ,方向与力F 的方向相同,则在2s 末物体速度的大小等于________________.3、[ ] 机枪每分钟可射出质量为20克的子弹900颗,子弹射出的速率为800s m ,则射击时的平均反冲力大小为:(A )0.267N (B )16N (C )240N (D )14400N a 14、如图所示的圆锥摆,质量为m 的小球,在水平面内以角速度ω匀速转动,在小球转动一周的过程中,小球动量增量大小等于__ ,小球所受重力之冲量大小等 ,小球所受绳子张力之冲量大小等于______ 。

5、[ ]质量为20 g 的子弹,以400 m/s 的速率沿图示方向射入一原来静止的质量为980 g 的摆球中,摆线长度不可伸缩.子弹射入后开始与摆球一起运动的速率为(A) 2 m/s . (B) 4 m/s . (C) 7 m/s . (D) 8 m/s . 6、两球质量分别为m 1=2.0 g ,m 2=5.0 g ,在光滑的水平桌面上运动.用直角坐标描述其运动,两者速度分别为i101=v cm/s ,)0.50.3(2j i +=v cm/s .若碰撞后两球合为一体,则碰撞后两球速度v =____ ____ _,三、力的作用效果的空间积累------功、动能、势能、动能定理1、质量为10Kg 的物体沿X 轴无摩擦滑动,t=0时刻,质点静止于原点,若物体在力F=3+4t(SI)的作用下运动了3s ,则其速度为-------------;若物体在力F=3+4x (SI )的作用下运动了3m,其速度又等于-------------。

2、一铁锤将一铁钉击入木板,设木板对铁钉的阻力大小与铁钉进入木板内的深度成正比(f=kx ),在铁锤击第一次时能将铁钉击入木板内1cm ,则第二次击打能击入 ____cm (假定铁锤两次打击铁锤时速度相同)3、小江用一漏水的木桶从5米深的井中打水,水桶装满时总质量为10Kg,,但每上升1M要漏掉1Kg, 那么小江将满桶水从井底匀速拉到井口所做的功为-------------。

4、关于功的理解,下列说法正确的是:【 】A :保守力做正功时,系统内相应的势能增加;B :质点运动经一闭合路径,保守力对质点做的功为零;C :作用力和反作用力做功的代数和为零;D :摩擦力总是做负功。

5、质点系的内力可以改变:【 】A :系统的总动量; B:系统的总动能;C :系统的总角动量;D :系统的总质量。

6、一个质点同时在几个力作用下的位移为:【 】 k j i r 654+-=∆ (SI) 其中一个力为恒力k j i F 953+--= (SI),则此力在该位移过程中所作的功为(A) -67 J . (B) 17 J .(C) 67 J . (D) 91 J四、运动的守恒律1、地球在太阳的引力作用下绕日运动,若忽略其它力的影响,则地日系统的守恒量为:【 】A :总机械能和总动量;B :总动量和总角动量;︒30 v 2C :总机械能和角动量;D :总机械能、总动量、总角动量。

2、一木棒放置于光滑水平台面上,一端通过铰链固定,一子弹以速度v 水平击中木棒,在此碰击过程中,木棒和子弹所构成的系统守恒量是【 】A :总机械能;B : 总动量;C :总角动量;D :以上全部3、质量为M =1.5 kg 的物体,用一根长为l =1.25 m 的细绳悬挂在天花板上.今有一质量为m =10 g 的子弹以v 0=500 m/s 的水平速度射穿物体,刚穿出物体时子弹的速度大小v =30 m/s ,设穿透时间极短. 求: (1) 子弹刚穿出时绳中张力的大小; (2) 子弹在穿透过程中所受的冲量.4、一质量为m 的物体,从质量为M的圆弧形槽顶端A由静止下滑,设圆弧半径为R,张角为2 ,所有摩擦忽略不计,求: 1)物体到达槽底B时, m 和M的速度2)物体从槽顶A 到达槽底B的过程中,m 对M所做的功。

相关文档
最新文档