差动保护调试方法(DOC)

合集下载

完整的变压器差动保护调试和验证方法

完整的变压器差动保护调试和验证方法

完整的变压器差动保护调试和验证方法变压器差动保护是一种常用的保护装置,用于保护变压器免受内部故障以及外部短路故障的影响。

为了确保差动保护能够可靠地工作,需要对其进行调试和验证。

下面将详细介绍完整的变压器差动保护调试和验证方法。

一、调试方法:1.检查保护装置的接线是否正确。

检查差动保护装置与变压器的CT (电流互感器)接线是否正确,确保保护装置能够准确测量输入和输出电流。

2.对CT进行检定。

使用专业的CT测试仪对CT进行检定,测量CT的变比、二次回路电阻等参数,确保CT工作正常。

3.调整差动保护装置的参数。

根据变压器的参数和保护装置的要求,设置合适的差动电流定值和时间延迟等参数。

4.模拟故障事件进行测试。

通过人工模拟变压器的内部短路故障或外部短路故障,观察差动保护装置的动作情况。

同时,还可以利用保护回路测试仪模拟故障事件,测试保护装置的灵敏度和可靠性。

二、验证方法:1.进行整套装置的一次性测试。

通过对整个差动保护装置进行一次性测试,包括保护装置的所有功能和功能组合的验证,确保差动保护装置能够正常工作。

2.进行稳态和动态特性测试。

测试差动保护装置的稳态特性,包括固定和变化的负荷电流等情况下的响应速度和误动作情况。

同时,还需要测试差动保护装置的动态特性,包括起动和闭锁时的动作时间和误动作情况。

3.进行电流差动特性测试。

通过让一定量的故障电流流过变压器的输入和输出侧CT,并观察差动保护装置的动作情况,验证其能够可靠地检测和保护变压器。

4.进行接地故障测试。

在变压器的输入或输出线路中引入接地故障,并观察差动保护装置的动作情况,以验证其对接地故障的保护能力。

5.进行保护可靠性测试。

通过长时间的持续运行和重复测试,验证差动保护装置的稳定性和可靠性。

同时,进行周期性的差动保护装置的校验和定期的维护,确保其长期可靠工作。

总结:变压器差动保护调试和验证方法包括接线检查、CT检定、参数调整、故障模拟测试等步骤,通过这些步骤可以确保差动保护装置能够可靠地保护变压器。

差动保护调试

差动保护调试

差动保护13.1.5.最小动作电流检查:13.1.5.1.交流接线:将一相电流接入机端A相电流端子(101,102)。

13.1.5.2.操作步骤及现象:缓慢增加电流至发电机比率制动式差动保护动作。

记录此时电流值,误差应满足定值2A的±2.5%要求。

装置液晶应弹出动作报告“CPU1,CPU2发电机比率制动式差动保护A相动作”,面板启动灯,信号灯及跳闸灯点亮。

13.1.5.3.以上述同样方法对机端B相,C相及机尾A相,B相,C相进行测试。

13.1.6.制动特性检查:13.1.6.1.交流接线:同时将两组电流接入机端A相电流端子(101,102),机尾A相电流端子(109,110)。

13.1.6.1.操作步骤及现象:●施加机端A相电流为I1=6A∠0º,机尾A相电流为I2=6A∠180º。

固定I2,缓慢增加I1至保护可靠动作,记录此时的电流值I3;●施加机端A相电流为I1´=8A∠0º,机尾A相电流为I2´=8A∠180º,固定I2´,缓慢增加I1´至保护可靠动作,记录此时的电流值I3´;●由公式S=(Iop2 –Iop1)/(Ires2–Ires1),计算得S值,应满足定值0.5的±10%要求。

(其中Iop1= I3–I2,Iop2= I3´–I2´,Ires1= (I3+ I2)/2, Ires2=(I3´ +I2´)/2)。

13.1.7.动作时间检查:(以机端A相电流为例)在机端A相电流端子(101,102)施加交流电流4A,以毫秒计(或微机测试仪的时间测试功能)测差动动作时间,其值应不大于25ms。

13.1.8.以上述同样方法对机端B相,C相及机尾A相,B相,C相进行测试。

13.1.9.TA断线闭锁差动检查:13.1.9.1交流接线:将机端电流输入端子104,105短接,将机尾电流输入端子110,111短接,112,113短接。

主变差动速断调试方法

主变差动速断调试方法

主变差动速断调试方法一、主变差动速断保护系统的组成二、主变差动速断保护系统的调试方法1.配置准确的电流互感器:在主变差动速断保护系统中,电流互感器是非常关键的设备,它会直接影响到保护系统的准确性和可靠性。

因此,在调试过程中,要仔细检查电流互感器的连接和配置,确保其参数的准确性。

2.完成保护信号的传输:保护信号的传输是主变差动速断调试的一个重要环节。

在调试过程中,应检查其保护信号传输线路的连接是否良好,信号接地是否正常,并进行必要的调整和修复。

3.设置合适的差动速断保护区域:根据实际情况,合理设置差动速断保护区域。

保护区域应与主变的故障灵敏区域相重合,确保在主变发生内部故障时能够及时地启动差动速断保护。

4.调试差动速断保护的动作阈值:调试过程中,应根据实际情况逐步调整差动速断保护的动作阈值。

调试时,可以通过增加敏感性来降低差动速断保护动作的阈值,以提高保护系统的灵敏度和可靠性。

5.模拟实际故障进行调试:为了检验主变差动速断保护系统的工作性能,可以模拟实际故障进行调试。

模拟故障时,可以通过外部电源或其他特殊测试设备来模拟故障的发生,观察差动速断保护是否能够正确地进行动作。

6.检查差动速断保护的动作指示:在调试差动速断保护系统时,应注意检查其动作指示是否准确可靠。

可以通过仔细观察差动速断保护装置的显示面板、动作指示灯等,来判断其动作的准确性。

7.检查差动速断保护的复归功能:差动速断保护系统应具备复归功能,即在故障消失后能够自动复归。

在调试过程中,可以分别模拟故障和取消故障,观察差动速断保护是否能够及时复归。

8.与其他保护装置的协调工作:在主变差动速断保护调试过程中,还需要与其他保护装置进行协调工作。

比如与主变差流保护、主变过流保护等进行协调,确保主变在发生故障时能够及时切除故障部分。

三、主变差动速断保护系统的调试注意事项1.调试工作应在专业人员的指导下进行,确保调试的准确性和安全性。

2.在调试过程中应注意保护设备的接线及接地问题,确保保护信号的准确传输。

母线差动保护调试方法

母线差动保护调试方法

母线差动保护调试方法 IMB standardization office【IMB 5AB- IMBK 08- IMB 2C】母线差动保护调试方法1、区内故障模拟,不加电压,将CT断线闭锁定值抬高。

选取Ⅰ母上任意单元(将相应隔离刀强制至Ⅰ母),任选一相加电流,升至差动保护动作电流值,模拟Ⅰ母区内故障,差动保护瞬时动作,跳开母联及Ⅰ母上所有连接单元。

跳开Ⅰ母、母联保护信号灯亮,信号接点接通,事件自动弹出。

在Ⅱ母线上相同试验,跳开母联及Ⅱ母上所有连接单元。

将任一CT一次值不为0的单元两把隔刀同时短接,模拟倒闸操作,此时模拟上述区内故障,差动保护动作切除两段母线上所有连接单元。

(自动互联)。

投入母线互联压板,重复模拟倒闸过程中区内故障,差动保护动作切除两段母线上所有连接单元。

(手动互联)任选Ⅰ母一单元,Ⅱ母一单元,同名相加大小相等,方向相反的两路电流,电流大于CT断线闭锁定值,母联无流,此时大差平衡,两小差均不平衡,保护装置强制互联,再选Ⅰ母(或Ⅱ母)任一单元加电流大于差流启动值,模拟区内故障,此时差动动作切除两段母线上所有连接单元。

任选Ⅰ母上变比相同的的两个单元,同名相加大小相等,方向相反的的两路电流,固定其中一路,升高另外一路电流至差动动作,根据公式计算比率制动系数,满足说明书条件。

(大差比例高值,大差比例低值,小差比例高值,小差比例低值,当大差高值或小差高值任一动作,且同时大差和小差比例低值均动作,相应比例差动元件动作。

)2、复合电压闭锁。

非互联状态,Ⅱ母无压,满足复压条件。

Ⅰ母加入正常电压,单独于Ⅰ母任一支路加入电流大于差动启动电流定值,小于CT断线闭锁定值,在差流比率制动动作满足条件下,分别验证保护Ⅰ母的电压闭锁中相电压(),负序电压(4V),零序电压定值(6V),正常电压,相应母线差动不出口,复合电压闭锁任一条件开放,差动出口。

对于Ⅱ母故障,Ⅱ母单元加入故障电流,正常电压,逐项验证Ⅱ母复压开放。

变压器差动保护原理及调试方法

变压器差动保护原理及调试方法

制动电流I r
+-
i i
1
2
=2i1
++
差动电流I cd
i 1
i 2
≈2i1
制动电流I
++
i i
≈0
r
1
2
Icd
Icd
I set
(Ir<Ie区) 外故障特点区Icd内故I障set 特点
差动电流小 差动电流大
I cd
K
I r
(Ir≥I制e) 动电流大
I制动 电K流 I小
cd
r
变量
恒量
动作区
Iset
➢ 涌流波形偏于时间轴一侧,波形含有非周期 分量。
22:02
22
二、 差动保护的几个特殊问题(1)
如何识别涌流(1)
当变压器合闸于电源时,灵敏的差动保护可能误动。 为使差动保护躲过涌流,必须采取措施使保护能区分 涌流状况与故障状况。这就必须要提供某种形式来识 别涌流从而限制此时的差动保护动作。
可以从涌流的特点出发来找到识别的方法!
部流入差动回路
22:02
18
二、 差动保护的几个特殊问题(1)
空投变压器励磁涌流产生的原因(1)
22:02
19
二、 差动保护的几个特殊问题(1)
空投变压器励磁涌流产生的原因(2)
22:02
20
二、 差动保护的几个特殊问题(1)
空投变压器励磁涌流产生的原因(3)
➢涌流的波形、大小和持续时间主要取决于下列因素:
Ir
22:02
17
二、 差动保护的几个特殊问题(1)
励磁涌流对差动保护的影响
空充变压器时,将产生励磁涌流,励磁涌流的 幅值可以达到8-10倍主变额定电流,而励磁涌流 是以单边的差流出现的,如此大的电流全部流 入差动回路,若不采取措施势必造成差动保护 误动。

母差保护检验调试_doc

母差保护检验调试_doc

模块四母差保护检验调试概述母线发生故障的几率较线路低,但故障的影响面很大。

因为母线上通常连有较多的电气元件,母线故障将使这些元件停电,从而造成大面积停电事故,并可能破坏系统的稳定运行,使故障进一步扩大。

母线差动保护能够在母线发生故障时快速地切除隔离故障,保证系统的稳定运行,因此母差保护的调试和维护工作非常重要。

当220kV及以上断路器在保护动作跳闸时如果发生机构失灵而无法跳开时,为尽快隔离故障,保证系统稳定运行,要求启动断路器失灵保护,以较短时间动作于断开母联断路器或分段断路器,再经一时限动作于连接在同一母线上的所有支路的断路器。

现各厂家生产的微机母差保护一般都包含集成有断路器失灵保护功能。

新投入运行的母差保护装置第一年内需进行一次全部检验;微机型母差保护每两年进行一次部分检验,每六年进行一次全部检验。

以下以RCS-915A母差保护为例,说明其检验调试的基本步骤。

即使是同一厂家的相同型号的保护装置,因软件版本号的不同而可能会有个别差异。

1、工作任务现场有高压母线差动保护屏一面,需停电进行保护年检,要求在规定时间内完成保护年检项目。

2、工作条件2.1RCS-915A母线差动保护屏柜。

2.2微机保护测试仪及配套试验线,万用表,兆欧表。

2.3螺钉旋具,绝缘胶布。

3、操作注意事项3.1更换母差保护装置或检验调试中,对于接入母差保护的各电气元件(主变、线路、旁路、母联或分段开关)尤其是运行状态元件,要特别注意工作中应严禁造成二次电流回路开路、直流回路接地及电压回路短路等。

3.2对于新安装母差保护装置,应认真清查接入母差保护屏的所有元件各相电流回路的相对极性关系及变比整定是否正确。

3.3检查母差保护屏的各元件失灵启动回路及母线刀闸切换电流回路接入是否正确并核对其相应切换继电器或指示灯显示正确,要保证电流切换回路正确可靠。

3.4调试中应特别注意检查其在区内、外故障时动作的选择性是否正确,检查其复合电压闭锁功能、母联失灵(死区故障)保护、CT断线闭锁、告警功能及各保护单元的出口逻辑(包括失灵保护出口)是否正确。

发电机差动保护调试方法

发电机差动保护调试方法

发电机差动保护调试方法
发电机差动保护调试方法如下:
1.在微机保护盘处拉开所有电流端子拉板,拆除A,B,C,N相
电压线,将微机保护装置与外接回路断开,测试电压回路绝缘合格。

2.拉开SEL-300G保护屏所有保护及开关跳闸压板。

保护调试时,
只投入相应的保护压板,防止其他保护动作影响调试结果。

3.根据各项保护整定值中控制的不同,试验仪的开关量输入接点
方式也相应随之改变,防止试验结果错误。

4.在发电机机端侧或中性点侧加入电流测试启动电流。

在发电机
机端侧的三相输入相位相差120°的正序电流,在发电机中性点侧三相输入大小相同的而对应相位相反的电流。

差动保护的差动电流为两侧电流的差。

使某侧电流大小不变,增加另一侧电流的大小,此时差流逐渐变大,当差流大于整定值时,发电机差动保护出口动作。

5.对于速断保护,在发电机其中一侧加入单相电流,当电流大于
整定定值时,发电机速断保护动作。

以上步骤仅供参考,如需了解更多信息,建议咨询专业技术人员。

变压器差动保护调试方案及流程

变压器差动保护调试方案及流程

变压器差动保护调试方案及流程变压器差动保护调试。

接线得查仔细。

调试变压器差动保护,首先得查接线。

电流互感器、差动继电器,这些都得接得稳稳当当,不能出一点差错。

极性、端子,都得一一确认,才能确保后面的调试顺利。

参数得算精确。

整定参数这步也很关键。

变压器电流、电压,还有制动电阻,都得考虑进去。

动作电流、返回电流,得算得一分不差。

这样,差动保护才能在关键时刻起作用,不会误判也不会漏判。

模拟得搞一搞。

模拟试验也得搞一搞。

模拟变压器出故障,看看差动保护能不能正常工作。

这边断电源,那边加电流,看差动继电器动不动。

动了,就说明调试差不多对了。

数据得记清楚。

平时还得记录数据,比如电流、电压啥的。

这些数据关键时刻
能派上大用场。

跟故障时的数据对比一下,就能知道问题出在哪儿了。

操作面板得熟练。

操作面板也得熟练。

切换到差动保护模式,得轻车熟路。

面板
上的显示、指示,都得看仔细,确保设备状态良好。

人工确认得小心。

最后,人工确认也得小心翼翼。

差动保护动作了,得看看是不
是真故障,别搞出乌龙。

这可得靠经验和专业知识,判断得准准的。

总之,调试变压器差动保护这事儿,得仔细、得精确、得模拟、得记录、得熟练、得小心。

都做到了,差动保护才能靠谱,电力系
统的安全才能有保障。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

微机变压器差动保护一、微机变压器差动保护中电流互感器二次电流的相位校正问题电力系统中变压器常采用Y/D-11接线方式,因此,变压器两侧电流的相位差为30°。

如果不采取措施,差回路中将会由于变压器两侧电流相位不同而产生不平衡电流。

必需消除这种不平衡电流。

(中华人民共和国行业标准DL—400—91《继电保护和安全自动装置技术规程》2.3.32条:对6.3MV A及以上厂用工作变压器和并联运行变压器。

10MV A及上厂用变压器和备用变压器和单独运行的变压器。

以及2MV A及以上用电速断保护灵敏度不符合要求的变压器,应装设纵联差动保护。

)(一)用电流互感器二次接线进行相位补偿其方法是将变压器星形侧的电流互感器接成三角形,将变压器三角形侧的电流互感器接成星形,如图1所示。

图1变压器为Y0/△-11连接和TA为△/Y连接的差动保护原理接线图2 向量图采用相位补偿后,变压器星形侧电流互感器二次回路差动臂中的电流2A I 、2B I 、2C I ,刚好与三角形侧的电流互感器二次回路中的电流2a I 、2b I 、2c I 同相位,如图2所示。

(二) 用保护内部算法进行相位补偿当变压器各侧电流互感器二次均采用星型接线时,其二次电流直接接入保护装置,从而简化了TA 二次接线,增加了电流回路的可靠性。

但是如图3当变压器为Y 0/△-11连接时,高、低两侧TA 二次电流之间将存在30°的角度差,图4(a )为TA 原边的电流相量图。

图3 变压器为Y 0/△-11连接和TA 为Y/Y 连接的差动保护原理接线图4 向量图为消除各侧TA 二次电流之间的角度差,由保护软件通过算法进行调整。

1、常规差动保护中电流互感器二次电流的相位校正大部分保护装置采用Y →△变化调整差流平衡,如四方的CST31、南自厂的PST-1200、WBZ-500H 、南瑞的LFP-972、RCS-985等,其校正方法如下:Y 0侧:2A I ' =(2A I -2B I )/3 2B I ' =(2B I -2C I )/3 2C I ' =(2C I -2A I )/3 △侧:2a I ' =2a I 2b I ' =2b I 2c I ' =2c I式中:2A I 、2B I 、2C I 为Y 0侧TA 二次电流,2A I ' 、2B I ' 、2C I ' 为Y 0侧校正后的各相电流;2a I 、2b I 、2c I 为△侧TA 二次电流,2a I ' 、2b I ' 、2c I ' 为△侧校正后的各相电流。

经过软件校正后,差动回路两侧电流之间的相位一致,见图4(b )所示。

同理,对于三绕组变压器,若采用Y 0/ Y 0/△-11接线方式,Y 0侧的相位校正方法都是相同的。

2、RCS -978中电流互感器二次电流的相位校正RCS -978中电流互感器二次电流的相位校正方法与其它微机变压器保护有所不同,此保护装置采用△→Y 变化调整差流平衡,其校正方法如下: Y 0侧:2A I ' =(2A I -0I ) 2B I ' =(2B I -0I ) 2C I ' =(2C I -0I ) △侧:2a I ' =(2a I -2c I )/3 2b I ' =(2b I -2a I )/3 2c I ' =(2c I -2b I )/3式中:2A I 、2B I 、2C I 为Y 0侧TA 二次电流,2A I ' 、2B I ' 、2C I ' 为Y 0侧校正后的各相电流;2a I 、2b I 、2c I 为△侧TA 二次电流,2a I ' 、2b I ' 、2c I ' 为△侧校正后的各相电流。

经过软件校正后,差动回路两侧电流之间的相位一致,见图4(c )所示。

同理,对于三绕组变压器,若采用Y 0/ Y 0/△-11接线方式,Y 0侧的软件算法都是相同的,△侧同样进行相位校正。

3、差动电流的计算方法 A 相的差动电流计算公式为:cd I =2A I ' ×ph K +2a I ' ×PL K 2A I ' 为校正后的高压侧二次电流,2a I ' 为校正后的低压侧二次电流,ph K 为高压侧平衡系数,PL K 为低压侧平衡系数。

二、微机变压器差动保护试验举例在对微机变压器保护的试验中,保护有无校正和靠软件校正两种方式。

在靠软件校正时,如果使用三相测试仪,可以通过加补偿电流的方式进行单相测试,或者改变平衡系数和接线方式,用三圈变外转角方式测试,需要说明的是后一种测试方法实际上是对两相同时进行测试,相当于相间差动。

在六相测试仪中,没有转角方式的设置,只要正确设置接线方式即可。

此举例中故障类型均为“三相故障”。

以Y/Y/D-11接线变压器A相比例制动特性扫描为例,现将测试方法分别总结如下。

(一)WBZ-500H微机变压器保护相关保护参数定值:差动速断值 5A;差动电流 1A;比例制动拐点 3A;比例制动斜率 0.5;高压侧额定电流 1A;中压侧额定电流 1A;低压侧额定电流 1.5A;相关保护设置:差流=│I1+I2+I3│,制动电流={│I1│,│I2│,│I3│};注意事项:此保护的复归时间为6S,所以间断时间应大于6S。

1、三相测试仪(1)保护控制字:0000 内转角方式;三相测试仪;同时做三侧。

测试仪:测试对象选择3圈变,Y/Y/D-11接线方式,CT外转角。

电流接线方法:测试仪Ia→高压侧(Y侧),电流从A相极性端进入,非极性端流出;测试仪Ic→中压侧(Y侧),电流从A相极性端进入,非极性端流出;测试仪Ib→低压侧(D侧),电流从A相极性端进入,非极性端流出后进入C相非极性端,由C相极性端流回测试仪。

平衡系数的设置:高压侧 1/3=0.577;中压侧1A/1A/3=0.577;低压侧1A/1.5A=0.677。

(2)保护控制字:0000 内转角方式;三相测试仪;做Y/D-11侧。

测试仪:测试对象选择2圈变, Y/D-11接线方式,CT高压侧内转角。

电流接线方法:测试仪Ia→高压侧(Y侧),电流从A相极性端进入,非极性端流出;测试仪Ib→低压侧(D侧),电流从A相极性端进入,非极性端流出;测试仪Ic→低压侧(D侧),电流从C相极性端进入,非极性端流出。

平衡系数的设置:高压侧 1;低压侧1A/1.5A=0.677。

(3)保护控制字:0000 内转角方式;三相测试仪;做Y/Y侧。

测试仪:测试对象选择2圈变,Y/Y接线方式,CT外转角。

电流接线方法:测试仪Ia→高压侧(Y侧),电流从A相极性端进入,非极性端流出;测试仪Ib→中压侧(Y侧),电流从A相极性端进入,非极性端流出。

平衡系数的设置:高压侧 1/3=0.577;中压侧1A/1A/3=0.577。

(4)保护控制字:F000 外转角方式;三相测试仪;同时做三侧。

测试仪:测试对象选择3圈变,Y/Y/D-11接线方式,CT外转角。

电流接线方法:测试仪Ia→高压侧(Y侧),电流从A相极性端进入,非极性端流出;测试仪Ic→中压侧(Y侧),电流从A相极性端进入,非极性端流出;测试仪Ib→低压侧(D侧),电流从A相极性端进入,非极性端流出。

平衡系数的设置:高压侧 1;中压侧1A/1A=1;低压侧1A/1.5A=0.677。

2、六相测试仪(1)保护控制字:0000 内转角方式;六相测试仪;做Y/D-11侧。

测试仪选择:“保护对象”→“接线方式”选为高压侧Y,低压侧D-11。

电流接线方法:测试仪Ia、Ib、Ic→高压侧(Y侧);测试仪Ia’、Ib’、Ic’→低压侧(D侧);平衡系数的设置:高压侧 1;低压侧1A/1.5A=0.677。

(2)保护控制字:F000 外转角方式;六相测试仪;做Y/ D-11侧。

测试仪选择:“保护对象”→“接线方式”选为高压侧Y,低压侧Y。

电流接线方法:测试仪Ia、Ib、Ic→高压侧(Y侧);测试仪Ia’、Ib’、Ic’→低压侧(D侧);平衡系数的设置:高压侧 1;低压侧1A/1.5A=0.677。

(3)保护控制字:0000 内转角方式;六相测试仪;做Y/Y侧。

测试仪选择:“保护对象”→“接线方式”选为高压侧Y,低压侧Y。

电流接线方法:测试仪Ia、Ib、Ic→高压侧(Y侧);测试仪Ia’、Ib’、Ic’→中压侧(Y侧);平衡系数的设置:高压侧 1/3=0.577;中压侧1A/1A/3=0.577。

(4)保护控制字:F000 外转角方式;六相测试仪;做Y/Y侧。

测试仪选择:“保护对象”→“接线方式”选为高压侧Y,低压侧Y。

电流接线方法:测试仪Ia、Ib、Ic→高压侧(Y侧);测试仪Ia’、Ib’、Ic’→中压侧(Y侧);平衡系数的设置:高压侧 1;中压侧1A/1A=1。

(二)PST-1200数字式变压器保护相关保护参数定值:CT额定电流:5A;差动动作电流:2A;速断动作电流:20A;高压侧额定电流:3A;高压侧额定电压:220kV;高压侧CT变比:200;中压侧额定电压:110kV;中压侧CT变比:600;低压侧额定电压:10kV;低压侧CT变比:2000;相关保护设置:制动方程:Ir=max{│Ih│,│Im│,│Il│},比率制动特性曲线:第一个拐点电流Izd=高压侧额定电流值,在此定值中为3A,斜率K1=0.5;第二个拐点电流3Izd,在此定值中为3×3=9A,斜率K2=0.7。

1、三相测试仪(1)保护控制字:0C10,内转角方式;三相测试仪;同时做三侧。

测试仪:测试对象选择3圈变,Y/Y/D-11接线方式,CT外转角。

电流接线方法:测试仪Ia→高压侧(Y侧),电流从A相极性端进入,非极性端流出;测试仪Ic→中压侧(Y侧),电流从A相极性端进入,非极性端流出;测试仪Ib→低压侧(D侧),电流从A相极性端进入,非极性端流出后进入C相非极性端,由C相极性端流回测试仪。

平衡系数的设置:高压侧 1/3=0.577;中压侧(MCT×MDY)/(HCT×HDY×3)=(600×110)/(200×220×3)=0.866;低压侧(LCT×LDY)/(HCT×HDY)=(2000×10)/(200×220)=0.455。

(2)保护控制字:0C13,外转角方式;三相测试仪;同时做三侧。

测试仪:测试对象选择3圈变,Y/Y/D-11接线方式,CT外转角。

电流接线方法:测试仪Ia→高压侧(Y侧),电流从A相极性端进入,非极性端流出;测试仪Ic→中压侧(Y侧),电流从A相极性端进入,非极性端流出;测试仪Ib→低压侧(D侧),电流从A相极性端进入,非极性端流出。

相关文档
最新文档