高等工程数学-05
高等工程数学 PPT

( p, q) 在 Re p>0,Re q>0 内为全纯函数.
18
函数满足如下重要性质:
性质4.对称性 ( p, q) (q, p) 性质5. 与 的关系
( p, q) ( p ) ( q ) ( p q )
19
(1.8)
(1.9)
Section 3. 误差函数
了解特殊函数的定义,熟悉特
殊函数的基本性质
为后续学习打下基础 特殊函数也广泛应用于工程科
学中。
5
内容简介
积分变换理论包括
F-氏变换 L-氏变换 其它变换。如:小波变换等。
6
内容简介
积分变换理论意义
直接用来求解微分方程 广泛应用于其它工程科学。如
振动力学、电工学、无线电技 术等等。
C1
2 (t z )
2
dt
1
(1.15)
4i sin
(t 1)
C2
2 ( z t)
dt
(1.16)
其中,C1为沿(- ,-1)切开的t平面上的一条正向闭 曲线,且含1, z为内点. C2为在t平面上沿负向 绕1一周,沿正向绕点-1一周的8字形闭曲线.
23
本章参考书目
个领域中常用的应用数 学方法
为今后学习其它工程课
程奠定必要的数学基础
2
内容简介
特殊函数(高等函数)
积分变换理论
泛函与变分法
曲线与曲面造型
3
内容简介
特殊函数(高等函数)定义
某些特定形式含参数积分
某些偏微分方程的特征函数 椭圆函数
4
内容简介
高等工程数学

线性方程组
本讲重点 1、线性方程组的解法,解的情况的判定 2、齐次和非齐次方程组解的结构,特别是基础解系的概 念
Precision Engineering Lab., Xiamen Univ.
高等工程数学
机电工程系 郭隐彪
目 录
Precision Engineering Lab., Xiamen Univ.
第一部分 矩阵论 第二部分 数值计算方法
第一部分 矩阵论
第一章 线性代数基本知识 第二章 方阵的相似化简 第三章 向量范数和矩阵范数 第四章 方阵函数与函数矩阵 第五章 矩阵分解 第六章 线性空间和线性变换
第二部分 数值计算方法
第一章 误差的基本知识 第二章 线性方程组的数值解法 第三章 方阵特征值和特征向量的数值计算 第四章 计算函数零点和极值点的迭代法 第五章 函数的插值与最佳平方逼近 第六章 数值积分与数值微分 第七章 常微分方程数值解法
第一章 线性代数基本知识
§1.1 向量和向量空间 §1.2 矩阵及其运算 §1.3 矩阵的初等变换及其应用 §1.4 线性方程组 §1.5 特征值与特征向量
第五章 矩阵分解
§5.1 方阵的三角分解 §5.2 方阵的正交(酉)三角分解 §5.3 矩阵的奇异值分解
第六章 线性空间和线性变换
§6.1 线性空间 §6.2 线性变换 §6.3 内积空间及两类特殊的线性变换
向量和向量空间
1、向量的内积、长度、夹角和正交等 2、关于向量组的线性相关性 3、关于向量组的极大无关组和向量组的秩
《高等工程数学》科学出版社版习题答案(第五章)

《高等工程数学》――科学出版社版习题答案(第五章)(此习题答案仅供学员作业时参考。
因时间匆忙,有错之处敬请指正,谢谢!) (联系地址:yangwq@ ) P113 1.11100110210010103050010110101010111()()010305010035201011101500152022T TT T T TA A FG F F GG A M P A G GG F F F +--⎡⎤⎢⎥⎡⎤⎢⎥==⎢⎥⎢⎥⎣⎦⎢⎥⎣⎦⎡⎤⎡⎤==⎢⎥⎢⎥⎣⎦⎣⎦-⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥⨯⎣⎦⎣⎦⎣⎦⎢⎥⎣⎦⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦(1)的满秩分解是: 的广义逆是:111210301012121062565105652101()()0161021211432541621438T TT T T TB B FG F F GG B M P B G GG F F F +---⎡⎤⎡⎤==⎢⎥⎢⎥⎣⎦⎣⎦-⎡⎤⎡⎤==⎢⎥⎢⎥-⎣⎦⎣⎦-⎡⎤-⎡⎤⎡⎤⎡⎤⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦⎢⎥-⎣⎦-⎡⎤⎢⎥=-⎢⎥⎢⎥-⎣⎦(2) 的满秩分解是: 的广义逆是:2.11111010,,0100011000101111()000100P A Q PAQ A A Q A P PAQ +-+-+-⎡⎤⎡⎤⎡⎤===⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎡⎤===⎢⎥⎣⎦⎡⎤⎡⎤⎡⎤==≠⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦取则有:3. (1)自己验证M-P 广义逆的四个条件即可(2) 因为rank(A)= rank(AA +A)≤rank(AA +)≤rank(A +)= rank(A +A A +)≤rank(A +A) ≤rank(A) 所以命题成立4.(1)因为rank (A|b )=rank (A )所以是相容方程组1111112110111001211033211()3611362121()212622002111()()2226011211()031H H H H H HA A FG GG F F A G GG F F F x A b I A A t ----+--++⎡⎤⎡⎤⎢⎥==⎢⎥⎢⎥--⎣⎦⎢⎥⎣⎦-⎡⎤⎡⎤==⎢⎥⎢⎥-⎣⎦⎣⎦-⎡⎤⎡⎤==⎢⎥⎢⎥-⎣⎦⎣⎦⎡⎤⎢⎥--⎢⎥==⎢⎥-⎢⎥⎣⎦⎡⎤⎢⎥⎢=+-=⎢⎢⎣⎦的满秩分解为:通解为:124123134134222321226223t t t t t t t t t t t t --⎡⎤⎢⎥-++⎢⎥⎥+⎢⎥⎥+-⎢⎥⎥--+⎣⎦ (2)因为rank (A|b )=rank (A )所以是相容方程组[]111111101201()551()551021()()204255211()102525H H H H H H A A FG GG F F A G GG F F F c x A b I A A t c ----+--++⎡⎤⎢⎥==⎢⎥⎢⎥⎣⎦====⎡⎤==⎢⎥⎣⎦⎡⎤⎡⎤=+-=+⎢⎥⎢⎥-⎣⎦⎣⎦的满秩分解为:通解为:(3)因为rank (A|b )=rank (A )所以是相容方程组11123()()10545652101101626102121141432381396311()10642141419321H H H HA G GG F F F t x A b I A A t t t +--++=⎡⎤⎡⎤-⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦⎣⎦⎢⎥⎢⎥-⎣⎦⎣⎦--⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥=+-=+-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦通解为:5. 自己验证广义逆的四个条件 6.1111111000(1)000000000000000000000000(2)000000000000000HH H HH HH H HG V UAGA U V V U U V U V U V A GAG V U U V V U V -------⎡⎤∑=⎢⎥⎣⎦∑∑⎡⎤∑⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦∑∑∑⎡⎤∑⎡⎤⎡⎤⎡⎤===⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦∑⎡⎤⎡⎤∑∑⎡⎤=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦∑⎡⎤⎡∑∑⎡⎤=⎢⎥⎢⎥⎣⎦⎣⎦⎣记1111110000000(3)000000000()000000(4)000000000()00000H HH H H r H HH H Hr H HU V U G AG U V V U U U I U U AG GA V U U V V V I V V GA A V ------+⎤⎡⎤∑==⎢⎥⎢⎥⎦⎣⎦∑∑⎡⎤⎡⎤∑∑⎡⎤⎡⎤==⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦⎡⎤==⎢⎥⎣⎦∑∑⎡⎤⎡⎤∑∑⎡⎤⎡⎤==⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦⎡⎤==⎢⎥⎣⎦⎡∑=⎣所以HU⎤⎢⎥⎦。
《高等工程数学》习题一参考答案

2 1 1 1 3 1 0 0 1 4 ,可得基础解系为 1 1 1 0 1 0 1 1 1 5
f1 (0,1,1,0,0) , f 2 (1,1,0,1,0) , f 3 (4,5,0,0,1) ,Schmidt 正交化得,
1
13.按 P21 欧氏空间定义 2.1,逐条验证, 1) 不满足第 (2 ) 条, (4) 条, 故不是欧氏空间; 不满足第(4)条,故不是欧氏空间;3)都满足,故是欧氏空间。 14. 按 P21 欧氏空间定义 2.1,逐条验证,都满足,故是欧氏空间。 15. 设向量 ( x1 , x2 , x3 , x4 ) 与三个向量正交,则有
所以对两组基有相同坐标的非零向量可取为 (c, c, c,c)(c 0). 5. 由第 7 页子空间定义可得,1)向量满足加法和数乘封闭,是子空间;2)向量不满足加 法或数乘封闭,故而不是子空间。 注:从几何上看,子空间过原点,而不过原点的都不是。 6. 两个向量组生成相同子空间的充分必要条件是这两个向量组等价, 即可以互相线性表示。 解:因对应分量不成比例,故 α1 (1,1,0,0), α2 (1,0,1,1) , β1 (1,1,0,0), β2 (1,0,1,1) 线性
2
T1T2 ( x1 , x2 ) T1[T2 ( x1 , x2 )] T1 ( x1 , x2 ) ( x2 , x1 ) T2T1 ( x1 , x2 ) T2 [T1 ( x1 , x2 )] T2 ( x2 , x1 ) ( x2 , x1 )
11.略。 12. 解:1)因为 T ( x1 , x2 , x3 ) ( 2 x1 x2 , x2 x3 , x1 ) ,按照 P18 (1.21),可知
高等工程数学课后习题答案

第六章7、设X 1,X 2,…X n 为总体X~N (μ,σ2)的样本,求E[21)(x x ni i-∑=],D[21)(∑=-ni ix x ]。
解:E[21)(x x ni i -∑=]=(n-1)E[11-n 21)(x x ni i-∑=]=(n-1)σ2因为)1(~)(2212--∑=n X x xni iσ所以 D[21)(∑=-ni ix x ]=])([212σ∑=-ni ix xD =σ22(n-1)8、设X 1,X 2,…X 5为总体X~N (0,1)的样本,(1)试确定常数c 1、d 1,使得)(~)()(2254312211n x x x d x x c χ++++并求出n ;(2)试确定常数c 2、d 2,使得),(~)()(2543222212n m F x x x d x x c +++。
解:(1)212)(1x x n S n i i -=∑=且总体为X~N (0,1),所以c 1=21,d 1=31因为2χ分布具有可加性,即若X i ~2χ(i=1,……k ),且各样本相互独立,则)(~121∑∑==ki i ki in xχ,所以n=2。
(2)因为)2,0(~21N x x +,)3,0(~)(543N x x x ++,)1,0(~221N x x +, )1,0(~3543N x x x ++且相互独立, 所以221]2[x x ++2543]3[x x x ++)2(~2χ 因为)2(~22221χx x +,)1(~3)(22543χx x x ++ 所以)1,2(~)(2)(325432221F x x x x x +++,所以)1,2(,2322F d c =10、设X 1,X 2,…X n ,X n+1为总体X~N (μ,σ2)的样本的容量为n+1的样本,)(11~,1221x x n s x n x i n i i --==∑=试证:(1))1(~~1ˆ1---=+n t sxx n n T n (2))1,0(~21σn n N x x n +-+ (3))1,0(~21σnn N x x -- 证明:(1)因为),(~),1(~~)1(),,(~212222σμχσσμN x n s n n N x n +-- 所以)1,0(~1),1,0(~121N nn xx n n N x x n n +-+-++σσ 所以)1(~)1(~)1(1221---+-+n t n sn n n x x n σσ,即)1(~~1ˆ1---=+n t s x x n n T n (2)因为),(~),,(~212σμσμN x nN x n + 所以)1,0(~21σnn N x x n +-+ (3)因为∑∑==--=-=-ni i n i i x n x n n x n x x x 21111111,011)(1)(1)11(22121=--=--=--∑∑∑===ni n i i n i i n n n x E n x E n n x n x n n E μμ2222221121)1()11(σσσnn nn n x n x n n D ni n i i -=+-=--∑∑== 所以)1,0(~21σnn N x x --15、设X 1,X 2,…X n ,1为总体X 的样本,如果X 具有下列密度函数(其中参数均未知)试分别求这些参数的矩估计量与极大似然估计量。
高等工程数学课后答案

第六章7、设X 1,X 2,…X n 为总体X~N (μ,σ2)的样本,求E[21)(x x ni i-∑=],D[21)(∑=-ni ix x ]。
解:E[21)(x x ni i -∑=]=(n-1)E[11-n 21)(x x ni i-∑=]=(n-1)σ2因为)1(~)(2212--∑=n X x xni iσ所以 D[21)(∑=-ni ix x ]= ])([212σ∑=-ni ix xD =σ22(n-1)8、设X 1,X 2,…X 5为总体X~N (0,1)的样本,(1)试确定常数c 1、d 1,使得)(~)()(2254312211n x x x d x x c χ++++并求出n ;(2)试确定常数c 2、d 2,使得),(~)()(2543222212n m F x x x d x x c +++。
解:(1)212)(1x x n S n i i -=∑=且总体为X~N (0,1),所以c 1=21,d 1=31因为2χ分布具有可加性,即若X i ~2χ(i=1,……k ),且各样本相互独立,则)(~121∑∑==ki i ki in xχ,所以n=2。
(2)因为)2,0(~21N x x +,)3,0(~)(543N x x x ++,)1,0(~221N x x +, )1,0(~3543N x x x ++且相互独立, 所以221]2[xx ++2543]3[x x x ++)2(~2χ 因)2(~22221χx x +,)1(~3)(22543χx x x ++,所)1,2(~)(2)(325432221F x x x x x +++,所以)1,2(,2322F d c =10、设X 1,X 2,…X n ,X n+1为总体X~N (μ,σ2)的样本的容量为n+1的样本,)(11~,1221x x n s x n x i n i i --==∑=试证:(1))1(~~1ˆ1---=+n t sx x n n T n (2))1,0(~21σn n N x x n +-+(3))1,0(~21σn n N x x -- 证明:(1)因为),(~),1(~~)1(),,(~212222σμχσσμN x n s n n N x n +-- 所以)1,0(~1),1,0(~121N nn xx n n N x x n n +-+-++σσ 所以)1(~)1(~)1(1221---+-+n t n sn n n x x n σσ,即)1(~~1ˆ1---=+n t s x x n n T n (2)因为),(~),,(~212σμσμN x nN x n + 所以)1,0(~21σnn N x x n +-+ (3)因为∑∑==--=-=-ni i n i i x n x n n x n x x x 21111111,011)(1)(1)11(22121=--=--=--∑∑∑===ni n i i n i i n n n x E n x E n n x n x n n E μμ2222221121)1()11(σσσnn nn n x n x n n D ni n i i -=+-=--∑∑== 所以)1,0(~21σnn N x x --15、设X 1,X 2,…X n ,1为总体X 的样本,如果X 具有下列密度函数(其中参数均未知)试分别求这些参数的矩估计量与极大似然估计量。
高等工程数学教学大纲

课程编号:A080007课程名称:高等工程数学英文名称:Advanced Engineering Mathematics开课单位:理学院开课学期:秋课内学时:32 教学方式:讲授适用专业及层次:工科各专业硕士考核方式:考试预修课程:线性代数、高等数学一、教学目标与要求λ矩阵与矩本课程较全面、系统地介绍矩阵的基本理论、方法和某些应用,基本内容有-阵的Jordan标准形、初等矩阵与矩阵的因子分解、Hermite矩阵与正定矩阵、向量与矩阵的范数、矩阵函数与矩阵值函数、广义逆矩阵与线性方程组的解,算子范数等概念。
通过本课程基本概念和基本定理的阐述和论证,培养研究生的抽象思维与逻辑推理能力,提高研究生的数学素养。
在重视数学论证的同时,强调数学概念的物理、力学等实际背景,培养研究生应用数学知识解决实际工程技术问题的能力。
通过本课程的学习,要求研究生掌握矩阵的基本理论和方法,为学习后继课程、开展科学研究打好基础。
二、课程内容与学时分配第一章λ-矩阵与矩阵的Jordan标准形(8学时)1.1 一元多项式1.2 λ-矩阵及其在相抵下的标准形1.3 λ-矩阵的行列式因子和初等因子1.4 矩阵相似的条件1.5 矩阵的Jordan标准形1.6 Cayley-Hamilton定理与最小多项式第二章矩阵的因子分解(5学时)2.1 初等矩阵2.2 满秩分解2.3 三角分解2.4 QR分解2.5 Schur 分解与正规矩阵2.6 奇异值分解及其推广第三章Hermite矩阵与正定矩阵(6学时)3.1 Hermite矩阵与Hermite二次型3.2 Hermite正定(非负定)矩阵3.3 矩阵不等式3.4 Hermite矩阵的特征值* 第四章范数与极限(6学时)4.1 向量范数4.2 矩阵范数4.3 矩阵序列与矩阵级数第五章矩阵函数与矩阵值函数(2学时)5.1 矩阵函数5.2 矩阵值函数5.3 矩阵值函数在微分方程组中的应用第六章广义逆矩阵(5学时)6.1 广义逆矩阵的概念6.2 广义逆矩阵A-与线性方程组的解A-与相容方程组的极小范数解6.3 极小范数广义逆mA-与矛盾方程组的最小二乘解6.4 最小二乘广义逆l6.5 广义逆矩阵A+与线性方程组的极小最小二乘解三、教材戴华,矩阵论,科学出版社,2001主要参考书1.北京大学,高等代数,高等教育出版社,第二版,19882.Lancaster P. and Tismenetsky M. The Theory of Matrices with Applications,Academic Press, 1985.3.史荣昌,矩阵分析,北京理工大学出版社,19964.罗家洪,矩阵分析引论,华南理工大学出版社,19925.张明淳,工程矩阵理论,东南大学出版社,19956.程云鹏,矩阵论,西北工业大学出版社,1999大纲撰写负责人:杨秀绘杨熙授课教师:杨秀绘杨熙。
高等工程数学知识点

高等工程数学是一门非常重要的数学课程,它主要涉及到微积分、线性代数、偏微分方程和数值计算等方面。
下面我们将对这些知识点进行详细的介绍。
1. 微积分微积分是高等工程数学中最基础的内容之一,它包括单变量微积分和多变量微积分两个部分。
在单变量微积分中,我们主要研究函数的导数和积分,其中导数可以用来求函数的极值和切线,积分可以用来求函数的面积、体积和平均值等。
在多变量微积分中,我们则需要涉及到偏导数和多重积分等概念,这些内容对于工程领域的模拟和优化非常重要。
2. 线性代数线性代数是一门研究向量空间和线性变换的学科,它主要涉及到矩阵、行列式、特征值和特征向量等内容。
在工程领域中,线性代数被广泛应用于控制理论、信号处理和图像处理等方面。
比如说,在机器人控制中,我们需要利用矩阵运算来计算机器人的位置和速度等参数。
3. 偏微分方程偏微分方程是研究物理现象中的变化规律的一种数学工具,它主要涉及到波动方程、热传导方程和扩散方程等内容。
在工程领域中,偏微分方程被广泛应用于流体力学、电磁学和结构力学等方面。
比如说,在飞机设计中,我们需要利用偏微分方程来模拟空气的流动情况,以此来预测飞机的飞行性能。
4. 数值计算数值计算是一门研究将数学理论转化为计算机程序的学科,它主要涉及到数值逼近、数值积分和数值求解等内容。
在工程领域中,数值计算被广泛应用于模拟和优化问题,比如说,在车辆设计中,我们需要利用数值计算来模拟车辆的运动和碰撞情况,以此来优化汽车的安全性能。
综上所述,高等工程数学是一门非常重要的数学课程,它涉及到微积分、线性代数、偏微分方程和数值计算等方面。
这些知识点对于工程领域的模拟和优化非常重要,因此掌握这些知识点对于工程师来说非常必要。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
插值方法 方程求根 矩阵特征值和特征向量的计算
第五章:数值分析绪论
1
误差的来源
2
误差的度量
3
有效数字
4 选用算法时应遵循的几个原则
误差的来源
1
误差的来源
2
误差的度量
3
有效数字
4 选用算法时应遵循的几个原则
误差的来源
进 行 数 值 计 算
法
方
算
计
似
近
立
建
Rou舍nd入ing误差 Tru截nca断tio误n 差 Obse观rv测atio误n 差
高等工程数学
Advanced Engineering Mathematics
当今科学研究的三大方法
实验研究
理论研究
科学计算
伽利略
牛顿
冯·诺依曼
实际问题
数学模型
数值方法
计算结果分析
数值分析
数值分析就是研究各种数学问题的数
值计算的方法和理论的学科
数值分析绪论
线性代数方程组的解法 数值积分和数值微分公式
有效数字
选用算法时应遵循的几个原则
例
选用算法时应遵循的几个原则
例
选用算法时应遵循的几个原则
例
选用算法时应遵循的几个原则
例
误差的来源
总结
选用算法时应遵 循的几个原则
数值分析 绪论
误差的度量
有效数字
第五章:数值分析绪论
思考题 (10分)
M模od型el 误差
据
数
取
获
并
数
立
建
模型误差 观测误差 截断误差(方法误差)
误差的来源
例 舍入误差
误差的来源
误差的来源
例
模型误差 观测误差 截断误差 舍入误差
定义5.1 绝对误差 定义5.2 相对误差
误差的度量
定义5.3 有效数字
有效数字
例5.1 解: