中南大学高等工程数学 试题及参考答案

合集下载

高等工程数学考试题及参考解答(仅供参考)

高等工程数学考试题及参考解答(仅供参考)

考试题及参考解答(参考)一、填空题(每小题3分,共15分) 1,设总体X 服从正态分布(0,4)N ,而1215(,,)X X X 是来自X 的样本,则221102211152()X X U X X ++=++服从的分布是_______ .解:(10,5)F .2,ˆnθ是总体未知参数θ的相合估计量的一个充分条件是_______ . 解:ˆˆlim (), lim Var()0n nn n E θθθ→∞→∞==. 3,分布拟合检验方法有_______ 与____ ___. 解:2χ检验、柯尔莫哥洛夫检验. 4,方差分析的目的是_______ .解:推断各因素对试验结果影响是否显著.5,多元线性回归模型=+Y βX ε中,β的最小二乘估计ˆβ的协方差矩阵ˆβCov()=_______ . 解:1ˆσ-'2Cov(β)=()X X . 二、单项选择题(每小题3分,共15分)1,设总体~(1,9)X N ,129(,,,)X X X 是X 的样本,则___B___ .(A )1~(0,1)3X N -; (B )1~(0,1)1X N -; (C )1~(0,1)9X N -; (D ~(0,1)N . 2,若总体2(,)XN μσ,其中2σ已知,当样本容量n 保持不变时,如果置信度1α-减小,则μ的置信区间____B___ .(A )长度变大; (B )长度变小; (C )长度不变; (D )前述都有可能.3,在假设检验中,就检验结果而言,以下说法正确的是____B___ . (A )拒绝和接受原假设的理由都是充分的;(B )拒绝原假设的理由是充分的,接受原假设的理由是不充分的; (C )拒绝原假设的理由是不充分的,接受原假设的理由是充分的; (D )拒绝和接受原假设的理由都是不充分的.4,对于单因素试验方差分析的数学模型,设T S 为总离差平方和,e S 为误差平方和,A S 为效应平方和,则总有___A___ .(A )T e A S S S =+; (B )22(1)AS r χσ-;(C )/(1)(1,)/()A e S r F r n r S n r ----; (D )A S 与e S 相互独立.5,在多元线性回归分析中,设ˆβ是β的最小二乘估计,ˆˆ=-εY βX 是残差向量,则___B____ . (A )ˆn E ()=0ε; (B )1ˆ]σ-''-εX X 2n Cov()=[()I X X ; (C )ˆˆ1n p '--εε是2σ的无偏估计; (D )(A )、(B )、(C )都对.三、(本题10分)设总体21(,)XN μσ、22(,)Y N μσ,112(,,,)n X X X 和212(,,,)n Y Y Y 分别是来自X 和Y 的样本,且两个样本相互独立,X Y 、和22X Y S S 、分别是它们的样本均值和样本方差,证明12(2)X Y t n n +-,其中2221212(1)(1)2X Yn S n S S n n ω-+-=+-.证明:易知221212(,)X YN n n σσμμ--+,(0,1)X Y U N =.由定理可知22112(1)(1)Xn S n χσ--,22222(1)(1)Yn S n χσ--.由独立性和2χ分布的可加性可得222121222(1)(1)(2)XYn S n S V n n χσσ--=++-.由U 与V 得独立性和t 分布的定义可得12(2)X Y t n n =+-.四、(本题10分)设总体X 的概率密度为1, 0,21(;), 1,2(1)0, x f x x θθθθθ⎧<<⎪⎪⎪=≤<⎨-⎪⎪⎪⎩其他,其中参数01)θθ<<( 未知,12()n X X X ,,,是来自总体的一个样本,X 是样本均值,(1)求参数;的矩估计量θθˆ(2)证明24X 不是2θ的无偏估计量.解:(1)101()(,)22(1)42x x E X xf x dx dx dx θθθθθθ+∞-∞==+=+-⎰⎰⎰,令()X E X =,代入上式得到θ的矩估计量为1ˆ22X θ=-. (2)222211141 (4)44[()]4()424E X EX DX EX DX DX n nθθθ⎡⎤==+=++=+++⎢⎥⎣⎦,因为()00D X θ≥>,,所以22(4)E X θ>.故24X 不是2θ的无偏估计量.五、(本题10分)设总体X 服从[0,](0)θθ>上的均匀分布,12(,,)n X X X 是来自总体X 的一个样本,试求参数θ的极大似然估计. 解:X 的密度函数为1,0;(,)0,x f x θθθ≤≤⎧=⎨⎩其他, 似然函数为1,0,1,2,,,()0,n i x i n L θθθ<<=⎧⎪=⎨⎪⎩其它显然0θ>时,()L θ是单调减函数,而{}12max ,,,n x x x θ≥,所以{}12ˆmax ,,,n X X X θ=是θ的极大似然估计.六、(本题10分)设总体X 服从(1,)B p 分布,12(,,)n X X X 为总体的样本,证明X 是参数p 的一个UMVUE .证明:X 的分布律为1(;)(1),0,1x x f x p p p x -=-=.容易验证(;)f x p 满足正则条件,于是21()ln (;)(1)I p E f x p p p p ⎡⎤∂==⎢⎥∂-⎣⎦.另一方面1(1)1Var()Var()()p p X X n n nI p -===, 即X 得方差达到C-R 下界的无偏估计量,故X 是p 的一个UMVUE .七、(本题10分)某异常区的磁场强度服从正态分布20(,)N μσ,由以前的观测可知056μ=.现有一台新仪器, 用它对该区进行磁测, 抽测了16个点, 得261, 400x s ==, 问此仪器测出的结果与以往相比是否有明显的差异(α=0.05).附表如下:t 分布表 χ2分布表解:设0H :560==μμ.构造检验统计量)15(~0t ns X t μ-=, 确定拒绝域的形式2t t α⎧⎫>⎨⎬⎩⎭.由05.0=α,定出临界值1315.2025.02/==t t α,从而求出拒绝域{}1315.2>t .而60,16==x n ,从而 ||0.8 2.1315t ===<,接受假设0H ,即认为此仪器测出的结果与以往相比无明显的差异.八、(本题10分)已知两个总体X 与Y 独立,211~(,)X μσ,222~(,)Y μσ,221212, , , μμσσ未知,112(,,,)n X X X 和212(,,,)n Y Y Y 分别是来自X 和Y 的样本,求2122σσ的置信度为1α-的置信区间.解:设布定理知的样本方差,由抽样分,分别表示总体Y X S S 2221 , []/2121/212(1,1)(1,1)1P F n n F F n n ααα---<<--=-, 则222221211221/2122/212//1(1,1)(1,1)S S S S P F n n F n n αασασ-⎛⎫<<=- ⎪----⎝⎭,所求2221σσ的置信度为α-1的置信区间为 222212121/212/212//, (1,1)(1,1)S S S S F n n F n n αα-⎛⎫ ⎪----⎝⎭. 九、(本题10分)试简要论述线性回归分析包括哪些内容或步骤.答:建立模型、参数估计、回归方程检验、回归系数检验、变量剔除、预测。

中南大学高等工程数学试题及参考答案.docx

中南大学高等工程数学试题及参考答案.docx

中南大学专业硕士“高等工程数学Ⅰ”考试试卷(开卷)考试日期: 2014 年月日时间 100 分钟注:解答全部写在答题纸上一、填空题 ( 本题 24 分,每小题 3 分 )1111324(1)如果Ax b, A 161,矩阵 A 1, A,利用 Gauss-Seidel 迭253113344代法求解此方程组是否收敛;答案:953,收敛,212解析: || A ||1为列范数,等于各列绝对值之和的最大值,||A ||为行范数,等于各行绝对值之和的最大值, A 为严格对角占优矩阵,根据课本P143定理 5.4.12 知, Jacobi 和 G-S 均收敛。

( 2)利用迭代法求解非线性方程 f ( x) 2x e x0 的根,取初值 x0 0.5 。

给出一个根的存在区间,在该区间上收敛的迭代函数为;答案: [-1 ,0] ,g( x) 1 e x2解析:1 1 xf (1)20,f(0)10 ,故在[-10]g(x)e,根据课本P93定理 4.2.32e1可知迭代函数收敛的条件:(1)在[-1,0] 上一阶导数存在;( 2)x [1,0] ,均有 | g(x) |[-1,0];(3)| g' ( x) |max 1 ,2 1e x在[-1,0]上收敛。

故 g( x)2(3)设事件A发生的概率为p,在 n 次重复试验中事件m np近似服A 发生次数为m,当 n 充分大时,m )m(1n从的分布为;答案:N (0,1)解析:课本 P187 定理 7.2.4(4)设x1 , x2 , x3 , x4[ 1,1] ,若数值积分公式1 f (x)dx A1 f ( x1 ) A2 f ( x2 ) A3 f ( x3 )A4 f ( x4 ) 的代数精度大于11,则A1A2A3A4;答案: 21解析:令 f ( x) 1 ,可得1dx2A1 A2A3A4。

1( 5)已知y f ( x) 通过点(x i, y i), i0,1,2,3 ,则其Lagrange插值基函数l2( x);答案: l 2 ( x)(x x0 )( x x1)( x x3 ) ( x2 x0 )( x2x1 )( x2x3 )解析:课本 P20 拉格朗日插值基函数的定义(式 2.3.2)。

中南大学高数c期末试题及答案

中南大学高数c期末试题及答案

中南大学高数c期末试题及答案一、选择题(每题5分,共20分)1. 下列函数中,哪一个是周期函数?A. $y=x^2$B. $y=\sin x$C. $y=e^x$D. $y=\ln x$2. 若$\lim_{x\to 0} \frac{\sin x}{x} = L$,则$L$的值为:A. 0B. 1C. -1D. 23. 函数$f(x)=x^3-3x+1$的极值点是:A. $x=1$B. $x=-1$C. $x=0$D. $x=2$4. 曲线$y=x^2$在点$(1,1)$处的切线方程是:A. $y=2x-1$B. $y=x-1$C. $y=2x+1$D. $y=x+1$二、填空题(每题5分,共20分)1. 函数$f(x)=\ln(x)$的导数是_________。

2. 若$\int_{0}^{1} x^2 dx = \frac{1}{3}$,则$\int_{0}^{1} x dx =$__________。

3. 曲线$y=x^3$在点$(1,1)$处的法线方程是_________。

4. 若$\sum_{n=1}^{10} n = 55$,则$\sum_{n=1}^{10} n^2=$__________。

三、解答题(每题30分,共60分)1. 求函数$f(x)=x^3-6x^2+9x+15$的极值点和极值。

2. 计算定积分$\int_{0}^{2} (2x+1) dx$,并说明其几何意义。

答案:一、选择题1. B2. B3. A4. A二、填空题1. $\frac{1}{x}$2. $\frac{1}{2}$3. $y=-2x+3$4. 385三、解答题1. 函数$f(x)=x^3-6x^2+9x+15$的导数为$f'(x)=3x^2-12x+9$。

令$f'(x)=0$,解得$x=1$或$x=3$。

在$x=1$处,$f''(x)=6x-12=-6<0$,所以在$x=1$处有极大值;在$x=3$处,$f''(x)=18-12=6>0$,所以在$x=3$处有极小值。

中南大学高等工程数学考试

中南大学高等工程数学考试

中南大学工程硕士“高等工程数学”考试试卷(开卷)考试日期:2010年 4 月 日 时间110分钟注:解答全部写在答题纸上一、填空题(本题24分,每小题3分)1、 若函数1()[,]x C a b ϕ∈,且[,]x a b ∀∈有()[,]x a b ϕ∈与1)('<≤L x ϕ, 则方程()x x ϕ=在[,]a b 上的解存在唯一,对 任意[]b a x ,0∈为初值由迭代公式)(1n n x x ϕ=+产生的序列{}n x 一定收敛于方程()x x ϕ=在[,]a b 上的解*x ,且有误差估计式*x x k-≤L-1ε;2、 建立最优化问题数学模型的三要素就是: 确定决策变量 、 建立适当的约束条件 、 建立目标函数 ;3.求解无约束非线性最优化问题的最速下降法会产生“锯齿现象”,其原因就是: 最速下降法前后两个搜索方向总就是垂直的 ;4.已知函数)(x f y =过点(,),0,1,2,,i i x y i n =L ,[,]i x a b ∈,设函数)(x S 就是()f x 的三次样条插值函数,则)(x S 满足的三个条件(1)在每个子区间[]i i x x ,1-(i=1,2,…,n)上就是不高于三次的多项式;(2)S(x),S ’(x),S ’’(x)在[]b a ,上连续;(3)满足插值条件S(x i )=y i (i=1,2,…,n);5.随机变量1210~(3,4),(,,,)X N X X X L 为样本,X 就是样本均值,则~X N(3,0、4);6.正交表()p q N L n m ⨯中各字母代表的含义为 L 表示正交表,N 表示试验次数,n 、m 表示因子水平数,p 、q 表示试验至多可以安排因素的个数 ;7.线性方程组Ax b =其系数矩阵满足 A=LU,且分解唯一 时,可对A 进行LU 解,选主元素的Gauss 消元法就是为了避免 采用绝对值很小的主元素 导致误差传播大,按列选取主元素时第k 步消元的主元a kk 为)1,2,......,1(1-=⎪⎪⎭⎫ ⎝⎛-=∑+=n i a y a b y iin i j i ij i i 8.取步长0.01h =,用Euler 法解'3,[0,1](0)1y x y x y ⎧=-∈⎨=⎩的公式为 。

中南大学高等数学复习题及答案

中南大学高等数学复习题及答案

中南大学复习题及参考答案《高等数学》一、填空题1.函数1142-+-=x x y 的定义域是 . 解. ),2[]2,(∞+--∞Y 。

2.若函数52)1(2-+=+x x x f ,则=)(x f .解. 62-x 3.________________sin lim =-∞→xxx x答案:1正确解法:101sin lim 1lim )sin 1(lim sin lim=-=-=-=-∞→∞→∞→∞→xxx x x x x x x x x4.已知22lim 222=--++→x x bax x x ,则=a _____, =b _____。

由所给极限存在知, 024=++b a , 得42--=a b , 又由23412lim 2lim 2222=+=+++=--++→→a x a x x x b ax x x x , 知8,2-==b a 5.已知∞=---→)1)((lim 0x a x b e x x ,则=a _____, =b _____。

∞=---→)1)((lim 0x a x b e x x Θ, 即01)1)((lim0=-=---→b abe x a x x x , 1,0≠=∴b a 6.函数⎪⎩⎪⎨⎧≥+<=0101sin)(x x x xx x f 的间断点是x = 。

解:由)(x f 是分段函数,0=x 是)(x f 的分段点,考虑函数在0=x 处的连续性。

因为 1)0(1)1(lim 01sinlim 00==+=+-→→f x xx x x所以函数)(x f 在0=x 处是间断的,又)(x f 在)0,(-∞和),0(+∞都是连续的,故函数)(x f 的间断点是0=x 。

7. 设()()()n x x x x y -⋅⋅--=Λ21, 则()=+1n y (1)!n + 8.2)(x x f =,则__________)1)((=+'x f f 。

最新最全中南大学高等工程数学附答案

最新最全中南大学高等工程数学附答案

生产。工厂规定的经济规模为微型车 1500 辆,中级车 1200 辆,高级车 1000 辆,请建立使
该厂的利润最大的生产计划数学模型。
钢材(吨) 人工(小时) 利润
微型车 1.5 30 2
中级车 2 40 3
高级车 2.5 50 4
资源可用量 6000(吨) 55000(小时)
解:设微型车生产了 x1 辆,中级车生产了 x2 辆,高级车生产了 x3 辆,而钢材、人工均有限 制,所以应满足限制条件:
满足插值条件 S(xi)=yi(i=1,2,…,n);
5.随机变量 X ~ N(3, 4),(X1, X2,, X10) 为样本, X 是样本均值,则 X ~ N(3,
0.4);
6.正交表 LN (np mq ) 中各字母代表的含义为 L 表示正交表,N 表示试验次数,n、m
表示因子水平数,p、q 表示试验至多可以安排因素的个数 ;
((x) 满足:(x) C1[a,b],且 x [a,b] 有(x)[a,b] , ' (x) L 1 ;)
2. 已知二元非线性函数 f (x) x12 x1x2 x22 2x1 4x2 , X0 (2, 2)T ,该函数从 X0 出发
的最速下降方向为(最速下降方向为: p 4, 2T );
中南大学工程硕士“高等工程数学”考试试卷(开卷)1
考试日期:2010 年 4 月
注:解答全部写在答题纸上
日 时间 110 分钟
一、填空题(本题 24 分,每小题 3 分)
1.若函数(x) C1[a,b],且 x [a,b]有(x) [a,b] 和 '(x) L 1, 则方程
x (x) 在[a, b] 上的解存在唯一,对 任意 x0 a,b为初值由迭代公式 xn1 (xn ) 产生的序列 xn 一定收敛于方程

中南大学高等工程数学试题及参考答案.docx

中南大学高等工程数学试题及参考答案.docx

中南大学专业硕士“高等工程数学Ⅰ”考试试卷(开卷)考试日期: 2014 年月日时间 100 分钟注:解答全部写在答题纸上一、填空题 ( 本题 24 分,每小题 3 分 )1111324(1)如果Ax b, A 161,矩阵 A 1, A,利用 Gauss-Seidel 迭253113344代法求解此方程组是否收敛;答案:953,收敛,212解析: || A ||1为列范数,等于各列绝对值之和的最大值,||A ||为行范数,等于各行绝对值之和的最大值, A 为严格对角占优矩阵,根据课本P143定理 5.4.12 知, Jacobi 和 G-S 均收敛。

( 2)利用迭代法求解非线性方程 f ( x) 2x e x0 的根,取初值 x0 0.5 。

给出一个根的存在区间,在该区间上收敛的迭代函数为;答案: [-1 ,0] ,g( x) 1 e x2解析:1 1 xf (1)20,f(0)10 ,故在[-10]g(x)e,根据课本P93定理 4.2.32e1可知迭代函数收敛的条件:(1)在[-1,0] 上一阶导数存在;( 2)x [1,0] ,均有 | g(x) |[-1,0];(3)| g' ( x) |max 1 ,2 1e x在[-1,0]上收敛。

故 g( x)2(3)设事件A发生的概率为p,在 n 次重复试验中事件m np近似服A 发生次数为m,当 n 充分大时,m )m(1n从的分布为;答案:N (0,1)解析:课本 P187 定理 7.2.4(4)设x1 , x2 , x3 , x4[ 1,1] ,若数值积分公式1 f (x)dx A1 f ( x1 ) A2 f ( x2 ) A3 f ( x3 )A4 f ( x4 ) 的代数精度大于11,则A1A2A3A4;答案: 21解析:令 f ( x) 1 ,可得1dx2A1 A2A3A4。

1( 5)已知y f ( x) 通过点(x i, y i), i0,1,2,3 ,则其Lagrange插值基函数l2( x);答案: l 2 ( x)(x x0 )( x x1)( x x3 ) ( x2 x0 )( x2x1 )( x2x3 )解析:课本 P20 拉格朗日插值基函数的定义(式 2.3.2)。

高等工程数学习题答案

高等工程数学习题答案

高等工程数学习题答案【篇一:高等工程数学考试题及参考解答(仅供参考)】xt>一、填空题(每小题3分,共15分)2x12???x101,设总体x服从正态分布n(0,4),而(x1,x2?,x15)是来自x的样本,则u?222(x11???x15)服从的分布是_______ .解:f(10,5).?是总体未知参数?的相合估计量的一个充分条件是2,?n?)??, limvar(??)?0.解:lime(?nnn??n??3,分布拟合检验方法有_______ 与____ ___. 解:?检验、柯尔莫哥洛夫检验. 4,方差分析的目的是_______ .解:推断各因素对试验结果影响是否显著.22?1二、单项选择题(每小题3分,共15分)1,设总体x~n(1,9),(x1,x2,?,x9)是x的样本,则(a)x?1x?1~n(0,1);(b)~n(0,1); 31x?1~n(0,1). ~n(0,1);(d92(c)2,若总体x?n(?,?),其中?已知,当样本容量n保持不变时,如果置信度1??减小,则?的2置信区间____b___ .(a)长度变大;(b)长度变小;(c)长度不变;(d)前述都有可能.3,在假设检验中,就检验结果而言,以下说法正确的是____b___ . (a)拒绝和接受原假设的理由都是充分的;(b)拒绝原假设的理由是充分的,接受原假设的理由是不充分的;(c)拒绝原假设的理由是不充分的,接受原假设的理由是充分的;(d)拒绝和接受原假设的理由都是不充分的.4,对于单因素试验方差分析的数学模型,设st为总离差平方和,se为误差平方和,sa为效应平方和,则总有___a___ .(a)st?se?sa;(b)sa?2??2(r?1);(c)sa/(r?1)?f(r?1,n?r);(d)sa与se相互独立.se/(n?r)?)=?[in?x(xx???0n;(b)cov(??)x?];(a)???2?1(c)?????n?p?1是?2的无偏估计;(d)(a)、(b)、(c)都对.22三、(本题10分)设总体x?n(?1,?)、y?n(?2,?),(x1,x2,?,xn1)和(y1,y2,?,yn2)分别是来自x和y的样本,且两个样本相互独立,和sx、sy分别是它们的样本均值和样本方差,证明2222(n1?1)sx?(n2?1)sy其中s??.n1?n2?22?t(n1?n2?2),证明:易知??n(?1??2,?2n1??2n2),u??n(0,1).由定理可知2(n1?1)sx?2由独立性和?分布的可加性可得2??(n1?1),22(n2?1)sy?2??2(n2?1).v?2(n1?1)sx?2?2(n2?1)sy?2??2(n1?n2?2).由u与v得独立性和t分布的定义可得??t(n1?n2?2).?1?2?, 0?x??,??1,??x?1,其中参数?(0???1) 四、(本题10分)设总体x的概率密度为f(x;?)??2(1??)??0, 其他,???;?,xn)是来自总体的一个样本,是样本均值,未知,(x1,x2,(1)求参数?的矩估计量?(2)证明4不是2?2的无偏估计量.解:(1)e(x)??????xf(x,?)dx???01xx1?dx??dx??,?2(1??)2?42??2?令?e(x),代入上式得到?的矩估计量为?(2)1. 2111?1?4e(42)?42?4[?()2]?4?dx?(??)2??dx?????,424?n?n因为d(x)?0,??0,所以 e(4)??.故42不是?的无偏估计量.五、(本题10分)设总体x服从[0,?](??0)上的均匀分布,(x1,x2,?xn)是来自总体x的一个样本,试求参数?的极大似然估计.解:x的密度函数为,0?x??;??f(x,?)??0,其他,?222似然函数为???n,0?xi??,i?1,2,?,n,l(?)??其它??0,??max?x,x,?,x?是?的显然??0时,l(?)是单调减函数,而??max?x1,x2,?,xn?,所以?12n极大似然估计.六、(本题10分)设总体x服从b(1,p)分布,(x1,x2,?xn)为总体的样本,证明是参数p的一个umvue.证明:x的分布律为f(x;p)?px(1?p)1?x,x?0,1.容易验证f(x;p)满足正则条件,于是???1i(p)?e?lnf(x;p)??.?pp(1?p)??另一方面2var()?1p(1?p)1, var(x)??nnni(p)即得方差达到c-r下界的无偏估计量,故是p的一个umvue.七、(本题10分)某异常区的磁场强度服从正态分布n(?0,?),由以前的观测可知?0?56.现有一台新仪器, 用它对该区进行磁测, 抽测了16个点, 得?61, s?400, 问此仪器测出的结果与以往相2解:设h0:???0?56.构造检验统计量22t???0~t(15), n确定拒绝域的形式?t?t??.由??0.05,定出临界值t?/2?t0.025?2.1315,从而求出拒绝域t?2.1315.?????2而n?16,?60,从而 |t|???0.8?2.1315,接受假设h0,即认为此仪器测222出的结果与以往相比无明显的差异.2八、(本题10分)已知两个总体x与y独立,x~(?1,?1),y~(?2,?2),?1, ?2, ?1, ?2未知,?12(x1,x2,?,xn)和(y1,y2,?,yn)分别是来自x和y的样本,求2的置信度为1??的置信区间.?2122分别表示总体x,y的样本方差,由抽样分布定理知解:设s12,s2p?f?/2(n1?1,n2?1)?f?f1??/2(n1?1,n2?1)??1??,则22??s12/s2?12s12/s2p??2???1??, ?f1??/2(n1?1,n2?1)?2f?/2(n 1?1,n2?1)?22??s12/s2s12/s2?12,所求2的置信度为1??的置信区间为 ??.?2f(n?1,n?1)f(n?1,n?1)2?/212?1??/21?九、(本题10分)试简要论述线性回归分析包括哪些内容或步骤.答:建立模型、参数估计、回归方程检验、回归系数检验、变量剔除、预测【篇二:高等工程数学试题答案】>一、设总体x具有分布律其中?(0???1)为未知参数,已知取得了样本值x1?1,x2?2,x3?1,求?的矩估计和最大似然估计.解:(1)矩估计:ex??2?2?2?(1??)?3(1??)2??2??314?(1?2?1)?33??5. 令ex?,得?6(2)最大似然估计:l(?)?????2?(1??)?2??2?2256dln(?)?10?4?12?5?0 d???5得?6二、(本题14分)某工厂正常生产时,排出的污水中动植物油的浓度x~n(10,1),今阶段性抽取10个水样,测得平均浓度为10.8(mg/l),标准差为1.2(mg/l),问该工厂生产是22否正常?(??0.05,t0.025(9)?2.2622,?0.025(9)?19.023,?0.975(9)?2.700)解:(1)检验假设h0:?=1,h1:?≠1;取统计量:??222(n?1)s2?20;拒绝域为:?2≤?21?2222?=2.70或≥(n?1)??(9)?(n?1)???0.975?0.025=19.023, 22经计算:??2(n?1)s22?09?1.22??12.96,由于?2?12.96?(2.700,19.023)2,1故接受h0,即可以认为排出的污水中动植物油浓度的方差为?2=1。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

公式计算其面积的近似值如下表:
n
1
2
4
8
Tn
2.9
3.1
3.131
3.139
请根据表中数据计算该零件表面积精度足够高的近似值。
解:辛普森序列
Sn
4 3 T2n
1 3 Tn
,柯斯特序列 Cn
16 15
S2n
1 15
Sn
,龙贝格序列
Rn
64 63
C2n
1 63 Cn
得出龙贝格算法数值表如下:
k
T2k
0
2.9
x1
,
x2
]
f [x0 , x1])
9.6,g2
h2
6
(f h3
[
x2
,
x3
]
f [x1, x2 ]) 18

在自然边界条件下, y0''
0,M0
y0''
2 0 ,且有 2
M1 3.16, M 2 8.21
1 2
M1 M 2
g1
- 1 g2
y0''
,即
2 0.5
0.4 2
M1 M 2
产品
材料消耗
A
B
可供原材料(Kg) C
原材料

2
1

1
2

2
2
1
200
3
500
1
600
每件产品利润(万元)
4
1
3
(1)怎样安排生产,使利润最大,建立数学模型.
(2)利用单纯形法求解所建立的模型(要求计算过程和结果)。
解:(1)设 A 为 x1 ,B 为 x2 ,C 为 x3 ,由题可得
max Z (4x1 x2 3x3 )
n
1)
n y0
其中: t x x0 0 ; h
Newton
向后插值公式:
Nn (xn
th)
yn
tyn
t(t 1) 2!
2
y0
t(t
1) (t n!
n
1)
n
yn
其中: t x xn 0 h
二、(本题 12 分)已知 y f (x) 的函数值如下
x
-1.5
0
1
2
f (x)
2
-1
1
9
在区间[1.5,2] 上求满足自然边界条件的三次样条插值函数 S (x) 在第一个小区间的表达式,并计算 f (1) 的近似值。
3x4(1)
8.75
1 2
(3
x (1) 3
)
0
1 7
(21
2
x (1) 1
6
x (1) 2
6
x (1) 4
)
2.64
(雅克比迭代不收敛)
1 4
(11
x (1) 1
3x2(1)
3
x (1) 3
)
2.38
1 1 2 3 1
1 1 2 3
(2)系数矩阵 A 0 2 1 0 = 0 1 2 6 7 6 2 2 1
(2)由于
1,2
未知,选取
S12
2 1
S
2 2
2 2
~
F
(m
1,
n
1)
,可得
2 1 2 2
的置信区间为

S12
,
S12

S22F 2 (m 1, n 1)
S
2 2
F1
2
(m
1,
n
1)
由(1)可得
2 1
2 2
置信水平为
0.95
的置信区间为: (0.168,11.605) .
六、(本题 10 分)为计算一形状为曲边梯形零件的表面积,在将其分布区间逐次分半测量曲边的高度,并用复合梯形
四、(本题 16 分)设方程组为 0
2
1
0
x2
3
2 1
6 3
7 3
6 4
x3 x4
21 11
(1)利用雅可比(Jacobi)迭代格式进行迭代计算求近似解, 取初始值 X 0 (0.00, 0.00, 0.00, 0.00)T ,保留 2 位小
数,迭代 2 次;
(2)利用矩阵 LU 直接分解方法求准确解。
中南大学专业硕士“高等工程数学Ⅰ”考试试卷(开卷)
考试日期:2014 年 月 日
时间 100 分钟
注:解答全部写在答题纸上
一、填空题(本题 24 分,每小题 3 分)
11 1 1
3
2
4
(1)如果
Ax
b,
A
1 2
6 5
1 3
,矩阵
A 1
1
1
3
3 4 4
,A
,利用 Gauss-Seidel 迭
7
x(0) 2
2
x(0) 3
3x4(0)
7.00
1 2
(3
x(0) 3
)
1.50
1 7
(21
2
x(0) 1
6
x(0) 2
6
x(0) 4
)
3.00
1 4
(11
x(0) 1
3x2(0)
3x3(0) )
2.75
x1(
2)
x(2) 2
x(2) 3
x(2) 4
7
x (1) 2
2
x (1) 3
xi 0,i 1,2,,6
(2)列出初始单纯形表并进行迭代得:
基变量 Cb
Xb
x1
x2
x3
x4
x5
x6
4
1
3
0
0
0
x4
0
200
2
1
1
1
0
0
100
x5
0
500
1
2
3
0
1
0
500
x6
0
600
2
2
1
0
0
1
300
j
Z 0
-4 -1
-3
0
0
0
x1
4 100
1
1
1
1
2
2
2
0
0
200
x5
0 400
0
3 2
5 2
max Z (4x1 x2 3x3 )
2x1x1 2
x2 x2
x3 200 3x3 500
,引进松弛变量
x4 ,
x5 ,
x6
0
化为
2x1x1 2
x2 x2
x3 x4 200 3x3 x5 500
2x1 2x2 x3 600
2x1 2x2 x3 x6 600
x1 0, x2 0, x3 0
f (x) 1 ,可得
1dx 2
1
A1 A2 A3 A4 。
(5)已知 y f (x) 通过点 (xi , yi ),i 0,1,2,3 ,则其 Lagrange 插值基函数 l2 (x)

答案:
l2
(x)
(x x0 )(x x1)(x x3 ) (x2 x0 )(x2 x1)(x2 x3 )
代法求解此方程组是否收敛

9 53
答案: , ,收敛
2 12
解析:|| A ||1 为列范数,等于各列绝对值之和的最大值,|| A || 为行范数,等于各行绝对值之和的最大值,A 为严
格对角占优矩阵,根据课本 P143 定理 5.4.12 知,Jacobi 和 G-S 均收敛。
(2)利用迭代法求解非线性方程 f (x) 2x ex 0 的根,取初值 x0 0.5 。给出一个根的存在区
解: h1
1.5, h2
1, h3
1;1
h1 h1 h2
0.6, 2
h2 h2 h3
0.5;1
1 1
0.4, 2
1 2
0.5 ;
f
[x0 ,
x1 ]
0
1 2 (1.5)
2,
f
[ x1 ,
x2 ]
1 (1) 1 0
2,
f
[ x2 ,
x3 ]
9 2
1 1
8

g1
h1
6
(f h2
[
(8)计算函数 f (x) 在区间 [a, b] 起点 a 附近的近似值时,应用 Newton 向前插值公式而不用向后插值公式的原因


答案:误差传播方式不同,近似解在 a 附近时采用向前插值公式误差较小。
解析:Newton
向前插值公式:
Nn (x0
th)
y0
ty0
t(t 1) 2!
2 y0
t(t
1)(t n!
i 1
i 1
Lyy
n
yi2
n
2
y

i 1
(7)算 法 y f (x1, x2 ) 2 x12 x2 , 设 x1 和 x2 的 绝 对 误 差 分 别 为 (x1 ) 和 (x2 ) , 则
(y)

答案: x1*2 (x2 ) 2x1*x2* (x1)
解析: y* [x1* (x1)]2[x2* (x2 )]
解:(1)将方程组转化为等价方程组:
x1 7 x2 2x3 3x4
x2
1 2
(3
x3 )
x3 x4
1
相关文档
最新文档