中南大学高等数学课件7-1
合集下载
高等数学下教学课件:7-1

7.1 多元函数的概念
7.1.1 平面点集的有关概念
1. 邻域
设 P0 ( x0 , y0 )是 xoy平面上的一个点, 是某
一正数,与点 P0 ( x0 , y0 )距离小于 的点 P( x, y)
的全体,称为点 P0的 邻域,记为U(P0 , ),
U (P0 , ) P | PP0 |
第7章 多元函数的微分学及其应用
7.1 多元函数的概念 7.2 偏导数与全微分 7.3 多元复合函数求导法 7.4 隐函数求导法 7.5 多元函数微分学的几何应用 7.6 方向导数与梯度 7.7 多元复合函数的极值及其求法
7.1 多元函数的概念
7.1.1 平面点集的有关概念 7.1.2 多元函数的概念 7.1.3 多元函数的极限 7.1.4 多元函数的连续性
(5) 连通集 设 D 是平面点集.如果
•P
对 于 D 内 任 何 两 点 , 都 可 用 折线 连 结 起
来 , 且 该 折 线 上 的 点 都属 于 D, 则 称 开 E 集D 是连通的.
• •
(6) 区域 连通的开集称为区域或开区域. y
例如,{( x, y) | 1 x 2 y 2 4}.
(3) 开集 如果点集 E 的点都是内点,
则称 E 为开集.
• P1
• P2
例如,E1 {(x, y)1 x 2 y2 4}
即为开集.
E
(4) 边界点 如果点 P 的任一个邻域内既有属 于 E的点,也有不属于E 的点(点P 本身可以属 于 E ,也可以不属于E),则称P 为 E 的边界点. E 的边界点的全体称为E 的边界.记为E.
y2
所求定义域为
D {( x, y) | 2 x 2 y 2 4, x y 2 }.
高数课件1-7PPT课件

2
作单位圆的切线,得ACO .
扇形OAB的圆心角为x , OAB的高为BD,
于是有 sin x BD, x 弧 AB, tan x AC ,
函数与极限
8
sin x x tan x, 即 cos x sin x 1,
x
上式对于 x 0也成立. 当 0 x 时,
2
2
0 cos x 1 1 cos x 2sin 2 x 2( x)2 x2 , 22 2
lim x2 0, lim(1 cos x) 0,
x0 2
x0
lim cos x 1, 又lim1 1, lim sin x 1.
x0
x0
x0 x
函数与极限
9
例3
求
lim
x0
1
cos x2
x
.
解
2sin2 x
原式 lim x0
2 x2
1
lim
sin 2
x 2
2 x0 ( x)2
lim (1 1 )x e.
x
x
函数与极限
13
令 t x,
lim (1 1 )x lim (1 1)t lim (1 1 )t
x
x
t
t
t t 1
lim (1 1 )t1(1 1 ) e.
t t 1
t 1
lim(1 1 )x e
x
x
令t 1, x
lim(1
1
1
1
1 2!
1 n!
1
1
1 2
1 2n1
3
1 2n1
3,
xn是有界的;
lim n
xn
存在.
作单位圆的切线,得ACO .
扇形OAB的圆心角为x , OAB的高为BD,
于是有 sin x BD, x 弧 AB, tan x AC ,
函数与极限
8
sin x x tan x, 即 cos x sin x 1,
x
上式对于 x 0也成立. 当 0 x 时,
2
2
0 cos x 1 1 cos x 2sin 2 x 2( x)2 x2 , 22 2
lim x2 0, lim(1 cos x) 0,
x0 2
x0
lim cos x 1, 又lim1 1, lim sin x 1.
x0
x0
x0 x
函数与极限
9
例3
求
lim
x0
1
cos x2
x
.
解
2sin2 x
原式 lim x0
2 x2
1
lim
sin 2
x 2
2 x0 ( x)2
lim (1 1 )x e.
x
x
函数与极限
13
令 t x,
lim (1 1 )x lim (1 1)t lim (1 1 )t
x
x
t
t
t t 1
lim (1 1 )t1(1 1 ) e.
t t 1
t 1
lim(1 1 )x e
x
x
令t 1, x
lim(1
1
1
1
1 2!
1 n!
1
1
1 2
1 2n1
3
1 2n1
3,
xn是有界的;
lim n
xn
存在.
高等数学-第7章 - (第6次课)

(iii)如果 2 p q 0 且 2 p 0 , 即λ是特征方程的重根。
要使(3)式成立, Q' ' ( x ) 应是m次多项式. 令 Q( x) x 2Qm ( x)
仍是比较(3)式两端的系数来确定Qm ( x ) 的系数。
•10
y" py' qy f x
总之, 当 f ( x) pm ( x)e x
y* x k Qm ( x )e x
(1)
时,方程(1)具有形如
同次(m次)的多项式,
的特解, 其中 Qm ( x ) 是与 Pm ( x )
0 其中
λ不是特征根
k=
1 2Βιβλιοθήκη λ是特征方程的单根 λ是特征方程的重根
注:
上述结论可推广到 n 阶常系数非齐次线性微分方程,
但 k 是特征方程含根λ的重复次数,即 若λ不是特征方程的根,k =0; 若λ是特征方程的 s 重根,k = s.
例 1 求下列方程的通解
(1) y"2 y'3 y 3 x 1; (2) y"5 y'6 y xe2 x .
解 (1)对应齐次方程的特征方程为
r 2 2r 3 0
• 第七章 微分方程
▫ 7.1 微分方程的基本概念
▫ ▫ ▫ ▫ ▫ ▫ ▫
7.2 7.3 7.4 7.5 7.6 7.7 7.8
可分离变量的微分方程 一阶线性微分方程 可降阶的高阶微分方程 二阶线性微分方程 二阶常系数线性齐次微分方程 二阶常系数线性非齐次微分方程 综合例题
7.5二阶线性微分方程
型
其中 为常数,Pm x 是x 的一个m 次多项式:
高等数学上册第七章课件.ppt

y C2 ex ,再利用 y (0) = 1 得 C2 1, 故所求曲线方程为
第四节 可降阶的二阶微分方程
小结 可降阶微分方程的解法 —— 降阶法
逐次积分
令 y p(x) ,
令 y p(y) ,
第五节 二阶线性微分方程解的结构
•n 阶线性微分方程的一般形式为
y(n) a1(x) y(n1) an1(x) y an (x) y f (x) f (x) 0 时, 称为非齐次方程 ; f (x) 0 时, 称为齐次方程.
第四节 可降阶的二阶微分方程
例 求解 解
代入方程得
则 y d p d p dy p d p dx dy dx dy
两端积分得 ln p ln y ln C1 , 即 p C1y,
(一阶线性齐次方程)
故所求通解为
第四节 可降阶的二阶微分方程
例
解初值问题
y e2y 0 y x 0 0 ,
y p(x) y q(x) y f (x), 为二阶线性微分方程.
复习: 一阶线性方程 y P(x) y Q(x)
通解:
y
C
e
P(x)d
x
eP(x)d x
Q(x) eP(x)d x dx
齐次方程通解Y 非齐次方程特解 y
第五节 二阶线性微分方程解的结构
•线性齐次方程解的结构
定理 若函数 y1(x), y2 (x) 是二阶线性齐次方程 y P(x) y Q(x) y 0
的两个解, 则 y C1y1(x) C2 y2 (x)
也是该方程的解. (叠加原理)
证 将 y C1y1(x) C2 y2 (x) 代入方程左边, 得 [C1y1 C2 y2 ] P(x)[C1y1 C2 y2 ]
高等数学第七版上册ppt

表示不同的函数,因为它们的定义域不同。 y = f( x )= lg x 2,x D =( - , 0 )∪( 0 ,+ ) ; y = g( x )= 2lg x,x E =( 0 ,+ ) ;
表示不同的函数,因为它们的定义域不同。 y = f( x )= sin x,x R =( - ,+ ) ; y = f( t )= sin t,t R =( - ,+ ) ; u = f( t )= sin t,t R =( - ,+ ) ;
均表示同一个函数,因为它们的定义域 和对应法则都相同。
•练习: P16 第2题
如果自变量在定义域内任取一个数值时, 对应的函数值总是只有一个,这种函数叫做单 值函数,否则叫与多值函数.
例如,x2 y2 a2.
分段函数
在自变量的不同变化范围中, 对应法则用不同的
式子来表示的函数,称为分段函数.
如何学好微积分 ?
1、深刻理解基本概念
2、勤于思考,敢于提问,独立完 成作业
3、快乐学习,在学习中提升自己、
华罗庚
认识自己
第一章
函数与极限
分析基础
函数 — 研究对象 极限 — 研究方法 连续 — 研究桥梁
第一节 函数
一、基本概念 二、函数及其几种基本特性 三、反函数 四、复合函数 初等函数
一、基本概念
1、 计算曲面面积,如:由曲线 y2 2 x 和直线 y x 4所围成的图形的面积.
2、求空间立体的体积
y
y f (x)
o
x
z f ( x, y)
3、变速运动物体的瞬时速度
4、炮弹的最大射程
5、光滑曲线的切线和法线
什么是高等数学 ?
表示不同的函数,因为它们的定义域不同。 y = f( x )= sin x,x R =( - ,+ ) ; y = f( t )= sin t,t R =( - ,+ ) ; u = f( t )= sin t,t R =( - ,+ ) ;
均表示同一个函数,因为它们的定义域 和对应法则都相同。
•练习: P16 第2题
如果自变量在定义域内任取一个数值时, 对应的函数值总是只有一个,这种函数叫做单 值函数,否则叫与多值函数.
例如,x2 y2 a2.
分段函数
在自变量的不同变化范围中, 对应法则用不同的
式子来表示的函数,称为分段函数.
如何学好微积分 ?
1、深刻理解基本概念
2、勤于思考,敢于提问,独立完 成作业
3、快乐学习,在学习中提升自己、
华罗庚
认识自己
第一章
函数与极限
分析基础
函数 — 研究对象 极限 — 研究方法 连续 — 研究桥梁
第一节 函数
一、基本概念 二、函数及其几种基本特性 三、反函数 四、复合函数 初等函数
一、基本概念
1、 计算曲面面积,如:由曲线 y2 2 x 和直线 y x 4所围成的图形的面积.
2、求空间立体的体积
y
y f (x)
o
x
z f ( x, y)
3、变速运动物体的瞬时速度
4、炮弹的最大射程
5、光滑曲线的切线和法线
什么是高等数学 ?
高等数学-第七版-课件-高等数学课件介绍

反复、对照,也方便学生记笔记;
示例一:导数概念
(1)变速直线运动的速度 (2)平面曲线的切线
匀速运动: v s
t
物 理 问 题 变速运动: v(t0) ?
f (t0)
f (t0 t)
s f (t)
t0
t t0 t
t
s f (t0 t) f (t0 )
s v t
v(t0)
lim
t 0
R
,
2
k)
z
例5 求曲线 x t , y t 2 , z t3在点(1,1,1)处
的切线方程和法平面方程.
o
x
y
切线方程
x x0
(t0 )
y y0
(t0 )
z z0
(t0 )
法平面方程 (t0 )(x x0 ) (t0 ) ( y y0 ) (t0 )(z z0 ) 0
示例二:直线、平面的相互关系
本课件是为教师课堂教学而设计的,不是供学生学习的教案.
设计时,避免让课件“说话”,造成课件与讲授的冲突,而是
给教师讲授留出足够的空间.
这里为不此妨,啰采嗦取几了句许:多方法,比如:将要讲授的道理变成各种 流现 授程在课图某时、些就框课给图件人、常“表常念格把课、要件动讲”画的的;大感课段觉件原。中话其仅放实出在,现课如一件果个里真简。是明这这的样样论,的断在课, 教件师,再那围么绕听这众个多论半断会展不开由讲自解主等地等自.己“念课件”,而不再听 讲。老师的讲课反而影响了听众的“念”。不仅如此,由于 老师另不外知,听随众时念注到意了课哪件里的,播只放顾与自讲己解翻的屏同,步倒.是更加阻碍了 听众。这会导致不折不扣的“冲突”。因此,作者认为: “不让课件说话”是设计课件的一个重要原则
示例一:导数概念
(1)变速直线运动的速度 (2)平面曲线的切线
匀速运动: v s
t
物 理 问 题 变速运动: v(t0) ?
f (t0)
f (t0 t)
s f (t)
t0
t t0 t
t
s f (t0 t) f (t0 )
s v t
v(t0)
lim
t 0
R
,
2
k)
z
例5 求曲线 x t , y t 2 , z t3在点(1,1,1)处
的切线方程和法平面方程.
o
x
y
切线方程
x x0
(t0 )
y y0
(t0 )
z z0
(t0 )
法平面方程 (t0 )(x x0 ) (t0 ) ( y y0 ) (t0 )(z z0 ) 0
示例二:直线、平面的相互关系
本课件是为教师课堂教学而设计的,不是供学生学习的教案.
设计时,避免让课件“说话”,造成课件与讲授的冲突,而是
给教师讲授留出足够的空间.
这里为不此妨,啰采嗦取几了句许:多方法,比如:将要讲授的道理变成各种 流现 授程在课图某时、些就框课给图件人、常“表常念格把课、要件动讲”画的的;大感课段觉件原。中话其仅放实出在,现课如一件果个里真简。是明这这的样样论,的断在课, 教件师,再那围么绕听这众个多论半断会展不开由讲自解主等地等自.己“念课件”,而不再听 讲。老师的讲课反而影响了听众的“念”。不仅如此,由于 老师另不外知,听随众时念注到意了课哪件里的,播只放顾与自讲己解翻的屏同,步倒.是更加阻碍了 听众。这会导致不折不扣的“冲突”。因此,作者认为: “不让课件说话”是设计课件的一个重要原则
经典课件:中南大学高等数学

16
思考题解答
不能保证.
例 f (x) 1 x
x0, 有 f(x) 1 0 x
limf(x)lim1A0.
x
x x
.
17
一、填空题:
练习题
1 、 凡 无 穷 小 量 皆 以 _ _ _ _ _ _ _ _ 为 极 限 .
2、_在 ____ 条 __ 件 ,直 __ 下 y线 _ c是函数 yf(x)的水平 . 渐近线
不是无穷大.
.
11
例证l明 im1 . x 1x1
证 M0. 要使 1 M,
x1
y 1 x1
只要 x1 1, 取 1 ,
M
M
当 0x11时 ,就有 1 M.lim 1 .
M
x1
x1 x1
定:义 如l果 im f(x) ,则 x x0
直 xx线 0是
函 yf数 (x)
的图形的 . 铅直渐近线
.
12
三、无穷小与无穷大的关系
定理4 在同一过程中,无穷大的倒数为无穷小; 恒不为零的无穷小的倒数为无穷大.
证 设lim f(x). x x0 0,0,使得 0x 当 x0时
恒f有 (x)1, 即
1 f (x)
.
当xx0时, f(1x)为无穷 . 小
.
13
反 ,设 l之 if( m x ) 0 ,且 f( x ) 0 . x x 0
证 设及是当 x时的两个, 无穷小
0 , X 10 ,X 20 ,使得
.
5
当xX1时
恒 有 2;当xX2时
恒 有 ;
2
取 Xma X 1,x X 2} {,当x X时,恒有 ,
22
0 (x )
高等数学第七章.ppt

规
划
a11x1+a12x2+…+a1nxn=b1
(1)
的
a21x1+a22x2+…+a2nxn=b2
(2)
标
准
……
型
am1x1+am2x2+…+amnxn=bm
(m)
x1 ,x2 ,…xn≥0
第三节 单纯形法
其简缩形式为
一
max Z c1x1 c2 x2 cn xn
线 性
n
aij x j bi
ZA=300 ZB=175 ZC=110 ZD=150
x2 15 A
3x1+x2=15
可行域
10
B
x1+x2=10
5
C
O
5
10
A(0,15) B(2.5,7.5) C(9,1) D (15,0)
x1+6x2=15
D
15
x1
10x1+20x2=0
第三节 单纯形法
单纯形方法是一种较为完善的、步骤 化的线性规划问题求解方法。它的原理涉 及到较多的数学理论上的推导和证明,我 们在此仅介绍这种方法的具体操作步骤及 每一步的经济上的含义。为更好地说明问 题,我们仍结合实例介绍这种方法
第
一
节
线
《经济大词典》定义线性规划:一种
性
具有确定目标,而实现目标的手段又有
规
一定限制,且目标和手段之间的函数关
划 模 型
系是线性的条件下,从所有可供选择的 方案中求解出最优方案的数学方法。
的
基
本
原
理
二、线性规划三要素
第
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
练习题答案
一、1、Ⅳ,Ⅴ,Ⅷ,Ⅲ;
2、(-3,2,1),(3,2,-1),(-3,-2,-1),
(-3,-2,1),(3,2,1),(3,-2,-1);
3、(-4,3,0),(0,3,5),(-4,0,5),
(-4,0,0),(0,3,0),(0,0,5);
4、(a, a,a), (a, a, a),(a,a, a),(a,a, a) ;
的对称点是 _________,关于 y 轴的对称点是
_________,关于 z 轴的对称点是_________;
3、点 A ( 4 , 3 , 5 )在xoy 平面上的射影点为_____ ______,在 yoz 面上的射影点为__________,在 zox轴上的射影点为_________,在x 轴上 的射影 点为________,在x 轴上 的射影点为______,在 z 轴上 的射影点为_______ ;
7、若直线段落AB 被点C( 2 , 0 , 2 ) 及点D( 5 ,2 , 0 ) 内 分为3 等分,则端点 A 的坐标为_________,端点 B 的坐标为_________ .
二、在 yoz 面上,求与三个已知点A( 3 , 1 , 2 ) , B( 4 ,2 ,2 )和C ( 0 , 5 , 1 ) 等距离的点 .
第1章 空间解析几何
1.1 向量及其线性运算
1.1.1 向量的概念
M2
向量:既有大小又有方向的量.
向量表示:a 或 M1M2
M1
以M1为起点,M2 为终点的有向线段.
向量的模: 向量的大小.| a| 或 | M1M2 |
单位向量:模长为1的向量. a0
或
M1 M 20
零向量:模长为0的向量. 0
4、已知空间直角坐标系下,立方体的 4 个顶点为 A( a ,a ,a) ,B( a ,a ,a ),C(a , a ,a) 和 D( a , a , a ),则其余顶点分别为_________,____ __________,__________,_________ ;
5、已知三角形的三个顶点A( 2 ,1 ,4 ),B( 3 , 2 ,6 ) , C(5 , 0 , 2 ) 则(1)过A 点的中线长为__________;
三 、 把 ABC 的 BC 边 五 等 分 , 设 分 点 依 次 为
D1 , D2 , D3 , D4 , 再 把 各 分 点 与 点A 连 接 , 试 以
AB c, BC a 表示向量D1 A , D2 A , D3 A 和 D4 A .
练习题答案
一、1、既有大小,又有方向;
2、大小;
3、模等于 1; 4、模等于零; 5、起点;
设 是一个数,向量a与 的乘积a 规定为
(1) 0, (2) 0, (3) 0,
a与a同向,| a| | a|
a
0
a与a反向,| a|| | | a|
a 2a
1 a 2
数与向量的乘积符合下列运算规律:
(1)结合律:(a) ( a) ()a
(2)分配律:( )a a a
a b
b
分为同向和反向
c
|
c||
a|
|
b|
b a
c
|
c|
|
a|
|
b|
向量的加法符合下列运算规律:
(1)交换律:
a
b
b
a.
(2)结合律:
a
b
c
(a
b)
c
a
(b
c).
(3)
a
(a)
0.
[2]
减法
a
b
a
(b)
b
a
a
b
a
b
b
b
c
a
b
c
a
(b)
a
b
[3] 乘法:
解 M1M2 2 (7 4)2 (1 3)2 (2 1)2 14, M2M3 2 (5 7)2 (2 1)2 (3 2)2 6, M3M1 2 (4 5)2 (3 2)2 (1 3)2 6,
M2M3 M3M1 , 原结论成立.
例 4 设P 在x 轴上,它到P1(0, 2,3) 的距离为 到点 P2 (0,1,1)的距离的两倍,求点P 的坐标.
思考题解答 A:Ⅳ; B:Ⅴ; C:Ⅷ; D:Ⅲ;
思考题
2. 已知平行四边形ABCD的对角线
AC a,
BD b
试用
a,
b 表示平行四边形四边上对应的向量.
思考题解答
D b
A
a
C
M
B
BC
AD
AM
MD
1
(a
b ).
2
DC
AB
AM
MB
1 2
(a
b ).
练习题
一、填空: 1、向量是_________的量; 2、向量的___________叫做向量的模; 3、___________的向量叫做单位向量; 4、_____________的向量叫做零向量; 5、与_____无关的向量称为自由向量; 6、平行于同一直线的一组向量叫做_________ ,三 个或三个以上平行于同一平面的一组向量叫做___ _________; 7、两向量___________,我们称这两个向量相等; 8、两个模相等、____________的向量互为逆向量; 9、把空间中一切单位向量归结到共同的始点,则终点 构成____________;
b、 2 , 3 , 4在 ________;
c、 2, 3 ,4在 ________;
d、 2 , 3 , 1在 _______;
2、点 p (3 , 2 ,1) 关于平面 xoy 的对称点是
________,关于平面 yoz 的对称点是 ______,
关于平面 zox 的对称点是 ________,关于 x 轴
6、共线向量,共面向量; 7、模相等且方向相同;
8、方向相反;
9、半径为 1 的球面;
1101、 、a距垂离直等于于b
2 的两点;
;
12、a
与b
同向 .
三、
D1
A
(c
1 5
a),
D2
A
(c
2 5
a),
D3
A
(c
3 5
a),
D4
A
(c
4 5
a).
一、填空题
练习题
1、下列各点所在象限分别是:
a、 1 , - 2, 3在 _________;
10、把平行于某一直线的一切单位向量归结到共同的
11、始 要使点,a则b终点a构 b成成__立__,__向__量_a__,_b_应__满__足_____;_____
12、_要__使__a___b___a____b_成_;立,向量a,
b 应满足_______
___________ .
二、用向量方法证明:对角线互相平分的四边形是平 行四边形 .
zR
M1•
P o
d M1M2 ?
• M2
Q N
在直角M1 NM 2 及 直 角 M1 PN
中,使用勾股定
y 理知
பைடு நூலகம்
x
d 2 M1P 2 PN 2 NM 2 2 ,
M1P x2 x1 , PN y2 y1 , NM 2 z2 z1 ,
zR
M1•
P
o x
d M1P 2 PN 2 NM2 2
(2)过B 点的中线长为________;(3)过B 点的中 线 长为___________;
6、已知平行四边形ABCD 的两个顶点A( 2 ,3 ,5 ) , B(1 , 3 , 2 )的及它的对角线的交点E( 4 ,1 , 7 ) ,则 顶点 D 的坐标 为_________,顶点 D 的坐标 为_____ ______;
解 因为P 在x 轴上,设P点坐标为 ( x,0,0),
PP1 x2 2 2 32 x2 11,
PP2 x2 12 12 x2 2,
PP1 2 PP2 , x2 11 2 x2 2
x 1, 所求点为 (1,0,0), (1,0,0).
3. 小结
(1) 向量的概念 (注意与标量的区别) 向量的加减法(平行四边形法则) 向量与数的乘法(注意数乘后的方向)
b
3a
2
5
解
a
b
5
1
b
b
3a
2
5
(1
3)a
1
5 2
1 5
5
b
2a
5
b.
2
例2 试用向量方法证明:对角线互相平分的 四边形必是平行四边形.
证 AM MC BM MD
D b
A
a
C
M
B
AD AM MD MC BM BC
AD 与 BC 平行且相等, 结论得证.
1.2 空间直角坐标系
自由向量:不考虑起点位置的向量.
相等向量:大小相等且方向相同的向量.
a
b
负向量:大小相等但方向相反的向量. a
a
a
向径: 空间直角坐标系中任一点 M与原点 构成的向量.OM
1.1.2 向量的线性运算
[1]
加法:
a
b
c
(平行四边形法则)
b
c
a
(平行四边形法则有时也称为三角形法则)
特殊地:若 a‖
Vector in line 11 x Vector in plane 11 (x,y)
••
ox
Vector in space 11 (x,y,z) Similarly Vector in n-space 11 ( x1, x2 , , xn )