中南大学高等数学下册试题全解
中南大学高等数学下期末题及答案

--○○○○………… 评卷密封线………… 密封线内不要答题,密封线外不准填写考生信息,违者考试成绩按分处理…………评卷密封线…………一、填空题(每小题分,总计分)、点(3,1,1)A -到平面:2340x y z π-+-=的距离为( )、曲面42222-+=y x z 在点()1,1,0-处的法线方程为( )、设Ω是由曲面22z x y =+及平面1z =围成的闭区域,则(),,d d d f x y z x y z Ω⎰⎰⎰化为顺序为z y x →→的三次积分为( )、设∑是xoz 面的一个闭区域xz D , 则曲面积分(),,d f x y z S ∑⎰⎰可化为二重积分为( )、微分方程212y x y'=-满足初始条件()10y =的解为( )--=1绕z 轴旋转而成的曲面为( )152=z ; ()154222=+-z y x ; 152=z ; ()()15422=+-z y x D 内具有二阶偏导数222222,,,f f f fx y x y y x∂∂∂∂∂∂∂∂∂∂,则( ) 2fy x∂∂∂; ()则(,)f x y 在区域D 内必连续; D 内必可微; () 以上都不对 D 由2y x =及2y x =-所围成,则化为二次积分后的结果为I = ; ()⎰⎰-+2122y yxydx dy ;⎰⎰-+412xx xydy dx ()⎰⎰-+2122y yxydy dx2=介于点(0,2)到点(2,0)的一段,则=⎰( )(); ; ()2. ()()()y p x y q x y f x '''++=的解, 则().()12y y -也是方程的解()122y y -也是方程的解三、(分)设平面∏:2450x y z---=,且直线0 :30x y blx ay z++=⎧⎨+--=⎩在平面∏上,求,a b的值.------…………评卷密封线………… 密封线内不要答题,密封线外不准填写考生信息,违者考试成绩按分处理…………评卷密封线…………四、(分)已知函数(,)f x y x y xy =++,曲线22:3C x y xy ++=,C 上的最大方向导数.----五、(分)计算由旋转抛物面226z x y =--及锥面z =所围成的立体的体积.六、求解下列各题(每题分,共分){},1d d xy x y ,其中{}(,)02,02D x y x y =≤≤≤≤.sin )()y y dx x e dy +++,其中L 是从(1,0)A 沿y =到(1,0)B -的--七、(分)计算I xydydz yzdzdx xzdxdy ∑=++⎰⎰,其中∑是平面0,0,0,2x y z x y z ===++=所围空间区域整个边界曲面的外侧.--…………评卷密封线…………密封线内不要答题,密封线外不准填写考生信息,违者考试成绩按分处理…………评卷密封线…………具有二阶连续导数,(cos )xz f e y =满足2cos )x xy e ,若(0)0,(0)0f f '==, ()f u 的表达式.(),()3y x b z x a x b =-+=-+-,代入平面∏方5,2a b =-=-.--解法二:过直线l 的平面束方程设为3()0x ay z x y b λ+--+++= (或(3)0x y b x ay z λ++++--=),即(1)()30x a y z b λλλ+++--+= (或(1)(1)30x a y z b λλλλ+++-+-=), 由题意知11241a λλ++-==--(或11241a λλλ++-==--), 解得5,1a λ=-=,将5,1a λ=-=及平面∏上的点(1,2,5)-代入平面束方程,求得2b =-.四.解:最大方向导数即为梯度的模,(,)(1,1),(,)gradf x y y x gradf x y =++=令2222(,,)(1)(1)(3)F x y x y x y xy λλ=++++++-,由222(1)(2)02(1)(2)030x y F x x y F y y x x y xy λλ=+++=⎧⎪=+++=⎨⎪++-=⎩,解得1211,,,1112x x x x y y y y ===-=-⎧⎧⎧⎧⎨⎨⎨⎨==-=-=⎩⎩⎩⎩,比较:(1,1)gradf =(2,1)(1,2)3gradf gradf -=-=,(1,1)0gradf --=,所以(,)f x y 在曲线C 上的最大方向导数为.五.解法一: 26222032(6)3xyr rD V dv rdrd dz d r r rdr πθθπ-Ω===--=⎰⎰⎰⎰⎰⎰⎰⎰. 解法二:1226262120202832(6)833z zD D V V V dz dxdy dz dxdy z dz z dz πππππ=+=+=+-=+=⎰⎰⎰⎰⎰⎰⎰⎰.六.解: .123D D D I dxdy dxdy xydxdy =++⎰⎰⎰⎰⎰⎰--12221110221x xdx dy dx xydy =++⎰⎰⎰⎰19ln 24=+ .因为1P Q y x∂∂==∂∂,所以该曲线积分与路径无关, 选择积分路径从(1,0)A 沿x 轴到(1,0)B -,易得11(10)2I dx -=+=-⎰七.解法一:利用高斯公式,3222200()333 2.6xx yI xydydz yzdzdx xzdxdy y z x dvx zdv dx dy zdz dx ∑Ω---Ω=++=++-====⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰对称性(2)解法二:在平面0,0,0x y z ===上,积分值为,只需计算:2x y z '∑++=(取上侧)上的积分.因cos cos cos αβγ===(()dS I xydydz yzdzdx xzdxdy xy yz xz xy yz xz dxdy '''∑∑∑=++=++++⎰⎰⎰⎰⎰⎰[]22220(2)(2)()2xyxD xy y x y x x y dxdy dx x y xy x y dy -=+--+--=---++=⎰⎰⎰⎰.解法三:在平面0,0,0x y z ===上,积分值为,只需计算:2x y z '∑++=(取上侧)上的积分.2202(2)(2)3xyxD xzdxdy x x y dxdy xdx x y dy -'∑=--=--=⎰⎰⎰⎰⎰⎰.由被积函数和积分曲面关于积分变量的对称性,可得23xydydz yzdzdx xzdxdy '''∑∑∑===⎰⎰⎰⎰⎰⎰,所以,2323I =⋅=.--八.解:()因为2222(cos )cos ,(cos )cos (cos )cos ,x x x x x x zzf e y e y f e y e y f e y e y x x∂∂''''==+∂∂ 2222(cos )sin ,(cos )sin (cos )cos ,x x x x x x zzf e y e y f e y e y f e y e y yy∂∂''''=-=-∂∂ 所以,已知条件22222(4cos )x x z zz e y e x y∂∂+=+∂∂化为22(cos )4(cos )cos x x x x xf e y e f e y e y e ''⎡⎤=+⎣⎦,所以函数()f u 满足方程()4()f u f u u ''=+.()方程()4()f u f u u ''=+的特征方程为240r -=,得特征根1,22r =± 所以,其对应齐次方程的通解为2212()uu f u C eC e -=+,设非齐方程的特解为*y Au B =+,代入原方程,得1,04A B =-=得非齐方程的一个特解为*4uy =-,故方程的通解为 2212()u u f u C e C e -=+4u-,由(0)0,(0)0f f '==得1212012204C C C C +=⎧⎪⎨--=⎪⎩,得1211,1616C C ==-, 故221()(4)16u uf u e e u -=--.。
中南大学高等数学复习题及答案

中南大学复习题及参考答案《高等数学》一、填空题1.函数1142-+-=x x y 的定义域是 . 解. ),2[]2,(∞+--∞Y 。
2.若函数52)1(2-+=+x x x f ,则=)(x f .解. 62-x 3.________________sin lim =-∞→xxx x答案:1正确解法:101sin lim 1lim )sin 1(lim sin lim=-=-=-=-∞→∞→∞→∞→xxx x x x x x x x x4.已知22lim 222=--++→x x bax x x ,则=a _____, =b _____。
由所给极限存在知, 024=++b a , 得42--=a b , 又由23412lim 2lim 2222=+=+++=--++→→a x a x x x b ax x x x , 知8,2-==b a 5.已知∞=---→)1)((lim 0x a x b e x x ,则=a _____, =b _____。
∞=---→)1)((lim 0x a x b e x x Θ, 即01)1)((lim0=-=---→b abe x a x x x , 1,0≠=∴b a 6.函数⎪⎩⎪⎨⎧≥+<=0101sin)(x x x xx x f 的间断点是x = 。
解:由)(x f 是分段函数,0=x 是)(x f 的分段点,考虑函数在0=x 处的连续性。
因为 1)0(1)1(lim 01sinlim 00==+=+-→→f x xx x x所以函数)(x f 在0=x 处是间断的,又)(x f 在)0,(-∞和),0(+∞都是连续的,故函数)(x f 的间断点是0=x 。
7. 设()()()n x x x x y -⋅⋅--=Λ21, 则()=+1n y (1)!n + 8.2)(x x f =,则__________)1)((=+'x f f 。
高等数学(下册)试题(含详细解答与点评,2020考研数学参考)

1高等数学(下册)试题(含详细解答与点评)一、单项选择题(本大题共5小题,每小题3分,共15分) 1.在空间直角坐标系下,方程2x 2+3y 2=6表示的图形为( ) A .椭圆 B .柱面 C .旋转抛物面 D .球面【答案】B【解析】考查了常见二次曲面的方程。
方程(,)0f x y =在空间表示母线平行于z 轴的柱面。
不难得到答案为B 。
注:一般来讲,关于x 、y 、z 的方程中不含哪一个字母,方程就表示母线平行于哪个轴的柱面。
2.极限021lim →→y x arcsin(x +y 2)=( )A .6πB .3π C .2π D .π【答案】A【解析】考查了二元函数极限的计算。
由于函数2arcsin()x y +在定义区域内是连续的,从而在点1,02⎛⎫⎪⎝⎭处是连续的,所以 221201limarcsin()arcsin(0)26x y x y π→→+=+=。
3.设积分区域22:y x Ω+≤R 2,0≤z ≤1,则三重积分⎰⎰⎰=+Ωdxdydz y x f )(22( )A .⎰⎰⎰π200102)(Rdz r f drd θ B .⎰⎰⎰π20012)(Rdz r f rdrd θC .⎰⎰⎰+π20122)(Rrdz y x f drd θD .⎰⎰⎰π12)(Rdz r f rdrd θ2【答案】B【解析】本题考查了在柱面坐标下二重积分的计算。
积分区域可表示为 :01,(,)z x y D Ω≤≤∈, 其中D 是上述区域在Oxy 平面上的投影,且 :0,02D r R θπ≤≤≤≤, 所以2122220()()()R ΩΩf xy dxdydz f r rdrd dz d rdr f r dz πθθ+==⎰⎰⎰⎰⎰⎰⎰⎰⎰。
4.以y =sin 3x 为特解的微分方程为( ) A .0=+''y y B .0=-''y y C .09=+''y y D .09=-''y y【答案】C【解析】考查了微分方程的解与特解的概念。
中南大学2020期末考试高数下

2020年中南大学期末考试高 等 数 学 A (下)(满分:100分 考试时间:100分钟)一、选择题:1~5小题,每小题3分,共15分。
下列每题给出的四个选项中,只有一个选项是符合题目要求的。
请将答案填写在对应的括号内。
1.已知向量a 、b 的模分别为22a b ==,,且10a b +=,则a b ⨯=( ) (A )2(B )(C (D )12.设可微函数(),f x y 在()00,x y 处取得极小值,下列结论正确的是( ) (A )()00,0y f x y = (B )()00,0y f x y < (C )()00,0y f x y > (D )()00,y f x y 不一定存在3.设(),f x y 在D 域()()22211x y ρ-+-≤上连续,则()21lim,Df x y d ρσπρ→⎰⎰=( )(A )()0,0f (B )()0,1f (C )()1,1f (D )0 4.设()f x 为连续函数。
()()1ttyF t dy f x dx =⎰⎰,则()'2F =( )(A )2()2f (B )()2f (C )()2f - (D )05.设非齐次线性微分方程()()'y R x y Q x +=有两个不同的解()()12y x y x 、,则该方程的通解为( )(A )()()12C y x y x -⎡⎤⎣⎦ (B )()()()212y x C y x y x ++⎡⎤⎣⎦ (C )()()12C y x y x +⎡⎤⎣⎦ (D )()()()112y x C y x y x +-⎡⎤⎣⎦ 二、填空题:6~10小题,每小题3分,共15分。
请将答案填写在对应的横线上。
6.已知直线L 的方程为1111x y z-==-,则将L 绕z 轴旋转一周得到的曲面∑的方 程_______________________________。
高等数学下教材答案详解

题目:证明函数$f(x)=\begin{cases}x^2-1,\quad x<1\\3x+2,\quad x\geq1\end{cases}$在$x=1$处连续。
解析:要证明函数在$x=1$处连续,需要分别讨论左极限、右极限和函数值是否相等。首先计算左极限,即$$\lim_{x\to1^-}(x^2-1)=(1)^2-1=0$$。然后计算右极限,即$$\lim_{x\to1^+}(3x+2)=3(1)+2=5$$。最后计算$x=1$时的函数值,即$f(1)=3(1)+2=5$。由于左极限、右极限和函数值都相等,因此可以得出结论:函数$f(x)$在$x=1$处连续。
解析:要求函数的极值点,需要先求得函数的导数$f'(x)$。根据乘法法则和指数函数和三角函数求导法则,可以得到$f'(x)=2e^{2x}\sin x+e^{2x}\cos x$。然后,令$f'(x)=0$,解得$x=\frac{3\pi}{2}+k\pi$,其中$k$为整数。将这些解代入原函数$f(x)$,可以得到对应的极值点。
……
通过对高等数学下教材中习题的解析,我们可以更加深入地理解每个章节的内容和知识点。同时,这些答案的详细解析也有助于同学们发现自己在学习过程中的盲点和薄弱环节,从而进行有针对性的补充和提高。希望本文对同学们在学习高等数学下教材时有所帮助,让大家能够更好地掌握这门重要的学科。
总结
通过对高等数学下教材的答案进行详解,本文旨在提供同学们学习和理解教材内容的参考和指导。在学习过程中,同学们可以根据本文的解析,进一步掌握和巩固相关知识点,提升数学能力。当然,本文只是对部分习题进行了解析,同学们在学习过程中还需要充分理解教材中的其他内容,并进行适当的练习和实践。希望本文能够对同学们的学习有所帮助,让大家在高等数学下取得优秀的成绩!
高等数学(下册)试题及详细解答

高等数学2一.填空题(每小题3分,本大题满分30分)1.已知(1,2,3)a =,(3,2,1)b = ,则a b ⨯= (4,8,4)--.2.yOz 面上的抛物线21z y =-绕z 轴旋转一周所得曲面方程为221z x y =--.3.(,)(0,2)lim x y →=18. 4.对函数yz x =利用近似计算公式d z z ∆≈,则 2.02(1.04)≈ 1.08.5.曲线2211x ty t z t =⎧⎪=-⎨⎪=+⎩上点(2,3,5)处的切线方程为35244y z x ---==.6.将下列函数展开成(1)x -的幂级数:13x =-101(1)2n n n x ∞+=-∑,(13x -<<). 7.微分方程xy y e -'+=的通解为y =()x e x C -+.8.微分方程690y y y '''-+=的通解为y =312()xC C x e +.9.设2x f xy '=,2y f x '=,则(1,2)(0,0)f f -=2.10.已知L 为球面2222x y z R ++=被平面0x y z ++=所截得的圆周,则2d Ly s =⎰323R π.二.解答下列各题(每小题8分,本大题满分16分)1.已知(,)z f x y =是由方程2sin z z x y +=确定的隐函数,求z x ∂∂和22zx∂∂.解:令2(,,)sin F x y z z z x y =+-,则2x F xy =-,cos 1z F z =+, 2cos 1x z z F xyx F z ∂=-=∂+, 。
(5分)2222(cos 1)2(sin )(cos 1)x z y z xy z z x z ∂+-⋅-⋅=∂+ 22232(cos 1)4sin (cos 1)y z x y z z ++=+. 。
(8分) 2.求函数2(,)624ln f x y x y xy y =+--的极值.解:解方程组2204620x yf x y f x y '=-=⎧⎪⎨'=--=⎪⎩, 得驻点(1,1),(2,2). 。
中南大学微积分下习题答案

当 (0,0) 0时, f x (0,0) 0,
同理, f y (0,0) 0.
P74/2(2)
lim
f Ax By
0
x y ( x ) ( y )
2
lim
x y ( x , y )
0
lim
x 0 y 0
f l lim
( 0,0 )
f ( cos , sin ) f (0,0)
0
cos sin 2 2 lim sin[( cos ) ( sin ) ] 2 2 0 [( cos ) ( sin ) ]
cos sin 2 lim sin 0 2
cos 2 sin2
P80/7
(1) 0 xy x y
2 2
sin( x y )
2
2
xy 0 ( x 0, y 0)
lim
xy x2 y
x 0 y 0
2 2 sin( x y ) 0 f (0,0), 2
故f ( x , y )在(0,0)处连续.
P123/8 求u ln x ln y 3 ln z在球面x 2 y 2 z 2 5 R 2上的极大
值( x 0, y 0, z 0), 并证明当a 0, b 0, c 0时, 恒有
Solution.
abc 5 abc 27( ) 5
3
2 2 2 2
z dz u dz P ( y ) , y du y du 1
z z p( y ) p( x ) 0 x y
高等数学下册试题及答案解析,推荐文档

6、设 是一空间有界区域,其边界曲面
是由有限块分片光滑的曲面所组成,如果
函数 P( x, y, z) , Q ( x, y, z) , R(x, y, z) 在 上具有一阶连续偏导数, 则三重积分与
第二型曲面积分之间有关系式:
式称为
公式。
7、微分方程 y 6 y 9 y x2 6 x 9 的特解可设为 y*
dx dx
( C) 方程 ( x 2 2xy 3) dx ( y2 3 x 2 y 2 ) dy 0 是全微分方程;
( D) 方程 dy
1x
2y
是伯努利方程。
dx 2 x
7、已知曲线 y y(x) 经过原点, 且在原点处的切线与直线 2x y 6 0 平行,而 y(x)
满足微分方程 y 2 y 5 y 0 ,则曲线的方程为 y (
6
高等数学(下册)试卷(三)
一、填空题(每小题 3 分,共计 24 分)
1、设 u
yz et2 dt , 则 u
。
xz
z
2、函数 f ( x, y) xy sin( x 2 y) 在点( 0, 0)处沿 l (1,2) 的方向导数
f
l (0 ,0 ) =
。
3 、 设 为 曲 面 z 1 x2
y2 ,z
2a cos
r
4a 2
r 2 dr ;
0
(C) 8 2 d 0
2a cos
r
4a 2
r 2 dr ;
0
(D) 2 d
2
2 a cos
r
4a 2
0
r 2 dr 。
5、设有界闭区域 D 由分段光滑曲线 L 所围成, L 取正向,函数 P( x, y), Q ( x, y) 在 D
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中南大学2002级高等数学下册
一、填空题(4*6)
1、已知=-=+),(,),(2
2y x f y x x y
y x f 则()。
2、设=∂∂∂=y
x z x y arctg z 2,则()。
3、设D 是圆形闭区域:)0(2222b a b y x a <<≤+≤,则=+⎰⎰σd y x D 22()。
4、设L 为圆周122=+y x 上从点),(到经01-)1,0()0,1(B E A 的曲线段,则=⎰dy e L y 2
()。
5、幂级数∑∞
=-1)5(n n
n x 的收敛区间为()。
6、微分方程06'''=-+y y y 的通解为()。
二、解下列各题(7*6)
1、求)()()cos(1lim 2222220
0y x tg y x y x y x +++-→→。
2、设y x e z 23+=,而dt
dz t y t x 求,,cos 2==。
3、设),(2
2
y x xy f z =,f 具有二阶连续偏导数,求dt dz 。
4、计算}10,10|),{(,||2≤≤≤≤=-⎰⎰y x y x D d x y D
其中σ。
5、计算⎰++-L
y x xdy ydx 22,L 为1||||=+y x 所围成的边界,L 的方向为逆时针方向。
6、求微分方程2''')(12y yy +=满足1)0()0('==y y 的特解。
三、(10分)
求内接于半径为a 的球且有最大体积的长方体。
四、(10分)
计算⎰⎰∑
++zdxdy dydz z x )2(,其中∑为曲面)10(22≤≤+=z y x z ,其法向量与z 、z 轴正向的夹角为锐角。
五、(10分)
求级数∑∞
=++01
212n n n x 的收敛域与和函数。
六、(4分)
已知)0('f 存在,且对任意的实数,y x 、有)()(1)()()(y f x f y x f y x f -+=+,求函数)(x f 。