圆柱、圆锥的表面积与体积练习题.

合集下载

圆柱圆锥练习题以及答案

圆柱圆锥练习题以及答案

圆柱圆锥练习题以及答案圆柱圆锥练习题以及答案圆柱和圆锥是几何学中常见的形状,它们在日常生活和工程设计中都有广泛的应用。

下面将为大家介绍一些关于圆柱和圆锥的练习题以及答案。

练习题1:一个圆柱的底面半径为5cm,高度为10cm,求其表面积和体积。

解答1:圆柱的表面积由两部分组成,底面积和侧面积。

底面积可以通过公式πr^2计算,其中r为底面半径。

侧面积可以通过公式2πrh计算,其中r为底面半径,h为高度。

底面积= π × 5^2 = 25π cm^2侧面积= 2π × 5 × 10 = 100π cm^2圆柱的表面积 = 底面积 + 侧面积= 25π + 100π = 125π cm^2圆柱的体积 = 底面积× 高度= 25π × 10 = 250π cm^3练习题2:一个圆锥的底面半径为6cm,高度为8cm,求其表面积和体积。

解答2:圆锥的表面积由底面积、侧面积和母线组成。

底面积可以通过公式πr^2计算,其中r为底面半径。

侧面积可以通过公式πrl计算,其中r为底面半径,l为母线长度。

母线可以通过勾股定理计算,即l = √(r^2 + h^2),其中h为高度。

底面积 = π × 6^2 = 36π cm^2母线= √(6^2 + 8^2) = √(36 + 64) = √100 = 10 cm侧面积= π × 6 × 10 = 60π cm^2圆锥的表面积 = 底面积 + 侧面积= 36π + 60π = 96π cm^2圆锥的体积 = 底面积× 高度÷ 3 = 36π × 8 ÷ 3 = 96π cm^3通过以上练习题,我们可以看到圆柱和圆锥的表面积和体积的计算方法。

这些计算方法是几何学中的基本概念,对于日常生活和工程设计都有重要的应用。

掌握了这些计算方法,我们可以更好地理解和应用圆柱和圆锥的特性。

高中数学必修二 8 3 2 圆柱、圆锥、圆台、球的表面积和体积 练习(含答案)

高中数学必修二  8 3 2 圆柱、圆锥、圆台、球的表面积和体积 练习(含答案)

8.3.2 圆柱、圆锥、圆台、球的表面积和体积一、选择题1.若圆锥的高等于底面直径,则它的底面积与侧面积之比为A.1∶2B.1C.1D2【答案】C【解析】设圆锥底面半径为r,则高h=2r,∴其母线长l=r.∴S侧=πrl=πr2,S底=πr故选C.2.(2017新课标全国Ⅲ理科)已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为A.πB.3π4C.π2D.π4【答案】B 【解析】绘制圆柱的轴截面如图所示,由题意可得:11,2 AC AB==,结合勾股定理,底面半径2r==,由圆柱的体积公式,可得圆柱的体积是223ππ1π24V r h⎛⎫==⨯⨯=⎪⎪⎝⎭,故选B.3.圆柱的底面半径为1,母线长为2,则它的侧面积为()A.2πB.3πC.πD.4π【答案】D【解析】圆柱的底面半径为r=1,母线长为l=2,则它的侧面积为S侧=2πrl=2π×1×2=4π.故选:D.4.圆台的上、下底面半径和高的比为1:4:4,母线长为10,则圆台的侧面积为().A.81πB.100πC.14πD.169π【答案】B【解析】设圆台上底半径为r,则其下底半径为4r,高为4r,结合母线长10,可求出r=2.然后由圆台侧面积公式得,.5.(多选题)一个圆柱和一个圆锥的底面直径和它们的高都与一个球的直径2R相等,下列结论正确的是()A.圆柱的侧面积为22RπB.圆锥的侧面积为22RπC.圆柱的侧面积与球面面积相等D.圆柱、圆锥、球的体积之比为3:1:2【答案】CD【解析】依题意得球的半径为R,则圆柱的侧面积为2224R R Rππ⨯=,∴A错误;圆锥的侧面积为2R Rπ=,∴B错误;球面面积为24Rπ,∵圆柱的侧面积为24Rπ,∴C正确;2322V R R Rππ=⋅=圆柱,2312233V R R Rππ⋅==圆锥,343V R=π球33324:2::3:1:233:V V V R R Rπππ∴==圆柱圆锥球,∴D正确.故选:CD.6.(多选题)如图所示,ABC 的三边长分别是3AC =,4BC =,5AB =,过点C 作CD AB ⊥,垂足为D .下列说法正确的是( )A .以BC 所在直线为轴,将此三角形旋转一周,所得旋转体的侧面积为15πB .以AC 所在直线为轴,将此三角形旋转一周,所得旋转体的体积为36πC .以AC 所在直线为轴,将此三角形旋转一周,所得旋转体的侧面积为25πD .以AC 所在直线为轴,将此三角形旋转一周,所得旋转体的体积为16π【答案】AD【解析】以BC 所在直线为轴旋转时,所得旋转体为底面半径为3,母线长为5,高为4的圆锥 ∴侧面积为3515ππ⨯⨯=,体积为2134123ππ⨯⨯⨯=,∴A 正确,B 错误;以AC 所在直线为轴旋转时,所得旋转体为底面半径为4,母线长为5,高为3的圆锥侧面积为4520ππ⨯⨯=,体积为2143163ππ⨯⨯⨯=,∴C 错误,D 正确.故选:AD .二、填空题7. 已知一个正方体的所有顶点在一个球面上,若这个正方体的表面积为18,则这个球的体积为____. 【答案】92π 【解析】设正方体边长为a ,则226183a a =⇒= ,外接球直径为34427923,πππ3382R V R ====⨯=.8.如图,若球O 的半径为5,一个内接圆台的两底面半径分别为3和4(球心O 在圆台的两底面之间),则圆台的体积为______.【答案】259π3【解析】解:作经过球心的截面(如图),由题意得13O A =,24O B =,5OA OB ==,则14OO =,23OO =,127O O =,所以()22π259347π33V ⨯⨯==.9.已知圆柱的上、下底面的中心分别为12,O O ,过直线12O O 的平面截该圆柱所得的截面是面积为4的正方形,则该圆柱的表面积为_______.【答案】6π【解析】由题意,圆柱的截面是面积为4的正方形,可得其边长为2,可得圆柱的底面半径为1r =,母线2l =,所以该圆柱的表面积为221222212216S S S rl r πππππ=+=+=⨯⨯+⨯=。

高中数学 1. 圆柱、圆锥、圆台的表面积和体积 课后练习、课时练习

高中数学  1. 圆柱、圆锥、圆台的表面积和体积 课后练习、课时练习

一、单选题1. 如图是底面半径为3的圆锥,将其放倒在一平面上,使圆锥在此平面内绕圆锥顶点滚动,当这个圆锥在平面内转回原位置时,圆锥本身恰好滚动了3周,则()A.圆锥的母线长为18B.圆锥的表面积为27πC.圆锥的侧面展开图扇形圆心角为60°D.圆锥的体积为2. 某圆锥的侧面展开图是一个半径为,圆心角为的扇形,则该圆锥的内切球的体积为()C.D.A.B.3. 圆锥的表面积为a m2,其侧面展开图是一个半圆,则此圆锥的底面直径()A.B.C.D.4. 如果圆台的上底面半径为5,下底面半径为,中截面把圆台分为上、下两个圆台,它们的侧面积的比为,那么A.10 B.15 C.20 D.255. 已知圆锥的底面圆心到母线的距离为2,当圆锥母线的长度取最小值时,圆锥的侧面积为()A.B.C.D.6. 如图,已知圆台的一个底面的半径为,母线,高,则该圆台的侧面积为()A.或B.或C.或D.或二、多选题7. 某圆锥的底面半径为4,母线长为5,则下列关于此圆锥的说法正确的是()A.圆锥的体积为B.圆锥的侧面展开图的圆心角为C.圆锥的侧面积为D.过圆锥两条母线的截面面积最大值为8. 在南方不少地区,经常看到人们头戴一种用木片、竹篾或苇蒿等材料制作的斗笠,用来遮阳或避雨,随着旅游和文化交流活动的开展,斗笠也逐渐成为了一种时尚旅游产品.有一种外形为圆锥形的斗笠,称为“灯罩斗笠”,根据人的体型、高矮等制作成大小不一的型号供人选择使用,不同型号的斗笠大小经常用帽坡长(母线长)和帽底宽(底面圆直径长)两个指标进行衡量,现有一个“灯罩斗笠”,帽坡长20厘米,帽底宽厘米,关于此斗笠,下面说法正确的是()A.若每100平方厘米的斗笠面需要价值1元的材料,此斗笠的制作费为元B.用此斗笠盛水,则需要立方厘米的水才能将斗笠装满C.斗笠轴截面(过顶点和底面中心的截面图形)的顶角为D.过斗笠顶点和斗笠侧面上任意两母线的截面三角形的最大面积为平方厘米三、填空题9. 在圆锥内放置半径为的小球和半径为的大球与圆锥的侧面均相切,大球与小球以及大球与圆锥底面均相切,则圆锥侧面积为___________.10. 已知圆柱的体积为,该圆柱的轴截面是一个正方形,则该圆柱的侧面积为______.11. 若圆锥的母线为,高为1,则圆锥的侧面积为________.12. 中国客家博物馆坐落于有“世界客都”之称的广东省梅州市城区,是一间收藏、研究、展示客家历史文化的综合性博物馆,其主馆是一座圆台形建筑,如图.现有一圆台,其上、下底面圆的半径分别为3米和6米,母线长为5米,则该圆台的体积约为______立方米.(结果保留整数)四、解答题13. 如图,是一个几何体的三视图,正视图和侧视图都是由一个边长为2的等边三角形和一个长为2宽为1的矩形组成.(1)说明该几何体是由哪些简单的几何体组成;(2)求该几何体的表面积.14. 已知圆柱的侧面展开图是边长为2与4的矩形,求圆柱的体积.15. 如果一个正四棱柱与一个圆柱的体积相等,那么我们称它们是一对“等积四棱圆柱”.将“等积四棱圆柱”的正四棱柱、圆柱的表面积与高分别为、与、.(1)若,,求的值;(2)若,求证:.16. 已知一个圆柱的侧面展开图是边长为和的矩形,求该圆柱的表面积.。

圆柱练习

圆柱练习

圆柱表面积与圆柱圆锥体积实际应用练习题精选一、选择:(在正确答案下划线)(1)一只铁皮水桶能装水多少升是求水桶的(侧面积、表面积、容积、体积)(2)做一只圆柱体的油桶,至少要用多少铁皮是求油桶的(侧面积、表面积、容积、体积)(3)做一节圆柱形铁皮通风管,要用多少铁皮是求通风管的(侧面积、表面积、容积、体积)(4)求一段圆柱形钢条有多少立方米,是求它的(侧面积、表面积、容积、体积)二、深化练习1、压路机的滚筒是一个圆柱形,它的横截面周长是3.14米,长是1.5米,求压路机滚动100周压过的路面是多少平方米?2、压路机的前轮直径是2米,长1.2米,每分钟转动5周,求1小时压过的路的面积是多少平方米?3、要制10节圆柱形通风管( 烟管),直径5分米,长8分米,需要多少平方米的铁皮?4、一根底面半径是5分米,高10分米的圆柱形柱子漆油漆,求漆油漆的面积是多少?如果每平方米要花费3元,漆完这根柱子要多少元钱?5、一个圆柱形水池底面直径8米,池深2米,如果在水池的底面和四周涂上水泥,涂水泥的面积有多少平方米?6、一个无盖的圆柱形铁皮水桶,高是30厘米,底面半径10厘米,做这个水桶大约要多少铁皮? (进一法保留到百位)7、做一对底面直径4分米,高5分米的圆柱铁皮水桶,需要铁皮多少平方分米?(得数保留整数)8、一个圆锥形沙堆,它的底面周长是12.56米,高是1.8米。

用这堆沙在8米宽的公路上铺3厘米厚的路面,能铺多少米?9、一个圆柱形钢材长3米,截成5段小圆柱,表面积增加50.24平方厘米。

原来这根钢材的体积是多少立方厘米?1、一个圆柱的体积是94.2平方厘米,底面直径是4厘米,它的高是多少?2、一个圆柱形水池底面直径8米,池深2米,如果在水池的底面和四周涂上水泥,涂水泥的面积有多少平方米?水池最多能盛水多少立方米?3、一种压路机的滚筒是圆柱形的筒宽1.5米,直径是0.8米。

这种压路机每分钟向前滚动5周。

这种压路机1分钟压路多少平方米?4、一个圆柱形蓄水池,从里面量底面直径是20米,深为5米, (1) 要在这个蓄水池的四周和底面抹上水泥,抹水泥部分的面积是多少平方米?(2) 这个蓄水池最多可以蓄水多少吨?(每立方米水重1吨)5、做一个底面直径是4分米,高是5分米的圆柱形铁皮油桶,(1) 做这个铁皮油桶,至少要用铁皮多少平方分米?( 得数用进一法保留整平方分米)2) 这个油桶里装了4/5的油,这些油重多少千克?(每升油重0.85千克,得数保留整千克数)6、一根长4米,底面直径4厘米的圆柱形钢材,把它锯成同样长的3段,表面积比原来增加了多少平方厘米?7、只列式不计算:用一块边长是9.42分米的正方形铁皮配上一个地面,做成一个圆柱形铁皮水桶。

六年级下册数学圆柱圆锥练习题(含答案)

六年级下册数学圆柱圆锥练习题(含答案)

六年级下册数学圆柱圆锥练习题(含答案)一、1. 一个圆柱的底面直径为8厘米,高为10厘米,求其体积和表面积。

解:圆柱的体积公式为V = πr^2h,表面积公式为S = 2πr(r+h)。

其中r为底面半径,h为高度。

先求出底面半径r = 8/2 = 4厘米。

体积V = π(4^2)×10 = 160π≈ 502.65 cm^3表面积S = 2π×4(4+10) = 2π×4×14 ≈ 351.86 cm^22. 一个圆锥的底面半径为6厘米,高为8厘米,求其体积和表面积。

解:圆锥的体积公式为V = 1/3πr^2h,表面积公式为S = πr(r+√(r^2+h^2))。

先求出底面半径r = 6厘米。

体积V = 1/3π(6^2)×8 = 96π≈ 301.59 cm^3表面积S = π×6(6+√(6^2+8^2)) ≈ 150.80 cm^2二、3. 一个圆柱的底面直径是12.6厘米,高是16厘米,求其体积和表面积。

解:首先计算底面半径r = 12.6/2 = 6.3厘米。

体积V = π(6.3^2)×16 = 633.6π≈ 1991.05 cm^3表面积S = 2π×6.3(6.3+16) ≈ 570.97 cm^24. 一个圆锥的底面直径是9.8厘米,高是12厘米,求其体积和表面积。

解:先计算底面半径r = 9.8/2 = 4.9厘米。

体积V = 1/3π(4.9^2)×12 ≈ 237.67 cm^3表面积S = π×4.9(4.9+√(4.9^2+12^2)) ≈ 145.55 cm^2三、5. 一个圆柱的底面半径是5厘米,高是18厘米,求其体积和表面积。

解:底面半径r = 5厘米。

体积V = π(5^2)×18 = 450π≈ 1413.72 cm^3表面积S = 2π×5(5+18) ≈ 376.99 cm^26. 一个圆锥的底面半径是7厘米,高是10厘米,求其体积和表面积。

高中数学第八章立体几何初步8.3.圆柱圆锥圆台球的表面积和体积习题含解析第二册

高中数学第八章立体几何初步8.3.圆柱圆锥圆台球的表面积和体积习题含解析第二册

8.3。

2圆柱、圆锥、圆台、球的表面积和体积课后篇巩固提升基础达标练1。

(多选题)一个圆柱和一个圆锥的底面直径和它们的高都与一个球的直径2R相等,下列结论正确的是()A。

圆柱的侧面积为2πR2B.圆锥的侧面积为2πR2C。

圆柱的侧面积与球的表面积相等D.圆柱、圆锥、球的体积之比为3∶1∶2R,则圆柱的侧面积为2πR×2R=4πR2,∴A错误;圆锥的侧面积为πR×R=πR2,∴B错误;球的表面积为4πR2,∵圆柱的侧面积为4πR2,∴C正确;∵V圆柱=πR2·2R=2πR3,V圆锥=πR2·2R=πR3,V球=πR3,∴V圆柱∶V圆锥∶V球=2πR3∶πR3∶πR3=3∶1∶2,∴D正确.2.若一个正方体内接于表面积为4π的球,则正方体的表面积等于()A.4 B。

8 C。

8 D.8x,球半径为R,则S球=4πR2=4π,∴R=1。

∵正方体内接于球,∴x=2R=2,∴x=,∴S正=6x2=6×=8。

3。

(2019广东高二期末)设A,B,C,D是同一个半径为4的球的球面上四点,△ABC为等边三角形且其面积为9,则三棱锥D—ABC体积的最大值为()A。

12 B.18C.24D.54点M为三角形ABC的中心,E为AC的中点,当DM⊥平面ABC时,三棱锥D—ABC的体积最大,此时,OD=OB=R=4.∵S△ABC=AB2=9,∴AB=6.∵点M为△ABC的中心,∴BM=BE=2。

∴Rt△OMB中,有OM==2。

∴DM=OD+OM=4+2=6。

∴(V D—ABC)max=×9×6=18。

故选B。

4。

《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺.问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有()A。

小学奥数--圆柱与圆锥-精选练习例题-含答案解析(附知识点拨及考点)

小学奥数--圆柱与圆锥-精选练习例题-含答案解析(附知识点拨及考点)

立体图形表面积 体积 圆柱h r222π2πS rh r =+=+圆柱侧面积个底面积 2πV r h =圆柱圆锥hr 22ππ360n S l r =+=+圆锥侧面积底面积 注:l 是母线,即从顶点到底面圆上的线段长 21π3V r h =圆锥体 板块一 圆柱与圆锥【例 1】 如图,用高都是1米,底面半径分别为1.5米、1米和0.5米的3个圆柱组成一个物体.问这个物体的表面积是多少平方米?(π取3.14)11111.50.5【考点】圆柱与圆锥 【难度】3星 【题型】解答 【解析】 从上面看到图形是右上图,所以上下底面积和为22 3.14 1.514.13⨯⨯=(立方米),侧面积为2 3.14(0.51 1.5)118.84⨯⨯++⨯=(立方米),所以该物体的表面积是14.1318.8432.97+=(立方米).【答案】32.97【例 2】 有一个圆柱体的零件,高10厘米,底面直径是6厘米,零件的一端有一个圆柱形的圆孔,圆孔的直径是4厘米,孔深5厘米(见右图).如果将这个零件接触空气的部分涂上防锈漆,那么一共要涂多少平方厘米?例题精讲圆柱与圆锥【考点】圆柱与圆锥 【难度】3星 【题型】解答【解析】 涂漆的面积等于大圆柱表面积与小圆柱侧面积之和,为266π10π()24π560π18π20π98π307.722⨯+⨯⨯+⨯=++==(平方厘米). 【答案】307.72【例 3】 (希望杯2试试题)圆柱体的侧面展开,放平,是边长分别为10厘米和12厘米的长方形,那么这个圆柱体的体积是________立方厘米.(结果用π表示)【考点】圆柱与圆锥 【难度】3星 【题型】解答【解析】 当圆柱的高是12厘米时体积为210300π()122ππ⨯⨯=(立方厘米) 当圆柱的高是12厘米时体积为212360π()102ππ⨯⨯=(立方厘米).所以圆柱体的体积为300π立方厘米或360π立方厘米. 【答案】300π立方厘米或360π立方厘米【例 4】 如右图,是一个长方形铁皮,利用图中的阴影部分,刚好能做成一个油桶(接头处忽略不计),求这个油桶的容积.(π 3.14=)【考点】圆柱与圆锥 【难度】3星 【题型】解答【解析】 圆的直径为:()16.561 3.144÷+=(米),而油桶的高为2个直径长,即为:428(m)⨯=,故体积为100.48立方米.【答案】100.48立方米【巩固】如图,有一张长方形铁皮,剪下图中两个圆及一块长方形,正好可以做成1个圆柱体,这个圆柱体的底面半径为10厘米,那么原来长方形铁皮的面积是多少平方厘米?(π 3.14=)【考点】圆柱与圆锥 【难度】3星 【题型】解答【解析】做成的圆柱体的侧面是由中间的长方形卷成的,可见这个长方形的长与旁边的圆的周长相等,则剪下的长方形的长,即圆柱体底面圆的周长为:2π1062.8⨯⨯=(厘米),原来的长方形的面积为:10462.81022056()()(平方厘米).⨯+⨯⨯=【答案】2056【例 5】把一个高是8厘米的圆柱体,沿水平方向锯去2厘米后,剩下的圆柱体的表面积比原来的圆柱体表面积减少12.56平方厘米.原来的圆柱体的体积是多少立方厘米?【考点】圆柱与圆锥【难度】3星【题型】解答【解析】沿水平方向锯去2厘米后,剩下的圆柱体的表面积比原来的圆柱体表面积减少的部分为减掉的2厘米圆柱体的侧面积,所以原来圆柱体的底面周长为12.562 6.28÷=厘米,底面半径为6.28 3.1421÷÷=厘米,所以原来的圆柱体的体积是2⨯⨯==(立方厘米).π188π25.12【答案】25.12【巩固】一个圆柱体底面周长和高相等.如果高缩短4厘米,表面积就减少50.24平方厘米.求这个圆柱体的表面积是多少?【考点】圆柱与圆锥【难度】3星【题型】解答【解析】圆柱体底面周长和高相等,说明圆柱体侧面展开是一个正方形.高缩短4厘米,表面积就减少50.24平方厘米.阴影部分的面积为圆柱体表面积减少部分,值是50.24平方厘米,所以底面周长是50.24412.56⨯=(平方厘米),两÷=(厘米),侧面积是:12.5612.56157.7536个底面积是:()2⨯÷÷⨯=(平方厘米).所以表面积为:3.1412.56 3.142225.12+=(平方厘米).157.753625.12182.8736【答案】182.8736【例 6】(两岸四地”华罗庚金杯”少年数学精英邀请赛)一个圆柱体形状的木棒,沿着底面直径竖直切成两部分.已知这两部分的表面积之和比圆柱体的表面积大22008cm,则这个圆柱)体木棒的侧面积是________2cm.(π取3.14【考点】圆柱与圆锥【难度】3星【题型】解答第2题【解析】根据题意可知,切开后表面积增加的就是两个长方形纵切面.设圆柱体底面半径为r,高为h,那么切成的两部分比原来的圆柱题表面积大:2r h⨯=,所以,圆柱体侧面积为:502(cm)222008(cm)r h⨯⨯=,所以22⨯⨯⨯=⨯⨯=.r h2π2 3.145023152.56(cm)【答案】3152.56【巩固】已知圆柱体的高是10厘米,由底面圆心垂直切开,把圆柱分成相等的两半,表面积增加了=)40平方厘米,求圆柱体的体积.(π3【考点】圆柱与圆锥【难度】3星【题型】解答【解析】圆柱切开后表面积增加的是两个长方形的纵切面,长方形的长等于圆柱体的高为10厘米,宽为圆柱底面的直径,设为2r,则210240r=(厘米).圆柱体积为:r⨯⨯=,12⨯⨯=(立方厘米).π11030【答案】30【例 7】一个圆柱体的体积是50.24立方厘米,底面半径是2厘米.将它的底面平均分成若干个扇形后,再截开拼成一个和它等底等高的长方体,表面积增加了多少平方厘米? (π 3.14=)【考点】圆柱与圆锥【难度】3星【题型】解答【解析】从图中可以看出,拼成的长方体的底面积与原来圆柱体的底面积相同,长方体的前后两个侧面面积与原来圆柱体的侧面面积相等,所以增加的表面积就是长方体左右两个侧面的面积.(法1)这两个侧面都是长方形,且长等于原来圆柱体的高,宽等于圆柱体底面半径.可知,圆柱体的高为()2÷⨯=(厘米),所以增加的表面积为2421650.24 3.1424⨯⨯=(平方厘米);(法2)根据长方体的体积公式推导.增加的两个面是长方体的侧面,侧面面积与长方体的长的乘积就是长方体的体积.由于长方体的体积与圆柱体的体积相等,为50.24立方厘米,而拼成的长方体的长等于圆柱体底面周长的一半,为3.142 6.28⨯=厘米,所以侧面长方形的面积为50.24 6.288÷=平方厘米,所以增加的表面积为8216⨯=平方厘米.【答案】16【例 8】右图是一个零件的直观图.下部是一个棱长为40cm的正方体,上部是圆柱体的一半.求这个零件的表面积和体积.【考点】圆柱与圆锥【难度】3星【题型】解答【解析】这是一个半圆柱体与长方体的组合图形,通过分割平移法可求得表面积和体积分别为:11768平方厘米,89120立方厘米.【答案】89120【例 9】输液100毫升,每分钟输2.5毫升.如图,请你观察第12分钟时图中的数据,问:整个吊瓶的容积是多少毫升?【考点】圆柱与圆锥【难度】3星【题型】解答【解析】100毫升的吊瓶在正放时,液体在100毫升线下方,上方是空的,容积是多少不好算.但倒过来后,变成圆柱体,根据标示的格子就可以算出来.由于每分钟输2.5毫升,12分钟已输液2.51230⨯=(毫升),因此开始输液时液面应与50毫升的格线平齐,上面空的部分是50毫升的容积.所以整个吊瓶的容积是10050150+=(毫升).【答案】150【例 10】(”希望杯”五年级第2试)一个拧紧瓶盖的瓶子里面装着一些水(如图),由图中的数据可推知瓶子的容积是_______ 立方厘米.(π取3.14)8(单位:厘米)4106【考点】圆柱与圆锥【难度】3星【题型】解答【解析】由于瓶子倒立过来后其中水的体积不变,所以空气部分的体积也不变,从图中可以看出,瓶中的水构成高为6厘米的圆柱,空气部分构成高为1082-=厘米的圆柱,瓶子的容积为这两部分之和,所以瓶子的容积为:24π()(62) 3.1432100.482⨯⨯+=⨯=(立方厘米).【答案】100.48【巩固】一个酒精瓶,它的瓶身呈圆柱形(不包括瓶颈),如图.已知它的容积为26.4π立方厘米.当瓶子正放时,瓶内的酒精的液面高为6厘米;瓶子倒放时,空余部分的高为2厘米.问:瓶内酒精的体积是多少立方厘米?合多少升?【考点】圆柱与圆锥 【难度】3星 【题型】解答【解析】 由题意,液体的体积是不变的,瓶内空余部分的体积也是不变的,因此可知液体体积是空余部分体积的623÷=倍.所以酒精的体积为326.4π62.17231⨯=+立方厘米,而62.172立方厘米62.172=毫升0.062172=升.【答案】0.062172【巩固】一个酒瓶里面深30cm ,底面内直径是10cm ,瓶里酒深15cm .把酒瓶塞紧后使其瓶口向下倒立这时酒深25cm .酒瓶的容积是多少?(π取3)253015【考点】圆柱与圆锥 【难度】3星 【题型】解答【解析】 观察前后,酒瓶中酒的总量没变,即瓶中液体体积不变.当酒瓶倒过来时酒深25cm ,因为酒瓶深30cm ,这样所剩空间为高5cm 的圆柱,再加上原来15cm 高的酒即为酒瓶的容积. 酒的体积:101015π375π22⨯⨯= 瓶中剩余空间的体积1010(3025)π125π22-⨯⨯= 酒瓶容积:375π125π500π1500(ml)+==【答案】1500【巩固】一个盖着瓶盖的瓶子里面装着一些水,瓶底面积为10平方厘米,(如下图所示),请你根据图中标明的数据,计算瓶子的容积是______.【考点】圆柱与圆锥 【难度】3星 【题型】解答【解析】 由已知条件知,第二个图上部空白部分的高为752cm -=,从而水与空着的部分的比为4:22:1=,由图1知水的体积为104⨯,所以总的容积为()4022160÷⨯+=立方厘米.【答案】60【巩固】一个透明的封闭盛水容器,由一个圆柱体和一个圆锥体组成,圆柱体的底面直径和高都是12厘米.其内有一些水,正放时水面离容器顶11厘米,倒放时水面离顶部5厘米,那么这个容器的容积是多少立方厘米?(π3=)5cm【考点】圆柱与圆锥 【难度】3星 【题型】解答【解析】 设圆锥的高为x 厘米.由于两次放置瓶中空气部分的体积不变,有:()22215π611π6π63x x ⨯⨯=-⨯⨯+⨯⨯⨯,解得9x =, 所以容器的容积为:221π612π69540π16203V =⨯⨯+⨯⨯⨯==(立方厘米). 【答案】1620【例 11】 (希望杯2试试题)如图,底面积为50平方厘米的圆柱形容器中装有水,水面上漂浮着一块棱长为5厘米的正方体木块,木块浮出水面的高度是2厘米.若将木块从容器中取出,水面将下降________厘米.【考点】圆柱与圆锥 【难度】3星 【题型】解答【解析】 在水中的木块体积为55375⨯⨯=(立方厘米),拿出后水面下降的高度为7550 1.5÷=(厘米)【答案】1.5【例 12】 有两个棱长为8厘米的正方体盒子,A 盒中放入直径为8厘米、高为8厘米的圆柱体铁块一个,B 盒中放入直径为4厘米、高为8厘米的圆柱体铁块4个,现在A 盒注满水,把A 盒的水倒入B 盒,使B 盒也注满水,问A 盒余下的水是多少立方厘米?【考点】圆柱与圆锥 【难度】3星 【题型】解答【解析】 将圆柱体分别放入A 盒、B 盒后,两个盒子的底面被圆柱体占据的部分面积相等,所以两个盒子的底面剩余部分面积也相等,那么两个盒子的剩余空间的体积是相等的,也就是说A 盒中装的水恰好可以注满B 盒而无剩余,所以A 盒余下的水是0立方厘米.【答案】A 盒余下的水是0立方厘米【例 13】 兰州来的马师傅擅长做拉面,拉出的面条很细很细,他每次做拉面的步骤是这样的:将一个面团先搓成圆柱形面棍,长1.6米.然后对折,拉长到1.6米;再对折,拉长到1.6米……照此继续进行下去,最后拉出的面条粗细(直径)仅有原先面棍的164.问:最后马师傅拉出的这些细面条的总长有多少米?(假设马师傅拉面的过程中.面条始终保持为粗细均匀的圆柱形,而且没有任何浪费)【考点】圆柱与圆锥 【难度】3星 【题型】解答【解析】 最后拉出的面条直径是原先面棍的164,则截面积是原先面棍的2164,细面条的总长为:21.6646553.6⨯=(米).注意运用比例思想.【答案】6553.6【例 14】 一个圆柱形容器内放有一个长方形铁块.现打开水龙头往容器中灌水.3分钟时水面恰好没过长方体的顶面.再过18分钟水灌满容器.已知容器的高为50厘米,长方体的高为20厘米,求长方体底面面积与容器底面面积之比.【考点】圆柱与圆锥 【难度】3星 【题型】解答【解析】 因为18分钟水面升高:502030-=(厘米).所以圆柱中没有铁块的情形下水面升高20厘米需要的时间是:20181230⨯=(分钟),实际上只用了3分钟,说明容器底面没被长方体底面盖住的部分只占容器底面积的13:124=,所以长方体底面面积与容器底面面积之比为3:4. 【答案】3:4【例 15】 一只装有水的圆柱形玻璃杯,底面积是80平方厘米,高是15厘米,水深8厘米.现将一个底面积是16平方厘米,高为12厘米的长方体铁块竖放在水中后.现在水深多少厘米?【考点】圆柱与圆锥 【难度】3星 【题型】解答【解析】 根据等积变化原理:用水的体积除以水的底面积就是水的高度.(法1):808(8016)6406410⨯÷-=÷=(厘米);(法2):设水面上升了x 厘米.根据上升部分的体积=浸入水中铁块的体积列方程为:8016(8)x x =+,解得:2x =,8210+=(厘米).(提问”圆柱高是15厘米”,和”高为12厘米的长方体铁块”这两个条件给的是否多余?)【答案】10【巩固】一只装有水的圆柱形玻璃杯,底面积是80平方厘米,高是15厘米,水深10厘米.现将一个底面积是16平方厘米,高为12厘米的长方体铁块竖放在水中后.现在水深多少厘米?【考点】圆柱与圆锥 【难度】3星 【题型】解答【解析】 8010(8016)12.5⨯÷-=,因为12.512>,所以此时水已淹没过铁块,8010(8016)1232⨯--⨯=,32800.4÷=,所以现在水深为120.412.4+=厘米【答案】12.4【巩固】一只装有水的圆柱形玻璃杯,底面积是80平方厘米,高是15厘米,水深13厘米.现将一个底面积是16平方厘米,高为12厘米的长方体铁块竖放在水中后.现在水深多少厘米?【考点】圆柱与圆锥 【难度】3星 【题型】解答【解析】 玻璃杯剩余部分的体积为80(1513)160⨯-=立方厘米,铁块体积为1612192⨯=立方厘米,因为160192<,所以水会溢出玻璃杯,所以现在水深就为玻璃杯的高度15厘米【总结】铁块放入玻璃杯会出现三种情况:①放入铁块后,水深不及铁块高;②放入铁块后,水深比铁块高但未溢出玻璃杯;③水有溢出玻璃杯.【说明】教师可以在此穿插一个关于阿基米德测量黄金头冠的体积的故事. 一天国王让工匠做了一顶黄金的头冠,不知道工匠有没有掺假,必须知道黄金头冠的体积是多少,可是又没有办法来测量.(如果知道体积,就可以称一下纯黄金相应体积的重量,再称一下黄金头冠的重量,就能知道是否掺假的结果了)于是,国王就把测量头冠体积的任务交给他的大臣阿基米德.(小朋友们,你们能帮阿基米德解决难题吗?)阿基米德苦思冥想不得其解,就连晚上沐浴时还在思考这个问题.当他坐进水桶里,看到水在往外满溢时,突然灵感迸发,大叫一声:”我找到方法了……”,就急忙跑出去告诉别人,大家看到了一个还光着身子的阿基米德.他的方法是:把水桶装满水,当把黄金头冠放进水桶,浸没在水中时,所收集的溢出来的水的体积正是头冠的体积.【答案】15【例 16】 一个圆柱形玻璃杯内盛有水,水面高2.5厘米,玻璃杯内侧的底面积是72平方厘米.在这个杯中放进棱长6厘米的正方体铁块后,水面没有淹没铁块.这时水面高多少厘米?【考点】圆柱与圆锥 【难度】3星 【题型】解答【解析】 把放入铁块后的玻璃杯看作一个底面如右图的新容器,底面积是72—6×6=36(平方厘米).水的体积是72 2.5180⨯=(立方厘米).后来水面的高为180÷36=5(厘米).【答案】5【例 17】 一个盛有水的圆柱形容器,底面内半径为5厘米,深20厘米,水深15厘米.今将一个底面半径为2厘米,高为17厘米的铁圆柱垂直放入容器中.求这时容器的水深是多少厘米?【考点】圆柱与圆锥 【难度】3星 【题型】解答【解析】 若圆柱体能完全浸入水中,则水深与容器底面面积的乘积应等于原有水的体积与圆柱体在水中体积之和,因而水深为:222515217517.72πππ⨯⨯+⨯⨯⨯=(厘米).它比圆柱体的高度要大,可见圆柱体可以完全浸入水中.于是所求的水深便是17.72厘米.【答案】17.72【例 18】 有甲、乙两只圆柱形玻璃杯,其内直径依次是10厘米、20厘米,杯中盛有适量的水.甲杯中沉没着一铁块,当取出此铁块后,甲杯中的水位下降了2厘米;然后将铁块沉没于乙杯,且乙杯中的水未外溢.问:这时乙杯中的水位上升了多少厘米?【考点】圆柱与圆锥 【难度】3星 【题型】解答【解析】 两个圆柱直径的比是1:2,所以底面面积的比是1:4.铁块在两个杯中排开的水的体积相同,所以乙杯中水升高的高度应当是甲杯中下降的高度的14,即120.54⨯=(厘米). 【答案】0.5【巩固】有一只底面半径是20厘米的圆柱形水桶,里面有一段半径是5厘米的圆柱体钢材浸在水中.钢材从水桶里取出后,桶里的水下降了6厘米.这段钢材有多长?【考点】圆柱与圆锥 【难度】3星 【题型】解答【解析】 根据题意可知,圆柱形钢材的体积等于桶里下降部分水的体积,因为钢材底面半径是水桶底面半径的520,即41,钢材底面积就是水桶底面积的161.根据体积一定,圆柱体的底面积与高成反比例可知,钢材的长是水面下降高度的16倍.6÷(520)2=96(厘米),(法2):3.14×202×6÷(3.14×52)=96(厘米). 【答案】96【例 19】 一个盛有水的圆柱形容器底面内半径为5厘米,深20厘米,水深15厘米.今将一个底面半径为2厘米,高为18厘米的铁圆柱垂直放人容器中.求这时容器的水深是多少厘米?【考点】圆柱与圆锥 【难度】3星 【题型】解答【解析】 若铁圆柱体能完全浸入水中,则水深与容积底面积的乘积应等于原有水的体积与圆柱体在水中体积之和,因而水深为:22251521817.725πππ⨯⨯+⨯⨯=⨯(厘米);它比铁圆柱体的高度要小,那么铁圆柱体没有完全浸入水中.此时容器与铁圆柱组成一个类似于下图的立体图形.底面积为225221πππ-=,水的体积保持不变为2515315ππ⨯=.所以有水深为315617217ππ=(厘米),小于容器的高度20厘米,显然水没有溢出于是6177厘米即为所求的水深. 【答案】6177【例 20】 如图11-7,有一个圆柱和一个圆锥,它们的高和底面直径都标在图上,单位是厘米.那么,圆锥体积与圆柱体积的比是多少?【关键词】华杯赛,初赛,3题【考点】圆柱与圆锥 【难度】3星 【题型】解答 【解析】 圆锥的体积是211624,33ππ⨯⨯⨯=,圆柱的体积是248128ππ⨯⨯=.所以,圆锥体积与圆柱体积的比是16:1281:243ππ=. 【答案】1:24【例 21】 一个圆锥形容器高24厘米,其中装满水,如果把这些水倒入和圆锥底面直径相等的圆柱形容器中,水面高多少厘米? 【考点】圆柱与圆锥 【难度】3星 【题型】解答【解析】 设圆锥形容器底面积为S ,圆柱体内水面的高为h ,根据题意有:1243S Sh ⨯⨯=,可得8h =厘米. 【答案】8【例 22】 (”希望杯”一试六年级)如图,圆锥形容器中装有水50升,水面高度是圆锥高度的一半,这个容器最多能装水 升.【考点】圆柱与圆锥 【难度】3星 【题型】解答【解析】 圆锥容器的底面积是现在装水时底面积的4倍,圆锥容器的高是现在装水时圆锥高的2倍,所以容器容积是水的体积的8倍,即508400⨯=升.【答案】400【例 23】 如图,甲、乙两容器相同,甲容器中水的高度是锥高的13,乙容器中水的高度是锥高的23,比较甲、乙两容器,哪一只容器中盛的水多?多的是少的的几倍?甲乙【考点】圆柱与圆锥 【难度】3星 【题型】解答【解析】 设圆锥容器的底面半径为r ,高为h ,则甲、乙容器中水面半径均为23r ,则有21π3V r h =容器,221228ππ33381V r h r h =⨯=乙水(),222112219πππ333381V r h r h r h =-⨯=甲水(),2219π198188π81r h V V r h ==甲水乙水,即甲容器中的水多,甲容器中的水是乙容器中水的198倍. 【答案】198倍【例 24】 张大爷去年用长2米、宽1米的长方形苇席围成容积最大的圆柱形粮囤.今年改用长3米宽2米的长方形苇席围成容积最大的圆柱形的粮囤.问:今年粮囤的容积是去年粮囤容积的多少倍? 【关键词】华杯赛,决赛,口试,23题【考点】圆柱与圆锥 【难度】3星 【题型】解答【解析】 底面周长是3,半径是32π,2233()24πππ⨯=所以今年粮囤底面积是234π,高是2.同理,去年粮囤底面积是224π,高是1.2232(2)(1) 4.5.44ππ⨯÷⨯=因此,今年粮囤容积是去年粮囤容积的4.5倍.【答案】4.5【例 25】 (仁华考题)如图,有一卷紧紧缠绕在一起的塑料薄膜,薄膜的直径为20厘米,中间有一直径为8厘米的卷轴,已知薄膜的厚度为0.04厘米,则薄膜展开后的面积是 平方米.【考点】圆柱与圆锥 【难度】3星 【题型】解答【解析】 缠绕在一起时塑料薄膜的体积为:22208ππ1008400π22⎡⎤⎛⎫⎛⎫⨯-⨯⨯=⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦(立方厘米),薄膜展开后为一个长方体,体积保持不变,而厚度为0.04厘米,所以薄膜展开后的面积为8400π0.04659400÷=平方厘米65.94=平方米.另解:也可以先求出展开后薄膜的长度,再求其面积.由于展开前后薄膜的侧面的面积不变,展开前为22208ππ84π22⎛⎫⎛⎫⨯-⨯= ⎪ ⎪⎝⎭⎝⎭(平方厘米),展开后为一个长方形,宽为0.04厘米,所以长为84π0.046594÷=厘米,所以展开后薄膜的面积为6594100659400⨯=平方厘米65.94=平方米.【答案】65.94【巩固】图为一卷紧绕成的牛皮纸,纸卷直径为20厘米,中间有一直径为6厘米的卷轴.已知纸的厚度为0.4 毫米,问:这卷纸展开后大约有多长?【考点】圆柱与圆锥 【难度】3星 【题型】解答【解析】 将这卷纸展开后,它的侧面可以近似的看成一个长方形,它的长度就等于面积除以宽.这里的宽就是纸的厚度,而面积就是一个圆环的面积. 因此,纸的长度 :()22 3.1410093.1410 3.1437143.50.040.04⨯-⨯-⨯≈≈==纸卷侧面积纸的厚度(厘米)所以,这卷纸展开后大约71.4米.【答案】71.4【巩固】如图,厚度为0.25毫米的铜版纸被卷成一个空心圆柱(纸卷得很紧,没有空隙),它的外直径是180厘米,内直径是50厘米.这卷铜版纸的总长是多少米?【考点】圆柱与圆锥 【难度】3星 【题型】解答【解析】 卷在一起时铜版纸的横截面的面积为2218050ππ7475π22⎛⎫⎛⎫⨯-⨯= ⎪ ⎪⎝⎭⎝⎭(平方厘米),如果将其展开,展开后横截面的面积不变,形状为一个长方形,宽为0.25毫米(即0.025厘米),所以长为7475π0.025938860÷=厘米9388.6=米.所以这卷铜版纸的总长是9388.6米. 本题也可设空心圆柱的高为h ,根据展开前后铜版纸的总体积不变进行求解,其中h 在计算过程将会消掉.【答案】9388.6米【例 26】 (人大附中分班考试题目)如图,在一个正方体的两对侧面的中心各打通一个长方体的洞,在上下底面的中心打通一个圆柱形的洞.已知正方体边长为10厘米,侧面上的洞口是边长为4厘米的正方形,上下底面的洞口是直径为4厘米的圆,求此立体图形的表面积和体积.【考点】圆柱与圆锥 【难度】3星 【题型】解答【解析】 ⑴先求表面积.表面积可分为外侧表面积和内侧表面积.外侧为6个边长10厘米的正方形挖去4个边长4厘米的正方形及2个直径4厘米的圆,所以,外侧表面积为:210106444π225368π⨯⨯-⨯⨯-⨯⨯=-(平方厘米);内侧表面积则为右上图所示的立体图形的表面积,需要注意的是这个图形的上下两个圆形底面和前后左右4个正方形面不能计算在内,所以内侧表面积为:()24316244π22π232192328π24π22416π⨯⨯+⨯⨯-⨯+⨯⨯⨯=+-+=+(平方厘米),所以,总表面积为:22416π5368π7608π785.12++-=+=(平方厘米).⑵再求体积.计算体积时将挖空部分的立体图形取出,如右上图,只要求出这个几何体的体积,用原立方体的体积减去这个体积即可.挖出的几何体体积为:24434444π2321926424π25624π⨯⨯⨯+⨯⨯+⨯⨯⨯=++=+(立方厘米);所求几何体体积为:()10101025624π668.64⨯⨯-+=(立方厘米). 【答案】668.64板块二 旋转问题【例 27】 如图,ABC 是直角三角形,AB 、AC 的长分别是3和4.将ABC ∆绕AC 旋转一周,求ABC ∆扫出的立体图形的体积.(π 3.14=)CB A43【考点】旋转问题 【难度】3星 【题型】解答【解析】 如右上图所示,ABC ∆扫出的立体图形是一个圆锥,这个圆锥的底面半径为3,高为4,体积为:21π3412π37.683⨯⨯⨯==.【答案】37.68【例 28】 已知直角三角形的三条边长分别为3cm ,4cm ,5cm ,分别以这三边轴,旋转一周,所形成的立体图形中,体积最小的是多少立方厘米?(π取3.14) 【考点】旋转问题 【难度】3星 【题型】解答【解析】 以3cm 的边为轴旋转一周所得到的是底面半径是4cm ,高是3cm 的圆锥体,体积为2313.144350.24(cm )3⨯⨯⨯= 以4cm 的边为轴旋转一周所得到的是底面半径是3cm ,高是4cm 的圆锥体,体积为2313.143437.68(cm )3⨯⨯⨯= 以5cm 的边为轴旋转一周所得到的是底面半径是斜边上的高345 2.4⨯÷=cm 的两个圆锥,高之和是5cm 的两个圆的组合体,体积为2313.14 2.4530.144(cm )3⨯⨯⨯=【答案】30.144【巩固】如图,直角三角形如果以BC 边为轴旋转一周,那么所形成的圆锥的体积为16π,以AC 边为轴旋转一周,那么所形成的圆锥的体积为12π,那么如果以AB 为轴旋转一周,那么所形成的几何体的体积是多少?ABC【考点】旋转问题 【难度】3星 【题型】解答【解析】 设BC a =,AC b =,那么以BC 边为轴旋转一周,所形成的圆锥的体积为2π3ab ,以AC 边为轴旋转一周,那么所形成的圆锥的体积为2π3a b ,由此可得到两条等式:224836ab a b ⎧=⎪⎨=⎪⎩,两条等式相除得到43b a =,将这条比例式再代入原来的方程中就能得到34a b =⎧⎨=⎩,根据勾股定理,直角三角形的斜边AB 的长度为5,那么斜边上的高为2.4.如果以AB 为轴旋转一周,那么所形成的几何体相当于两个底面相等的圆锥叠在一起,底面半径为2.4,高的和为5,所以体积是22.4π59.6π3⨯=.【答案】9.6π【例 29】 如图,ABCD 是矩形,6cm BC =,10cm AB =,对角线AC 、BD 相交O .E 、F 分别是AD 与BC 的中点,图中的阴影部分以EF 为轴旋转一周,则白色部分扫出的立体图形的体积是多少立方厘米?(π取3)。

圆柱与圆锥练习题

圆柱与圆锥练习题

2、半径3厘米,高15厘米
侧面积:2×3.14×3×15=282.6(平方厘米) 2个底面积:3.14×3 2 ×ቤተ መጻሕፍቲ ባይዱ=56.52(平方厘米) 表面积:282.6+56.52=339.12(平方厘米) 体积:3.14×3 2×15=423.9(立方厘米)
3、直径3分米,高12分米
侧面积:3.14×3×12=113.04(平方分米) 2个底面积:r=3÷2=1.5(分米)
3.14×1.5×2 2=14.13(平方分米) 表面积=113.04+14.13=127.17(平方分米) 体积=3.14×1.52×12=84.78(立方分米)
4、底面周长25.12米,高3米
侧面积=25.12×3=75.36(平方米) r=25.12÷3.14÷2=4(米)
2个底面积:3.14×42×2=100.48(平方米)
表面积=75.36+100.48=175.84(平方米) 体积:3.14×4 2×3=150.72(立方米)
5、底面半径3米,侧面展开是一个正方形
高=底面周长=2×3.14×3=18.84(米) 侧面积=18.84×18.84=354.9456(平方米) 2个底面积:3.14×32×2=56.52(平方米) 表面积:354.9456+56.52=411.4656(平方米) 体积=3.14×32 ×18.84=532.4184(立方米)
圆柱与圆锥练习
(1)底面积28.26平方米,高2米
r 2=28.26÷3.14=9(平方米)
r=3米
侧面积:2×3.14×3×2=37.68(平方米) 表面积=侧面积+2个底面积
=37.68+28.26×2 =37.68+56.52 =94.2(平方米) 体积=28.26×2=56.52(立方米)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

圆柱、圆锥的表面积与的体积练习题2、计算下面图形的表面积和体积。

(单位:厘米)803、一个圆柱形奶粉盒的谋面半径是5厘米,高是20厘米,它的容积是多少立方厘米?4、把一块棱长12分米的正方体木料加工成一个体积最大的圆柱体,这个圆柱体的体积是多少?A、底面积是1.25平方米,高3米。

B、底面直径和高都是8分米。

C、底面半径和高都是8分米。

D、底面周长是12.56米,高2米。

6、一个圆柱形的油桶,从里面量底面半径直径是4分米,高3分米,做这个油桶至少要用多少平方分米的铁皮?如果1升柴油重0.82千克,这个油桶能装多少千克的柴油?(得数保留两位小数)7、一个圆柱形水池的容积是43.96立方米,池底直径4米,池深多少米?8、一口周长是6.28米的圆柱形水井,它的深是10米,平时蓄水深度是井深的0.8倍,这口井平时的水量是多少立方米?9、一个长8分米,宽6分米,高4分米的长方体与一个圆柱体的体积相等,高相等,这个圆柱的底面积是多少?10、一段圆柱形钢材,长50厘米,横截面半径是4厘米,如果每立方厘米钢是7.9克,这段钢材的重量是多少千克?(得数保留一位小数)11、求下面图形的表面积和体积(单位:分米)12、有一段底面是环形的钢管,外圆直径是40厘米,内圆直径是20厘米,这根钢管长250厘米,求这根钢管的体积是多少立方厘米?圆柱的体积练习二1、一个圆柱的底面半径是6厘米,高是2分米,求这个圆柱的体积。

2、小刚有一个圆柱形的水杯,水杯的底面半径是5厘米,高是10厘米,有资料显示:每人每天的正常饮水量大约是1升,小刚一天要喝几杯水?3、一个圆柱形水桶,底面直径和高都是40厘米,用这个水桶容积的85%装水,每升水重1千克,桶中的水大约有多少千克?4、一个底面半径是10米的圆柱形蓄水池,能蓄水2512立方米,若再挖深2米,可蓄水多少立方米?5、一个圆柱形油桶,内底面直径是40厘米,高是50厘米,它的容积是多少升?如6、一个圆柱形玻璃杯底面半径是10厘米,里面装不水,水的高度是12厘米,把一小块铁块放进杯中,水上升到15厘米,这块铁块重多少克?(每立方厘米铁重7.8克)7、下图是一个长15厘米,宽6厘米、高15个底面半径为5厘米的圆柱形空洞,求这个零件的体积。

15158、一种空心的混凝土管道,内直径是40厘米,外直径是80厘米,长300厘米,求制作100节这种管道约需多少混凝土?9、求下面圆柱的侧面积、表面积和体积。

(单位:厘米)510、有两个底面半径相等的圆柱,高的比是3:5,第一个圆柱的体积是48立方厘米,第二个圆柱的体积比第一个多多少立方厘米?11、把一个棱长为6分米的正方体木块,削成一个最大的圆柱,这个圆柱的体积 多少立方分米?12、有一个高为6.28分米的圆柱体机件,它的侧面展开正好是一个正方形,求这个机件的体积。

13、一个盛水的圆柱形容器,底面内半径是5厘米,深20厘米,水深15厘米,今将一个边长为5厘米的正方体铁块放入容器中,求这时容器的水深是多少厘米?(保留一位小数)14、把一块长12.56厘米,宽2厘米,高10厘米的长方体铁块熔化后铸成底面半径是2厘米的圆柱,这个圆柱的体积是多少立方厘米?15、一个圆柱的高是50.24厘米,它的侧面展开是一个正方形,这个圆柱的体积是多少立方厘米?(得数保留整数)16、一根圆柱形钢材,长20分米,底面半径是6分米,若每立方分米钢重7.8千克,这根钢材重多少千克?圆柱体积练习三1、一个圆柱形的油桶,底面半径3分米,高1.2分米,内装汽油的高度为桶高的4/5,如果每升汽油重0.82千克,这些汽油重多少千克?(得数保留两位小数)少用铁皮多少平方分米?3、一个圆柱形铁皮油桶,体积是4.2立方米,底面积是1.4平方米,桶内装油的高度是桶高的3/4,油高多少米?4、把一块长31.4厘米,宽20厘米,高4厘米的长方体钢坯,熔化后浇铸成底面半径是4厘米的圆柱体,圆柱体的高是多少厘米?(损耗不计)5、在一个底面直径为20厘米的圆柱形容器中装有水,将一个底面直径为10厘米的圆柱铁锤放入水中,当铁锤从圆柱形容器中取出后,水面下降1厘米,求铁锤的高。

6、把一个村长为6分米的正方体木块,加工成一个最大的圆柱,求削去木块的体积。

7、一个圆柱体的侧面积是942平方厘米,体积是2355立方厘米,这个圆柱体的底面积是多少?8、一个圆柱形油罐,底面周长62.8米,高4米,如果每立方米可容油0.7吨,这个油罐可装油多少吨?9、一个圆柱的高是50.24厘米,它的侧面展开是一个正方形,这个圆柱的体积是多少立方厘米?(得数保留整数)10、一个圆柱形奶粉盒的底面半径是4厘米,高是20厘米,它的容积是多少立方厘米?11、一根圆柱形钢材,长20分米,底面半径是5分米,若每立方分米钢重7.8千克,12、一个圆柱形玻璃杯底面半径是10厘米,里面装有水,水的高度是12厘米,把一小块铁块放进杯中,水上升到15厘米,这块铁块重多少克?(每立方厘米铁重7.8克)13、一口周长是12.56米的圆柱形水井,它的深是10米,平时蓄水深度是井深的4/5,这口井平时的水量是多少立方米?14、有两个底面半径相等的圆柱,高的比是3:7,第一个圆柱的体积是48立方厘米,第一个圆柱的体积比第二个少多少立方厘米?15、下图是一个长12厘米,宽6厘米、高12一个底面半径为5厘米的圆柱形空洞,求这个零件的体积。

1216、一段圆柱形钢材,长60厘米,横截面半径是4厘米,如果每立方厘米钢是7.8克,这段钢材的重量是多少千克?(得数保留一位小数)圆锥的体积练习一1、计算并填表。

2、一个圆锥形小麦堆,测得底面周长是18.84米,高1.5米,小麦堆的体积是多少立方米?如果每立方米小麦重735千克,这堆小麦共有多少千克?3、一个圆锥形煤堆,高6.5米,底面周长25.12米,如果每0.78立方米的煤是1吨,这堆煤有多少吨?(得数保留两位小数)4、一个圆锥体积是4.8立方分米,高是8分米,底面积是多少平方分米?5、一块圆柱形铁件,底面半径是4分米,高是4.5分米,将它熔成底面半径是6分米的圆锥,圆锥高多少分米?6、一堆圆锥形石子,底面积为9.42平方米,高1.2米,如果每立方米石子是1.6吨,这堆石子共多少吨?(得数保留三位小数)7、把棱长是6厘米的正方体,削成一个最大的圆锥,削下部分的体积是多少立方厘米?8、计算下面图形的体积。

(单位:厘米)9、一个圆锥的底面积是9平方厘米,体积是15立方厘米,它的高是多少?10、一堆圆锥形黄沙,占地18平方米,高1.1米,如果每立方米黄沙重1.7吨,那11、一堆圆锥形的大豆堆,它的底面周长是3.14米,高2.1米,如果每立方米大豆重500千克,那么这堆大豆有多少千克?12、一个圆锥形沙堆的体积是16.956立方米,用这堆沙在20米宽的公路上铺2.5厘米厚的路面,能铺多少米?13、把一个底面周长15.7厘米,高10厘米的圆柱形铁块,熔铸成一个圆锥体,如果圆锥的底面积是25平方厘米,那么它的高是多少厘米?14、一堆煤堆成圆锥形,底面半径1.5米,高1.8米,每立方米煤约重1.4吨,这堆煤约多少吨?15、一个圆锥形容器,它的容积是9.42立方分米,底面半径是1分米,求这个圆锥容器的高。

圆锥形铁块的底面是多少?圆锥的体积练习二1、要锻造一个底面直径4分米,高3分米的圆锥形零件,锻造成底面半径为10厘米的圆锥体后,圆锥体的高是多少?2、把一个底面周长是62.8厘米,高是15厘米的圆柱形木头削成一个最大的圆锥,地将这根木头削竖多少立方厘米?3、把一底面周长是62.8厘米,高是15厘米的圆柱形木头削成一个最大的圆锥,要将这根木头削去多少立方厘米?4、一个圆锥形沙堆,这的占地面积是20平方米,高1.8米,每立方米沙重1.5吨,如果用载重3吨的卡车来运,多少次能将这堆沙运完?5、已知一个圆柱体与一个圆锥体底面积相等,且圆锥与圆柱的体积之比是1:4,求圆锥与圆柱的高之比是多少?6、一圆锥形谷堆底面周长6.28米,高1米,若把它装在一个底面半径为2米的圆柱形粮囤里,可以堆多高?7、一个圆锥形的麦堆,底面周长是50.24米,高是1.2米,每立方米小麦重700千克,5堆这样的小麦一共重多少吨?8、一个稻谷上面是圆锥形,下面是圆柱形,圆柱的底面周长是18.84米,高是2米,圆锥的高是1.5米,每立方米稻谷约重550千克,这囤稻谷约有多少吨?(得数保留整数)9、一个圆锥的底面周长为18.84厘米,高是5厘米,求圆锥的体积。

10、一堆圆锥形黄沙,底面周长是25.12米,高是1.5米,每立方米黄沙重1.5吨,这堆黄沙黄重多少吨?11、一个圆锥形沙堆,底面周长是12.56米,高是1.2米,用这堆黄沙在10米宽的公路上铺2厘米厚的路面,能铺多少米?12、一个圆柱体和一个圆锥体等底等高,它们体积之和是40立方厘米,圆锥的体积是多少立方厘米?13、有一个草堆,上部是圆锥形,下部是一个圆柱,如果圆锥的高为1.5米,底面半径为2米,圆柱的高为3米,底面半径为2米,草堆体积是多少?14、一个圆锥形玻璃容器,它的底面周长是18.84厘米,高是10厘米,把它装满水后,再倒入另一个圆锥形容器里,水面半径是5厘米,水位高是多少?15、有一个粮囤,上面是圆锥形,下面是圆柱形,底面直径是2米,圆柱高是1.8米,圆锥高是0.6米,如果每立方米粮食重700千克,这个粮囤装粮食多少千克?16、一个圆柱与一个圆锥等底等高,圆柱体积比圆锥体积多20立方分米,这个圆柱的体积是多少立方分米?圆柱与圆锥单元综合练习1、用铁皮制作一个圆柱形油桶,底面周长是18.84分米,高是12分米。

(1)至少需用铁皮多少平方分米?(得数保留整数)(2)这个油桶的容积是多少立方分米?(3)如果每升汽油重0.68千克,这个油桶能装汽油多少千克?(得数保留整数)2、要油漆10根底面直径是8分米,高是5分米的圆柱体木料,如果每油漆1平方米要花3.5元,那么油漆这些木料需要多少钱?3、把棱长是18厘米的正方体削成一个最大的圆锥体,削下部分的体积是多少立方厘米?4、一个圆柱形油桶盛满了汽油,倒出汽油的5/12后,还剩42升,油桶的底面积是8平方分米,油桶的高是多少分米?(桶壁厚度不计)5、一根长1.5米的圆柱形钢材,截成相等的2段后,表面积增加1.6平方分米,这根钢材原来的体积是多少立方分米?6、有一个高10厘米的圆柱,如果将它的高减少2厘米后,得到的圆柱的表面积比原来减少12.56平方厘米,求原来圆柱的体积?7、一个圆柱水桶的体积是28立方分米,底面积是5.6平方分米,装了2/5桶水,水高多少分米?8、一个圆柱,侧面积是753.6平方厘米,底面半径为4厘米,求圆柱的体积。

相关文档
最新文档