常微分方程试卷 答案

合集下载

(完整版)常微分方程试题及答案

(完整版)常微分方程试题及答案

第十二章常微分方程(A)、是非题1.任意微分方程都有通解。

(X )2.微分方程的通解中包含了它所有的解。

15•微分方程xy |nx 0的通解是y 2In① y 3 In xdx xdy 0是可分离变量微分方程。

② xy 2x dx y x 2y dy 0是可分离变量微分方程。

③ x? y 4是齐次方程。

y 2y 0是二阶常系数齐次线性微分方程。

6. ysiny 是一阶线性微分方程。

(X)7. y 3 3x yxy 不是一阶线性微分方程。

(O )8. y 2y 5y 0的特征方程为r 22r 5 0。

(9. dy 1 xy 2 xy 2是可分离变量的微分方程。

dx、填空题1.在横线上填上方程的名称o )(O )2. sin xy x cosx 的通解中应含 _3个独立常数。

3. 1 e 2x 的通解是-e 2x C 1x C 2。

42x4.1 sin2x cosx 的通解是 -sin2x cosx C 1x C 2。

45. xy 2x 2yx 41是二 ______ 阶微分方程。

3.函数y 3sinx 4cosx 是微分方程y y 0的解。

(0 )4.函数y x 2 e x 是微分方程y 2y y0的解。

(X )C (C 为任意常数)。

(0 )④xyy x 2 sinx 是一阶线性微分方程。

6 .微分方程y y阶微分方程。

1A. 3 B7. y y 满足y L 0 2的特解是(B ) oxA. y e x 1 B . y 2e x C . y 2 e 2&微分方程y y sinx 的一个特解具有形式 A . y a sinx24 .微分方程y 3y 3的一个特解是(cosxC 1e xC 2e x 是方程y y 0的(A ),其中C 1,C 2为任意常数。

A.通解B .特解C .是方程所有的解 D .上述都不对7. 8.丄所满足的微分方程是yx空的通解为y xCx 2。

9.dx dy 0的通解为 x10.dy dx 2yx 15x 1 2,其对应的齐次方程的通解为11. 方程xy 1 0的通解为y 12. 3阶微分方程x 3 * 5的通解为yx 2Cxe 2 o x C 1 x C 2 x C 3 o120三、选择题1 .微分方程 xyy 3y 4y 0的阶数是(D ) oA. 3 B 2 .微分方程x 51的通解中应含的独立常数的个数为3.下列函数中,哪个是微分方程dy 2xdx 0的解(A . y 2xB . y x 2C .2x Dy a cosxy xy 3y 2 011 .在下列函数中,能够是微分方程 y y 0的解的函数是(C )y 1 B . y x C . y sinx D . y.Cx17.微分方程0的解为(B )C . y x asin x bcosxy acosx bsinx9.下列微分方程中,是二阶常系数齐次线性微分方程。

常微分方程试题及答案

常微分方程试题及答案

常微分方程试题及答案一、单项选择题(每题5分,共20分)1. 下列哪一项不是常微分方程的特点?A. 未知函数是连续的B. 未知函数是可微的C. 未知函数的导数是未知的D. 方程中包含未知函数的导数答案:A2. 常微分方程的解是指满足方程的函数,下列哪一项不是解的性质?A. 唯一性B. 存在性C. 可微性D. 可积性答案:D3. 一阶线性微分方程的一般形式是:A. \( y' + p(x)y = q(x) \)B. \( y' = p(x)y + q(x) \)C. \( y' - p(x)y = q(x) \)D. \( y' + p(x)y = q(x) \) 或 \( y' - p(x)y = q(x) \)答案:A4. 已知微分方程 \( y'' - y = 0 \) 的一个特解是 \( y = e^x \),那么它的通解是:A. \( y = C_1e^x + C_2e^{-x} \)B. \( y = C_1e^x + C_2 \)C. \( y = C_1e^x + C_2e^x \)D. \( y = C_1 + C_2e^{-x} \)答案:A二、填空题(每题5分,共20分)1. 微分方程 \( y'' + y' + y = 0 \) 的通解是 \( y = C_1e^{-x}+ C_2e^{-\frac{1}{2}x} \),其中 \( C_1 \) 和 \( C_2 \) 是常数。

2. 微分方程 \( y'' - 4y = 0 \) 的通解是 \( y = C_1\cos(2x) +C_2\sin(2x) \),其中 \( C_1 \) 和 \( C_2 \) 是常数。

3. 微分方程 \( y'' + 4y = 0 \) 的通解是 \( y = C_1\cos(2x) +C_2\sin(2x) \),其中 \( C_1 \) 和 \( C_2 \) 是常数。

常微分方程期末试题答案

常微分方程期末试题答案

一、填空题(每空2 分,共16分)。

1、方程满足解的存在唯一性定理条件的区域是 xoy 平面 .22d d y x x y+=2. 方程组的任何一个解的图象是 n+1 维n x x xR Y R Y F Y∈∈=,),,(d d 空间中的一条积分曲线.3.连续是保证方程初值唯一的 充分 条件.),(y x f y '),(d d y x f xy=4.方程组的奇点的类型是 中心⎪⎪⎩⎪⎪⎨⎧=-=x ty y txd d d d )0,0( 5.方程的通解是2)(21y y x y '+'=221C Cx y +=6.变量可分离方程的积分因子是()()()()0=+dy y q x p dx y N x M ()()x P y N 17.二阶线性齐次微分方程的两个解,成为其基本解组的充要)(1x y ϕ=)(2x y ϕ=条件是 线性无关8.方程的基本解组是440y y y '''++=x x x 22e ,e--二、选择题(每小题 3 分,共 15分)。

9.一阶线性微分方程的积分因子是( A ).d ()()d yp x y q x x+=(A )(B )(C )(D )⎰=xx p d )(e μ⎰=xx q d )(e μ⎰=-xx p d )(e μ⎰=-xx q d )(e μ10.微分方程是( B )0d )ln (d ln =-+y y x x y y (A )可分离变量方程(B )线性方程(C )全微分方程(D )贝努利方程11.方程x (y 2-1)d x+y (x 2-1)d y =0的所有常数解是( C ).(A)(B)1±=x 1±=y (C ), (D ), 1±=y 1±=x 1=y 1=x12.阶线性非齐次微分方程的所有解( D ).n (A )构成一个线性空间(B )构成一个维线性空间1-n(C )构成一个维线性空间(D )不能构成一个线性空间1+n 13.方程( D )奇解.222+-='x y y (A )有一个 (B )有无数个 (C )只有两个(D )无三、计算题(每小题8分,共48分)。

常微分方程试卷答案

常微分方程试卷答案

常微分方程试卷答案-CAL-FENGHAI.-(YICAI)-Company One12数学与应用数学专业《常微分方程》试卷B一、 选择题(3分⨯8=24分) 1、( A )是一阶线性微分方程。

A .y y x ='2B .2y y =' C .x y y +='1D . ye y ='2、( B )不是变量可分离微分方程。

A .xyy ++='11 B .1--='y x y y C . 022=+dy x dx y D .0=+x dy y dx3、下列等式中为微分方程的是 ( D )A .()'='+'uv v u v uB .()dx e y d e dx dy x x+=+ C. ()'''v u v u +=+ D.x e y xsin '+= 4、向量组在区间I 上线性相关是它们对应的朗斯基行列式在I 上为零的( C )A . 充分非必要条件B . 必要非充分条件C . 充分必要条件D .既不充分也不必要条件5、若方程0=-''y y λ存在满足()()010==y y 的非零解,则λ为( B )A .2πλ=B .2πλ-=C .πλ=D .πλ-=6、方程M(x,y)dx+N(x,y)dy=0有只含x 的积分因子的充要条件是( B ) A .)(y N x N y M ϕ-=∂∂-∂∂ B .)(x N x Ny M ϕ=∂∂-∂∂ C .)(y M x N y M ϕ-=∂∂-∂∂ D .)(y M xNy M ϕ=∂∂-∂∂ 7、微分方程082=-'-''y y y 的通解为 ( B ) A .x x e c e c y 2241--= B .x x e c e c y 2241+=- C .()2241c e e c y x x ++=- D . x x e e y 243-=-8、方程212-='y y 的通过点(0,0)的解的最大存在区间是( A )A .(-∞,+∞)B .(-2,+∞)C .(-∞,2)D .(-2,2) 二、求解方程0)(42=++dx y x y xdy 。

常微分方程答案

常微分方程答案

《常微分方程》测试题 1 答案一、填空题(每空5分)12、 z=34、5、二、计算题(每题10分)1、这是n=2时的伯努利不等式,令z=,算得代入原方程得到,这是线性方程,求得它的通解为z=带回原来的变量y,得到=或者,这就是原方程的解。

此外方程还有解y=0.2、解:积分:故通解为:3、解:齐线性方程的特征方程为,,故通解为不是特征根,所以方程有形如把代回原方程于是原方程通解为4、解三、证明题(每题15分)1、证明:令的第一列为(t)= ,这时(t)==(t)故(t)是一个解。

同样如果以(t)表示第二列,我们有(t)== (t)这样(t)也是一个解。

因此是解矩阵。

又因为det=-t故是基解矩阵。

2、证明:(1),(t- t)是基解矩阵。

(2)由于为方程x=Ax的解矩阵,所以(t)也是x=Ax的解矩阵,而当t= t时,(t)(t)=E, (t- t)=(0)=E. 故由解的存在唯一性定理,得(t)=(t- t)《常微分方程》测试题2 答案一、填空题:(每小题3分,10×3=30分)1. 2. 3 3.4. 充分条件5. 平面6. 无7. 1 8. 9.10. 解组线性无关二. 求下列微分方程的通解:(每小题8分,8×5=40分)1、解:将方程变形为………(2分)令,于是得……(2分)时,,积分得从而…(2分)另外,即也是原方程的解………(2分)2、解:由于……………………(3分)方程为恰当方程,分项组合可得…………(2分)故原方程的通解为……(3分)3、解:齐线性方程的特征方程为特征根…(2分)对于方程,因为不是特征根,故有特解…(3分)代入非齐次方程,可得.所以原方程的解为…(3分)4、解:线性方程的特征方程,故特征根…………………(2分)对于,因为是一重特征根,故有特解,代入,可得……(2分)对于,因为不是特征根,故有特解,代入原方程,可得…(2分)所以原方程的解为…(2分)5、解:当时,方程两边乘以,则方程变为…(2分),即于是有,即……(3分)故原方程的通解为另外也是原方程的解. …(3分)三、解:, ,解的存在区间为…(3分)即令……(4分)又误差估计为:(3分)四、解:方程组的特征方程为特征根为,(2分)对应的特征向量应满足可解得类似对应的特征向量分量为…(3分)原方程组的的基解矩阵为…………………(2分)………(3分)五、证明题:(10分)证明:设,是方程的两个解,则它们在上有定义,其朗斯基行列式为…………………(3分)由已知条件,得…………………(2分)故这两个解是线性相关的.由线性相关定义,存在不全为零的常数,使得,由于,可知.否则,若,则有,而,则,这与,线性相关矛盾.(3分)故(2分)《常微分方程》测试题3答案1.辨别题(1)一阶,非线性(2)一阶,非线性(3)四阶,线性(4)三阶,非线性(5)二阶,非线性(6)一阶,非线性2.填空题(1).(2).(3).(4).3.单选题(1).B (2).C (3).A (4).B (5). A (6). B 7. A 4. 计算题(1).解当时,分离变量得等式两端积分得即通解为(2).解齐次方程的通解为令非齐次方程的特解为代入原方程,确定出原方程的通解为+(3).解由于,所以原方程是全微分方程.取,原方程的通积分为即(4). 令,则,代入原方程,得,当时,分离变量,再积分,得,即:5. 计算题令,则原方程的参数形式为由基本关系式,有积分得得原方程参数形式通解为5.计算题解方程的特征根为,齐次方程的通解为因为不是特征根。

常微分试题及答案

常微分试题及答案

常微分试题及答案一、选择题(每题5分,共20分)1. 下列关于微分方程的描述,错误的是()。

A. 微分方程是含有未知函数及其导数的方程B. 微分方程的解是未知函数C. 微分方程的通解是包含任意常数的解D. 微分方程的特解是满足初始条件的解答案:B2. 一阶线性微分方程的一般形式是()。

A. \( y' + p(x)y = q(x) \)B. \( y'' + p(x)y' + q(x)y = 0 \)C. \( y'' + p(x)y = q(x) \)D. \( y' + p(x)y' = q(x) \)答案:A3. 微分方程 \( y'' - y' - 2y = 0 \) 的特征方程是()。

A. \( r^2 - r - 2 = 0 \)B. \( r^2 - r + 2 = 0 \)C. \( r^2 + r - 2 = 0 \)D. \( r^2 + r + 2 = 0 \)答案:A4. 微分方程 \( y'' + 4y = 0 \) 的通解是()。

A. \( y = C_1 \cos(2x) + C_2 \sin(2x) \)B. \( y = C_1 \cosh(2x) + C_2 \sinh(2x) \)C. \( y = C_1 \cos(4x) + C_2 \sin(4x) \)D. \( y = C_1 \cosh(4x) + C_2 \sinh(4x) \)答案:A二、填空题(每题5分,共20分)1. 微分方程 \( y'' - 4y' + 4y = 0 \) 的通解是 \( y = C_1 \)________ + \( C_2 \) ________。

答案:\( e^{2x} \) \( e^{-2x} \)2. 微分方程 \( y'' + y = 0 \) 的通解是 \( y = C_1 \) ________ + \( C_2 \) ________。

(整理)常微分方程试题及参考答案

(整理)常微分方程试题及参考答案

(整理)常微分方程试题及参考答案常微分方程试题一、填空题(每小题3分,共39分)1.常微分方程中的自变量个数是________.2.路程函数S(t)的加速度是常数a,则此路程函数S(t)的一般形式是________.3.微分方程=g( )中g(u)为u的连续函数,作变量变换________,方程可化为变量分离方程.4.微分方程F(x,y′)=0中令P=y′,若x、P平面上的曲线F(x,P)=0的参数形式为x= (t),P=ψ(t),t为参数,则方程参数形式的通解为________.5.方程=(x+1)3的通解为________.6.如果函数f(x,y)连续,y= (x)是方程=f(x,y)的定义于区间x0≤x≤x0+h上,满足初始条件(x0)=y0的解.则y= (x)是积分方程________定义于x0≤x≤x0+h 上的连续解.7.方程=x2+xy,满足初始条件y(0)=0的第二次近似解是________.8.方程+a1(t) +…+a n-1(t) +a n(t)x=0中a i(t) i=1,2,…,n是〔a,b〕上的连续函数,又x1(t),x2(t),…,x n(t)为方程n 个线性无关的解,则其伏朗斯基行列式W(t) 应具有的性质是:________.9.常系数线性方程x(4)(t)-2x″(t)+x(t)=0的通解为________.10.设A(t)是区间a≤t≤b上的连续n×n矩阵,x1(t),x2(t),…,x n(t)是方程组x′=A(t)x的n个线性无关的解向量.则方程组的任一解向量x(t)均可表示为:x(t)=________的形式.11.初值问题(t)+2x″(t)-tx′(t)+3x(t)=e-t,x(1)=1,x′(1)=2,x″(1)=3 可化为与之等价的一阶方程组________.12.如果A是3×3的常数矩阵,-2为A的三重特征值,则方程组x′=Ax的基解矩阵exp A t=________.13.方程组的奇点类型是________.二、计算题(共45分)1.(6分)解方程= .2.(6分)解方程x″(t)+ =0.3.(6分)解方程(y-1-xy)dx+xdy=0.4.(6分)解方程5.(7分)求方程:S″(t)-S(t)=t+1满足S(0)=1, (0)=2的解.6.(7分)求方程组的基解矩阵Φ(t).7.(7分)验证方程:有奇点x1=1, x2=0,并讨论相应驻定方程的解的稳定性.三、证明题(每小题8分,共16分)1.设f(x,y)及连续,试证方程dy-f(x,y)dx=0为线性方程的充要条件是它有仅依赖于x的积分因子.2.函数f(x)定义于-∞<x<+∞,且满足条件|f(x1)-f(x2)|≤n|x1-x2|,其中0<n<1,证明< p="">方程x=f(x)存在唯一的一个解.常微分方程试题参考答案一、填空题(每小题3分,共39分)1.12. 2+c1t+c23.u=4. c为任意常数5.y= (x+1)4+c(x+1)26.y=y0+7. (x)=8.对任意t9.x(t)=c1e t+c2te t+c3e-t+c4te-t10.x(t)=c1x1(t)+c2x2(t) +c n x n(t)11. x1(1)=1,x2(1)=2, x3(1)=312.expAt=e-2t[E+t(A+2E)+ ]13.焦点二、计算题(共45分)1.解:将方程分离变量为改写为等式两边积分得y-ln|1+y|=ln|x|-即y=ln 或e y=2.解:令则得=0当0时-arc cosy=t+c1y=cos(t+c1) 即则x=sin(t+c1)+c2当=0时y= 即x3.解:这里M=y-1-xy, N=x令u=xye-xu关于x求偏导数得与Me-x=ye-x-e-x-xye-x 相比有则因此u=xye-x+e-x方程的解为xye-x+e-x=c4.解:方程改写为这是伯努利方程,令z=y1-2=y-1 代入方程得解方程z==于是有或5.特征方程为特征根为对应齐线性方程的通解为s(t)=c1e t+c2e-t f(t)=t+1, 不是特征方程的根从而方程有特解=(At+B),代入方程得-(At+B)=t+1两边比较同次幂系数得A=B=-1故通解为S(t)=c1e t+c2e-t-(t+1)据初始条件得c1=因此所求解为:S(t)=6.解:系数矩阵A=则,而det特征方程det( )=0, 有特征根对对对因此基解矩阵7.解:因故x1=1,x2=0是方程组奇点令X1=x1-1, X2=x2, 即x1=X1+1,x2=X2代入原方程,得化简得*这里R(X)= , 显然(当时)方程组*中,线性部分矩阵det(A- )=由det(A- )=0 得可见相应驻定解渐近稳定三、证明题(每小题8分,共16分)1.证明:若dy-f(x,y)dx=0为线性方程则f(x,y)=因此仅有依赖于x的积分因子反之,若仅有依赖于x的积分因子。

试题集:常微分方程

试题集:常微分方程

1.常微分方程y′+2y=4e x的通解形式为?o A. y=2e x+Ce−2xo B. y=2e x+Ce2xo C. y=2e−x+Ce2xo D. y=2e−x+Ce−2x参考答案: A解析: 该方程为一阶线性常微分方程,通过积分因子法求解,积分因子为e2x,从而得到通解形式。

2.方程y″−4y′+4y=0的特征方程为?o A. r2−4r+4=0o B. r2+4r+4=0o C. r2−4r−4=0o D. r2+4r−4=0参考答案: A解析: 特征方程由方程的系数确定,对于y″−4y′+4y=0,特征方程为r2−4r+4=0。

3.方程y″+9y=0的解中包含的函数类型是?o A. 指数函数o B. 三角函数o C. 对数函数o D. 幂函数参考答案: B解析: 该方程的特征方程为r2+9=0,解得r=±3i,因此解中包含三角函数。

4.方程y′=2y+3的平衡点是?o A. y=−32o B. y=32o C. y=−3o D. y=3参考答案: A解析: 平衡点满足y′=0,解方程0=2y+3得y=−3。

25.方程y″+4y′+4y=e2x的特解形式为?o A. y=Ax2e2xo B. y=Axe2xo C. y=A2xe2xo D. y=Ae2x参考答案: B解析: 由于e2x的形式,特解形式应为Axe2x。

6.方程y′=y2−4的奇点是?o A. y=2o B. y=−2o C. y=0o D. y=2,y=−2参考答案: D解析: 奇点满足y′=0,解方程0=y2−4得y=2,y=−2。

7.方程y″−5y′+6y=0的特征根是?o A. r=2,r=3o B. r=−2,r=−3o C. r=2,r=−3o D. r=−2,r=3参考答案: A解析: 特征方程为r2−5r+6=0,解得r=2,r=3。

8.方程y′=3y+e x的通解中包含的函数是?o A. e3xo B. e−3xo C. e xo D. e−x参考答案: A解析: 该方程为一阶线性方程,通解中包含e3x。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学与应用数学专业《常微分方程》试卷B
一、 选择题(3分⨯8=24分) 1、( A )是一阶线性微分方程。

A .y y x ='2
B .2
y y =' C .
x y y +=
'1
D . y
e y ='
2、( B )不是变量可分离微分方程。

A .x
y
y ++=
'11 B .1--='y x y y C . 022=+dy x dx y D .0=+x dy y dx
3、下列等式中为微分方程的是 ( D )
A .()'='+'uv v u v u
B .()
dx e y d e dx dy x x
+=+ C. ()'''v u v u +=+ D.
x e y x
sin '+= 4、向量组在区间I 上线性相关是它们对应的朗斯基行列式在I 上为零的( C )
A . 充分非必要条件
B . 必要非充分条件
C . 充分必要条件
D .既不充分也不必要条件
5、若方程0=-''y y λ存在满足()()010==y y 的非零解,则λ为( B ) A .2πλ= B .2πλ-= C .πλ= D .πλ-=
6、方程M(x,y)dx+N(x,y)dy=0有只含x 的积分因子的充要条件是( B )
A .
)(y N x N y M ϕ-=∂∂-∂∂ B .)(x N x N
y M ϕ=∂∂-∂∂ C .
)(y M x N y M ϕ-=∂∂-∂∂ D .)(y M x
N
y M ϕ=∂∂-∂∂ 7、微分方程082=-'-''y y y 的通解为 ( B )
A .x x e c e c y 2241--=
B .x x e c e c y 2241+=-
C .()2241c e e c y x x ++=-
D . x x e e y 243-=-
8、方程2
1
2-='y y 的通过点(0,0)的解的最大存在区间是( A )
A .(-∞,+∞)
B .(-2,+∞)
C .(-∞,2)
D .(-2,2) 二、求解方程0)(42=
++dx y x y xdy 。

(10分)
解:所给微分方程可写成 0)(4
2
=++dx y x ydx xdy
即有 0)(42
=+dx y x xy d 上式两边同除以4
)(xy ,得
01
)()(24
=+dx x
xy xy d 由此可得方程的通解为 131)(31c x
xy =--
即 3
3
3
231y cx y x =+ )3(1c c -=
三、求微分方程 e
x
y y 21=
-''的通解(10分)
解:对应齐次方程的特征方程为 012
=-λ
特征根1±=λ,对应齐次方程通解 e
c e
c x
x
y -+=21
由于1=α是特征方程的根,故方程有形如e y
x
Ax =1
的特解
将它代入原方程 2e
e e e
x
x
x x
Ax Ax A
21=
-+ 从而 A=
41 故e y x x 411=
通解 y=e x x
x x e c e c 4
121++-
四、解微分方程
x x y y 2552+-='-'' (10分)
解:
052
=-λλ
,0)5(=-λλ特征根 01=λ ,52=λ
齐次方程通解e
c c x
y 52
1
+=
由于1=α是单征根,故非齐次方程有形如
)(2
1
C Bx A x x y
++=的通解
将它代入已知方程,并比较x 的同次幂系数
得31=A 0=B 0=C 故x y 3
13
1=
故通解为e
c c x x
y 521331+=+
五、解微分方程
x
y
x y dx dy tan +=(10分)
解:令y=xu 代入方程中, 得u u u dx
du
x
tan +=+ 即
x
u
dx du tan =
当时0tan ≠u ,分离变量和积分 得c x u 1
ln sin ln +
=
即cx u =sin )0(≠c
当时0tan =u ,为方程解
故方程为sin u=cx 将y=xu 回代上解的sin
cx x
y
= 六、求解微分方程 x y y sin 2=+''的通解(12分)
解: 齐次方程是0=+''y y 得012
=+λ
得出i ±=12λ 故x c x c y sin cos 21+=
由于i 是特征方程的单根,故所求特解应具有形式)sin cos (1x B x A x y += 现将上式代入原方程
A x
B x A x x Bx A x Ax B sin 2)sin cos (sin )2(cos )2(=+++--
可求出x x y B A cos ,0,11-==-=
因而,所求通解为 x c x c x x y sin cos cos 21++-=
七、求解方程组: ⎪⎪⎪⎩⎪⎪⎪⎨
⎧+=+=+=2
13312
321
y
y dx
dy y y dx
dy y y dx dy (12分) 解:系数矩阵为A=⎥⎥⎥⎦

⎢⎢⎢⎣⎡011101110 特征方程为()01)2(2=+-λλ
特征根为21=λ 132-==λλ
①当21=λ时 对应解为()⎥⎥⎥


⎢⎢⎢⎣⎡=11121e x x Y
②当13
2-==λλ时 对应两个线性无关解 形如()x
e x R R x Y -+=)(101 并且0R 、1R 满足⎪⎩⎪⎨⎧=+=+0)()(0210R E A R R E A 由于⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=+111111111)(E A ()⎥⎥⎥⎦

⎢⎢⎢⎣⎡=+3333333332E A 那么0)(02=+R E A 解得两个线性无关向量⎥⎥⎥⎦⎤
⎢⎢⎢⎣⎡-011 、
⎥⎥⎥⎦

⎢⎢⎢⎣⎡-101 代入到10)(R R E A =+中,得1R
为零向量
于是的线性无关解⎥⎥⎥⎦
⎤⎢⎢⎢⎣⎡-=-011)(2e Y x x
⎥⎥⎥⎦

⎢⎢⎢⎣⎡-=-101)(2
e Y x x
最后得到通解
⎥⎥
⎥⎦

⎢⎢⎢⎣⎡-+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=--101011111)(3221e c e c e c Y
x x x x
八、试讨论λ为何值时方程0=+''y y λ存在满足y ()()010==y 的非零解。

(12分)
解:当0=λ时 方程通解是x y c c 21
+=
要使y ()()010==y ,
必须
c 1
= c 2
=0, 于是()x y =0
当0<λ时 方程的通解是y=
e
c e
c x
x
λλ---+21要使y ()00=
必须c 1+
c 2
=0即c 2
=c 1
-
因此,要使()01=y 即 0=e
c e
c x
x
λλ---+21

c
2
=c
1
-代入到上式有0)(1=----e
e c λ
λ
必须有c 1=0 从而c 2
=0 。

于是()0≡x y
当0>λ时 方程通解是x x y c c λλsin cos
21
+= 要使y ()00=
必须有c 1=0 于是y=
x c λsin
2
要使y ()00=
只要sin 0=λ 即可。

即λ=π
2
2n
从而方程有非零解
x n x c y
n
πsin )(2=。

相关文档
最新文档