人教版五年级数学下册最大公因数的应用
五年级下册数学课件-最大公因数和最小公倍数应用人教版(共48张ppt)

五年级下册数学课件-最大公因数和最 小公倍 数应用 人教版(共 48 张ppt)
经典例题
一个分数的分母扩大2倍,分子缩小2倍,这个分数( )
扩大4倍
(B)缩小4倍
大小不变
(D)大小无法确定
五年级下册数学课件-最大公因数和最 小公倍 数应用 人教版(共 48 张ppt)
五年级下册数学课件-最大公因数和最 小公倍 数应用 人教版(共 48 张ppt)
五年级下册数学课件-最大公因数和最 小公倍 数应用 人教版(共 48 张ppt)
经典例题
五年级下册数学课件-最大公因数和最 小公倍 数应用 人教版(共 48 张ppt)
五年级下册数学课件-最大公因数和最 小公倍 数应用 人教版(共 48 张ppt)
经典例题
五年级下册数学课件-最大公因数和最 小公倍 数应用 人教版(共 48 张ppt)
五年级下册数学课件-最大公因数和最 小公倍 数应用 人教版(共 48 张ppt)
经典例题
小明做作业的时候不小心在作业本上滴上了墨水(如图),现在知道A点表 示的数是 ,那么B点表示的数是 。
五年级下册数学课件-最大公因数和最 小公倍 数应用 人教版(共 48 张ppt)
五年级下册数学课件-最大公因数和最 小公倍 数应用 人教版(共 48 张ppt)
五年级下册数学课件-最大公因数和最 小公倍 数应用 人教版(共 48 张ppt)
经典例题
五年级下册数学课件-最大公因数和最 小公倍 数应用 人教版(共 48 张ppt)
五年级下册数学课件-最大公因数和最 小公倍 数应用 人教版(共 48 张ppt)
经典例题
五年级下册数学课件-最大公因数和最 小公倍 数应用 人教版(共 48 张ppt)
屈淑红--人教版小学数学五年级下册最大公因数在生活中的应用例3教学设计

人教版小学数学五年级下册最大公因数在生活中的应用例3教学内容:人教版小学数学五年级下册第62~64页三维目标:1、结合具体的生活情景,通过确定取值范围、动手操作验证、小组合作、交流,经历公因数和最大公因数的产生,并理解其意义。
2、渗透集合思想,体验解决问题策略的多样化。
3、培养学生的抽象能力和解决问题能力,并且会求100以内两个数的最大公因数,感知公因数和最大公约数在生活中的广泛应用。
教学重点、难点:理解公因数与最大公因数的定义;探索寻找两个数的最大公因数的方法。
教学准备:多媒体课件;小奖品;小组学案各一份;方格纸每组5张、彩笔;复习铺垫一、创设情境,提出问题。
1、出示王叔叔铺地情景图,导入新课,同学们,王叔叔买了一套房子,正忙着装修,但他遇到了一个问题,我们一起来看看。
(这是一个储藏室,地面长16分米,宽12分米如果用边长是整分米的正方形地砖把这个房间的地面铺满(使用的地砖都是整块)可以选择边长是几分米的地砖?)教师引导:谁能说说王叔叔对铺地砖有什么要求?二、合作探讨,理解意义,学习方法。
1、教师引导:这个房间长16分米,宽12分米如果用边长是整分米的正方形地砖把这个房间的地面铺满(使用的地砖都是整块)可以选择边长是几分米的地砖?请同学们猜想一下。
(学生回答自己的猜想)教师引导:怎样验证你们的猜想呢?(学生提出自己的方法,教师评价,学生评价。
)教师总结:你的方法很好,我们可以先选用边长1分米的正方形来摆摆看,有没有剩余。
请看屏幕。
(课件演示过程)教师引导:长方形的长有没有剩余?长方形的宽有没有剩余?教师质疑提出新学习目标:用其他的正方形来摆有没有剩余呢?请同学们拿出准备好的学具,摆一摆,算一算或用水彩笔在长方形纸上画一画,把出现的几种的情况记录下来,看看有几种不同的摆法。
(学生分组进行画,在小组内进行交流)2、分组操作,发现规律。
①学生操作。
学生在长方形纸上试画边长是2、3、4、5、6……厘米的正方形。
人教部编版五年级数学下册特殊数的倍数的特征 、巧用分解质因数、应用最大公因数、应用最小公倍数

5.一个五位数,各个数位上的数字之和是43,且这个 数还是11的倍数,这个数可能是多少?(请写出两个 符合要求的数)
(答案不唯一)97999 99979
6.任意一个三位数连着写两次得到一个六位数,这个 六位数一定同时都是7,11,13的倍数。这句话对 吗?请举例说明。
对。如:678678、785785等。
类型 1 两个数的最大公因数的应用
1.五年级一班有42人,三班有48人。各班分组参加 植树活动,如果两个班每组人数必须相同,每组 最多可以有多少人?这时可以分成多少组?
求最大公因数
每组人数应该是 42、48的公因数
42和48的最大公因数是6。 42÷6+48÷6=15(组) 答:每组最多可以有6人,这时可以分成15组。
RJ 五年级下册
特殊数的倍数的特征
பைடு நூலகம்经典例题
在 里填上合适的数字,使五位数7 36 是45的 倍数,这个五位数是多少?
思路分析:
45可以分 成“5× 9”的形式
这个五位数是 45的倍数,也 就是这个数既 是5的倍数又 是9的倍数
要想是5的倍数,个 位上的数字应是0或 5;要想是9的倍数, 各个数位上数字的 和应是9的倍数
两组,使这两组数的乘积相等。
将合数分解质因数,再根据所含质因数相同、 积相等进行分组。
14=2×7 24=2×2×2×3 27=3×3×3 55=5×11 56=2×2×2×7 99=3×3×11 2×56×27×55=99×24×14×5 这两组数分别是2,56,27,55;99,24,14,5。
类型 3 先转化成整除,再求最大公因数
5.老师发奖品,买来33本笔记本和52支中性笔奖给
“作业之星”,结果笔记本剩下1本,中性笔剩下4支,
人教版小学数学五年级下册第四单元最大公因数的应用(新授)

的公因数和最大3,6
),最大公
因数是( 6 )。
答:可以选择边长为( 1,2,3或6 )dm的瓷砖,边
长最大是( 6 )dm。
2.五(1)班男生有27人,女生有18人,男、女生分别 分组做游戏,要使每组人数相同,每组最多有多少 人?此时可以分成几组? 3×3=9(人) 27÷9+18÷9=5(组) 答:每组最多有9人,此时可 以分成5组。
辨析:求最多有多少名同学,就 是求相关数的最大公因数
这节课你们都学会了哪些知识?
在铺地砖问题中,要使地面铺满且使用的地砖 是整块时,就是求长和宽的公因数;要求地砖的 边长最大是多少,就是求长和宽的最大公因数。
教材习题
1.有一张长方形纸,长 70 cm,宽 50 cm。如果要剪 成若干同样大小的正方形而没有剩余,剪出的正方 形的边长最大是几厘米?
3.有红花24朵,黄花36朵,现要用这两种花搭配扎成 一种花束,且正好扎完,最多扎几束?这时每束有 红花、黄花各多少朵?
24和36的最大公因数是12。 24÷12=2(朵) 36÷12=3(朵) 答:最多扎12束,这时每束有红花2朵,黄花3朵。
易错辨析
4.下面的做法对吗?若不对,请改正。 一张长方形纸片的长是30 cm,宽是20 cm,现要将 它裁成若干个相同的正方形纸片,且正方形的边长 是整厘米数,正方形的边长可能是多少厘米?有几 种裁法? 正方形的边长可能是2 cm,5 cm,10 cm,有三种裁 法。
人教版小学数学 五年级下册
第四单元:分数的意义和性质
第8课时 最大公因数的应用
如果要用边长是整 分米数的正方形地 砖把贮藏室的地面 铺满(使用的地砖 必须都是整块)。
12dm
?dm
小组合作探究
五年级下册数学教案-第四单元《最大公因数》(人教版)

同学们,今天我们将要学习的是《最大公因数》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要找到两个数的最大公因数的情况?”比如,当你们需要将两块不同长度的木板拼接在一起时,就需要找到它们的最大公因数来简化长度。这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索最大公因数的奥秘。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解最大公因数的基本概念。最大公因数是两个或多个整数共有的最大因数,它在简化分数、解决实际问题等方面有着重要作用。
2.案例分析:接下来,我们来看一个具体的案例。比如,两个数12和18,我们可以通过列举法或短除法找到它们的最大公因数,并解释如何应用于实际问题。
二、核心素养目标
《最大公因数》核心素养目标:通过本节课的学习,培养学生以下核心素养能力:
1.数学抽象:使学生能够从具体的数对中抽象出最大公因数的概念,理解数学问题的本质;
2.逻辑推理:培养学生通过列举法、短除法等方法找出最大公因数,形成严密的逻辑思维;
3.数学建模:让学生学会运用最大公因数解决实际问题,培养数学建模能力;
五年级下册数学教案-第四单元《最大公因数》(人教版)
一、教学内容
《最大公因数》(人教版五年级下册数学教案-第四单元):本节课我们将学习最大公因数的概念,探讨如何求两个数的最大公因数。具体内容包括:
1.理解公因数和最大公因数的定义;
2.掌握寻找两个数的公因数及最大公因数的方法,包括列举法和短除法;
3.应用最大公因数解决实际问题,例如简化比、解决等实际问题。
五、教学反思
在今天的教学过程中,我发现学生在理解最大公因数的概念和应用方面存在一些困难。首先,对于最大公因数的定义,尽管我通过举例进行了解释,但部分学生仍然感到困惑。在今后的教学中,我需要再次强调最大公因数的概念,并尝试用更多生活中的实例来说明,以便让学生更好地理解。
人教版五年级数学下册第四单元第7课时 最大公因数的应用教案(最新)

最大公因数的应用教学导航:【教学内容】利用最大公因数知识解决生活中的实际问题(教材第62页的例3,及教材第63~64页练习十五第5~11题)。
【教学目标】让学生能利用最大公因数知识解决生活中的实际问题。
【重点难点】能正确判断生活中的实际问题是要利用最大公因数知识来解决,并能说出这样想的道理。
教学过程:【复习导入】1.什么是公因数?什么是最大公因数?2.找出每组数的最大公因数。
5和15 21和28 30和18 8和911和33 60和48 12和42 4和15在现实生活中,有的问题需要用最大公因数的知道来解决,这就是我们今天要学习的内容。
板书课题: 最大公因数(2)。
【新课讲授】出示教材第62页例3。
(1)引导学生审题,理解题意。
在贮藏室的长方形地面上铺正方形地砖。
要求既要铺满,又要都用整块的方砖。
(2)学生以小组为单位,探究如何拼摆。
每组4人,在课前印好画有长方形的方格纸,每人选择一种边长的方砖,试一试,只要画满一条长边,一条宽边就可以。
教师巡视指导,辅导学生。
(3)多媒体演示拼摆过程,进一步验证学生动手操作的情况。
(4)教师:应该怎样选择方砖来铺地呢?通过交流,得出结论:要使所用的正方形地砖都是整块的,地砖的边长必须既是16的因数,又是12的因数。
(5)12和16的公因数有1、2、4,其中最大公因数是4。
所以可选边长是1dm、2dm、4dm的地砖,边长最大的是4dm。
【课堂作业】完成教材第63~64页练习十五第5~11题。
1.完成教材第63页练习十五的第5题。
此题是有关两数最大公因数的实际问题。
教师要引导学生理解题意,要剪成“同样大小的正方形而没有剩余”。
正方形的边长必须既是70的因数又是50的因数,要使正方形的边长最大,所以要找70和50的最大公因数。
学生弄清题意后,由学生独立完成,然后全班反馈。
2.完成教材第63页练习十五的第6题。
此题也是有关两数最大公因数的实际问题,“要使每排的人数相等”则每排的人数必须既是48,又是36的因数,要使每排的人数最多,所以要找48和36的最大公因数,学生理解题意即可完成。
五年级数学下册人教版第四单元_第08课时_最大公因数的应用(教学设计)

6.练习题库:准备一份针对最大公因数的练习题库,包括不同难度的题目,以便于在课堂上进行练习和巩固所学知识。
7.答案解析:为学生提供练习题库的答案解析,以便于他们在完成练习后能够自行检查答案并进行纠正。
-通过实践活动,培养学生的动手能力和解决问题的能力。
-通过合作学习,培养学生的团队合作意识和沟通能力。
3.课后拓展应用
教师活动:
-布置作业:根据本节课的内容,布置适量的课后作业,巩固学习效果。
-提供拓展资源:提供与最大公因数相关的拓展资源,如数学论文、实际应用案例等,供学生进一步学习。
-反馈作业情况:及时批改作业,给予学生反馈和指导。
3.例题3:求12和18的最大公因数。
解答:首先对12和18进行质因数分解,得到12=2^2*3,18=2*3^2。然后取两个数质因数分解中公共的质因数和指数的最小值,即2^2*3=12。因此,12和18的最大公因数是12。
4.例题4:求24、36和48的最大公因数。
解答:首先对24、36和48进行质因数分解,得到24=2^3*3,36=2^2*3^2,48=2^3*3^2。然后取三个数质因数分解中公共的质因数和指数的最小值,即2^3*3=864。因此,24、36和48的最大公因数是864。
词句:最大公因数在实际问题中的应用很广泛,例如在分解组合数学问题中,可以通过最大公因数来简化问题;求几个数的最大公因数,可以先求任意两个数的最大公因数,然后再求这两个数的最大公因数,依次类推。
3.板书设计
板书设计应条理清楚、重点突出、简洁明了,以便于学生理解和记忆。
板书内容:
数学人教版五年级下册《最大公因数》教案

小学数学五年级下册:《最大公因数》教案授课人:步文新教学目标1.理解两个数的公因数和最大公因数的意义。
2.通过解决实际问题,初步了解两个数的公因数和最大公因数在现实生活中的应用。
3.培养学生抽象、概括的能力。
教学重点理解公因数和最大公因数的概念。
教学难点理解并掌握两个数的最大公因数的方法。
教学准备ppt、学案、前置研究部分的练习(每人一张)教学基本过程(一)复习导入1.提问:什么是因数?什么是倍数师:将之前准备好的前置研究部分练习发给大家,学生回顾前面的知识,在小组中交流汇报(在除法算式中,如果商是整数而没有余数,我们就说被除数是除数的倍数,除数是被除数的因数。
)2.写出8和12 的所有因数。
说一说你是怎么写的?学生独立练习,然后交流检查(师板书例1)师提问:你是怎样找一个数的因数的?组织学生在小组中交流,相互说一说。
方法一:用除数:8÷1=8,8÷2=4,8÷8=1。
方法二:用乘法:1×8=8,2×4=8。
因此,8的因数有1,2,4,8。
8的倍数有1,2,3,4,6,12。
(二)探究新知1.教学公因数和最大公因数(1)出示例1 。
(2)引导学生审题,理解题意。
在8的因数中,12的因数中找出公有因数的问题的答案。
(指出:1,2,4是8和12公有的因数,其中,4是最大公因数。
)2.巩固小练习(1)完成教材61页做一做第1,2题。
(填在书上)(2)完成教材63页练习十五第1题。
(填在书上)3.教学求两个数的最大公因数的方法。
师:什么叫公因数?什么叫最大公因数?师:出示例2。
怎样求18 和27 的最大公因数?(l)学生先独立思考,用自己想到的方法试着找出18 和27 的最大公因数。
(2)小组讨论,互相启发,再在全班交流。
方法一:先分别写出18 和27 的因数,再圈出公有的因数,从中找到最大公因数。
方法二:先找出18 的因数:①,2 ,③,6 ,⑨,18。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第4单元分数的意义和性质
第7课时最大公因数的应用
教学内容:
人教版五年级下册数学P70
教学目标:
1、能够运用公因数、最大公因数解决简单的实际问题,体验数学与日常生活的联系。
2、通过合作探究等活动,培养学生自主学习、积极探索和合作交流的良好习惯。
教学重点:
两个数的公因数和最大公因数在现实生活中的应用。
教学难点:
两个数的公因数和最大公因数在现实生活中的应用。
教学准备:
PPT课件、导学案、长方形的纸片(长16厘米、宽12厘米),小正方形纸若干。
教学过程:
一、自主学习(约5分钟)
1、几个数()叫做这几个数的公因数,其中最大的一个叫做()。
2、16的因数有(),24的因数有(),16和24的公因数是(),最小公因数是(),最大公因
数是()。
3、A=2×2×5,B=2×3×5,那么A和B的最大公因数是()。
师:我们已经掌握求几个数最大公因数的方法,几个数的公因数能够帮助我们解决生活中什么问题?请看大屏幕:
二、探究新知
课件出示教材第62页例3
1、演示课件,指导操作方法。
教师引导:这个房间长16分米,宽12分米如果用边长是整分米的正方形地砖把这个房间的地面铺满(使用的地砖都是整块)可以选择边长是几分米的地砖?
请同学们猜想一下。
(学生回答自己的猜想)教师引导:怎样验证你们的猜想呢?(学生提出自己的方法,教师评价,学生评价。
)教师总结:你的方法很好,我们可以先选用边长1厘米的正方形来摆摆看,有没有剩余。
请看屏幕。
(课件演示过程)
教师引导:长方形的长有没有剩余?长方形的宽有没有剩余?教师质疑提出新学习目标:用其他的正方形来摆有没有剩余呢?请同学们拿出准备好的学具,摆一摆,算一算或用水彩笔在长方形纸上画一画,把出现的几种的情况记录下来,看看有几种不同的摆法。
(学生分组进行画,在小组内进行交流)
2、分组操作,发现规律。
①学生操作。
学生在长方形纸上试画边长是2、3、4、5、6……厘米的正方形。
②交流汇报。
请xx小组汇报一下你们讨论的结果。
③观察发现。
④得出结论。
教师引导:要使长方形没有剩余,正方形的边长有怎样的要求。
⑤明确公因数、最大公因数的意义。
教师提问:16的因数有哪些?12的因数呢?既是16的因数,又是12的因数有哪些?
(1)谁能说一说,什么是公因数?
(2)用集合图表示课件动态显示:用集合图的形式写出16和12的因数、公因数。
(学生观察)
(3)认识最大公因数教师提问:如果王叔叔想用最少的地砖铺地可以选择边长多少的地砖?
三、合作探究(约10分钟)
提问:哪些边长是整厘米数的正方形纸片能正好铺满这个长方形?请你拿出准备的长方形纸片,试一试。
1、学具操作。
2、交流讨论:
1、能铺满的地砖边长可以是多少厘米?
2、你们发现能铺满的地砖边长有什么特点?
四、汇报展示(约10分钟)
1、能铺满的地砖边长可以是1厘米、2厘米、3厘米、4厘米。
2、铺满的地砖边长是长方形长和宽的公因数。
为什么会是公因数呢?你能说出小正方形边长与长方形长和宽的
数量关系吗?
根据学生回答问题情况,板书。