高考物理动能势能动能定理复习
动能定理与弹性势能知识点总结

动能定理与弹性势能知识点总结一、动能定理动能定理是高中物理中一个非常重要的定理,它描述了力对物体做功与物体动能变化之间的关系。
动能是物体由于运动而具有的能量。
一个质量为 m 、速度为 v 的物体,其动能可以表示为:$E_k =\frac{1}{2}mv^2$ 。
动能定理指出:合外力对物体所做的功等于物体动能的变化量。
即:$W_{合} =\Delta E_k = E_{k2} E_{k1}$。
这里的合外力做功可以是多个力做功的代数和。
如果一个力做功为正,意味着它增加了物体的动能;如果一个力做功为负,就表示它减少了物体的动能。
例如,一个在光滑水平面上的物体,受到一个水平恒力 F 的作用,发生了一段位移 s 。
力 F 所做的功为 W = Fs ,根据牛顿第二定律 F= ma ,以及运动学公式$v^2 v_0^2 = 2as$ (其中$v_0$ 为初速度,v 为末速度,a 为加速度),可以推导出动能定理的表达式。
在应用动能定理时,需要注意以下几点:1、明确研究对象和研究过程。
2、分析物体所受的合外力以及各力做功的情况。
3、确定初、末状态的动能。
动能定理的优点在于,它不涉及加速度等中间量,对于一些变力做功或者曲线运动的问题,往往能更简便地解决。
比如,一个物体在粗糙水平面上运动,摩擦力做功,同时还有一个变力作用在物体上。
如果用牛顿运动定律和运动学公式来求解,会非常复杂,但用动能定理就可以避开这些困难。
二、弹性势能弹性势能是发生弹性形变的物体各部分之间,由于有弹力的相互作用而具有的势能。
当物体发生弹性形变时,它具有恢复原状的趋势,这种趋势使得物体具有了弹性势能。
对于一个弹簧,其弹性势能的表达式为:$E_p =\frac{1}{2}kx^2$ ,其中 k 是弹簧的劲度系数,x 是弹簧的形变量。
弹性势能的大小与弹簧的劲度系数和形变量有关。
劲度系数越大,形变量越大,弹性势能就越大。
在研究弹性势能的变化时,通常会结合胡克定律 F = kx 。
新人教版高考物理总复习第五章机械能《动能定理及其应用》

Wf=
1 2
m
v
2 B
-0,解得Wf=
=1×10×5 J-
1 2
×1×62 J=32 J,故A正确,B、C、D错误。
题型3 求解多过程问题
【典例3】(2019·信阳模拟)如图所示AB和CDO都是处
于竖直平面内的光滑圆弧形轨道,OA处于水平位置。 AB是半径为R=1 m的 1 圆周轨道,CDO是半径为r=
(2)小球仅仅与弹性挡板碰撞一次且刚好不脱离CDO轨 道的条件是在O点重力提供向心力,碰后再返回最高 点恰能上升到D点。
【解析】(1)设小球第一次到达D的速度为vD,对小球
从P到D点的过程,根据动能定理得:
mg(H+r)-μmgL1=m
2
v
2 D
-0
在D点轨道对小球的支持力FN提供向心力,则有:
(5)物体的动能不变,所受的合外力必定为零。 ( × ) (6)做自由落体运动的物体,物体的动能与下落时间的 二次方成正比。 ( √ )
考点1 对动能、动能定理的理解 【题组通关】 1.(2018·江苏高考)从地面竖直向上抛出一只小球, 小球运动一段时间后落回地面。忽略空气阻力,该过 程中小球的动能Ek与时间t的关系图象是 ( )
【解析】选A。对于整个竖直上抛过程(包括上升与下
落),速度与时间的关系为v=v0-gt,v2=g2t2-2v0gt+
v
2 0
,
Ek=
1 2
mv2,可见动能与时间是二次函数关系,由
数学中的二次函数知识可判断A正确。
2.(2018·全国卷Ⅱ)如图,某同学用绳子拉动木箱, 使它从静止开始沿粗糙水平路面运动至具有某一速度。 木箱获得的动能一定 ( )
A.小于8 J C.大于8 J
高考物理科普动能与动能定理

高考物理科普动能与动能定理动能与动能定理动能是物理学中的一个重要概念,用来描述物体的运动状态。
在高考物理中,学生需要对动能与动能定理有一定的了解。
本文将介绍什么是动能以及动能定理的含义和应用。
一、动能的定义动能(kinetic energy)是一个物体由于运动而具有的能量。
简单来说,物体的动能与物体的质量和速度有关。
动能的单位是焦耳(J)。
动能的计算公式如下:动能 = 1/2 ×质量 ×速度²其中,质量的单位是千克(kg),速度的单位是米/秒(m/s)。
例如,质量为2千克的物体以10米/秒的速度运动,其动能为:动能 = 1/2 × 2 kg × (10 m/s)² = 100 J这表示该物体由于运动而具有100焦耳的能量。
二、动能定理动能定理(kinetic energy theorem)是描述物体动能变化的定理。
它的表述如下:物体的动能的变化量等于作用在物体上的净外力所做的功。
净外力指的是物体受到的所有外力的矢量和,而功即为力对物体的作用在物体上产生的能量转移。
根据动能定理,如果一个物体受到净外力作用,其动能就会发生改变。
当净外力与物体运动方向一致时,物体的动能增加;当净外力与物体运动方向相反时,物体的动能减少。
三、动能定理的应用动能定理在物理学中具有很多应用。
以下是一些常见的应用场景:1. 能量转换:动能定理可以用来描述机械能的转换。
例如,当一个物体在上升过程中受到重力作用时,其动能会逐渐减小,而重力势能会逐渐增加;当物体下落时,动能增加,而重力势能减小。
2. 简谐振动:对于简谐振动,动能和势能之间会发生周期性的转换。
例如,弹簧振子的动能在振动过程中会由最大值转变为最小值,而势能则相反。
3. 碰撞过程:在碰撞过程中,动能定理可以用来分析物体的速度和动量变化。
例如,当两个物体碰撞时,动能定理可以帮助计算碰撞后物体的速度。
四、总结动能与动能定理是高考物理中的重要知识点。
高考物理总复习功能关系 能量守恒定律

2023:山东T4;
题是高考的热点.预计2025年高考题
2022:江苏T10;
出题可能性较大,有可能会结合体
2019:全国ⅡT18
育运动等实际情境进行考查.能量守
恒定律可能会结合弹簧模型以计算
题形式考查.
返回目录
第4讲
功能关系
能量守恒定律
核心考点
五年考情
命题分析预测
功能关系在选择题中考查的频率比
2 570
车牵引力大小F2= =
2
2
N=285 N,从P到Q,小车匀速行驶,小车牵引力F2=f2+
mg sin 30°,解得f2=F2-mg sin 30°=285
1
N-50×10×
2
N=35 N;从P到Q,小车克服
摩擦力做的功Wf2=f2·PQ=35×20 J=700 J,故D正确.从P到Q,小车上升的高度h=
动能定理得mgh-μmgs cos θ=Ek-0,h=xtan
θ,s=
,解得Ek=mgx(tan
cos
θ-μ),木块
在水平面上运动时,设初动能为Ek0,根据动能定理得-μmg(x-x1)=Ek-Ek0,解得Ek=
Ek0-μmg(x-x1),B正确.木块克服摩擦力做功转化为内能,木块在斜面上时,Q=μmgs
2023:浙江6月T18;
能量守恒定律的应用
2022:河北T9;
2021:山东T18;
2019:江苏T8
较高,特别是功能关系中的图像问
题是高考的热点.预计2025年高考题
出题可能性较大,有可能会结合体
育运动等实际情境进行考查.能量守
恒定律可能会结合弹簧模型以计算
题形式考查.
高考物理机械能守恒知识点解析

高考物理机械能守恒知识点解析在高考物理中,机械能守恒定律是一个非常重要的知识点,理解和掌握它对于解决相关问题至关重要。
接下来,让我们一起深入探讨机械能守恒的相关内容。
一、机械能守恒定律的基本概念机械能包括动能和势能。
动能是物体由于运动而具有的能量,其大小与物体的质量和速度有关,表达式为$E_{k} =\frac{1}{2}mv^{2}$,其中$m$是物体的质量,$v$是物体的速度。
势能又分为重力势能和弹性势能。
重力势能是物体由于被举高而具有的能量,其大小与物体的质量、高度以及重力加速度有关,表达式为$E_{p} = mgh$,其中$h$是物体相对参考平面的高度。
弹性势能则是物体由于发生弹性形变而具有的能量,常见于弹簧的拉伸或压缩。
机械能守恒定律指的是在只有重力或弹力做功的物体系统内,动能与势能可以相互转化,而总的机械能保持不变。
二、机械能守恒定律的条件机械能守恒定律成立需要满足两个条件:一是只有重力或弹力做功。
这意味着其他力(如摩擦力、拉力等)不做功,或者做功的代数和为零。
二是系统内没有机械能与其他形式能的转化。
例如,没有内能的产生、没有电能的转化等。
需要注意的是,“只有重力或弹力做功”并不意味着物体只受重力或弹力作用。
物体可以受到其他力,但只要这些力不做功或者做功的代数和为零,机械能仍然守恒。
三、机械能守恒定律的表达式机械能守恒定律常见的表达式有以下三种:1、初态的机械能等于末态的机械能,即$E_{初} = E_{末}$,具体可写为$E_{k1} + E_{p1} = E_{k2} + E_{p2}$。
2、动能的增加量等于势能的减少量,即$\Delta E_{k} =\DeltaE_{p}$。
3、系统减少(或增加)的势能等于系统增加(或减少)的动能,即$\Delta E_{p} =\Delta E_{k}$。
四、机械能守恒定律的应用机械能守恒定律在解决物理问题中有着广泛的应用,下面通过一些具体的例子来进行说明。
高考物理课程复习:动能定理及其应用

【对点演练】
4.(2021湖南卷)“复兴号”动车组用多节车厢提供动力,从而达到提速的目的。
总质量为m的动车组在平直的轨道上行驶。该动车组有四节动力车厢,每节
车厢发动机的额定功率均为P,若动车组所受的阻力与其速率成正比(F阻=kv,k
为常量),动车组能达到的最大速度为vm。下列说法正确的是(
答案 C
解析 本题考查机车启动问题,考查分析综合能力。动车组匀加速启动过程
中,根据牛顿第二定律,有F-kv=ma,因为加速度a不变,速度v改变,所以牵引
力F改变,选项A错误。由四节动力车厢输出功率均为额定值,可得
4
4P=Fv,F-kv=ma',联立解得 a'=
− ,因为 v 改变,所以 a'改变,选项 B 错误。
量损失,sin 37°=0.6,cos 37°=0.8,重力加速度大小为g)。则(
6
A.动摩擦因数 μ=7
2ℎ
B.载人滑沙板最大速度为 7
C.载人滑沙板克服摩擦力做功为 mgh
3
D.载人滑沙板在下段滑道上的加速度大小为5g
)
答案 AB
解析 对整个过程,由动能定理得 2mgh-μmgcos
ℎ
45°·
载人滑沙板在下段滑道上的加速度大小为
错误。
cos37 °- sin37 °
3
a=
= 35 g,故
D
考点三
应用动能定理求解多过程问题[名师破题]
应用动能定理求解多过程问题的解题步骤
(1)首先需要建立运动模型,选择合适的研究过程能使问题得以简化。当物体
的运动过程包含几个运动性质不同的子过程时,可以选择一个、几个或全部
高三力学复习十五讲--动能定理的应用

力学复习十二一、动能定理的应用[知识点析]1、用动能定理求变力做的功由于某些力F 的大小或方向变化,所以不能直接由公式W=FScos α计算它们做的功,此时可由其做功的结果——动能的变化来求变力F 做的功。
2、在不同过程中运用动能定理由于物体运动过程中可能包括几个不同的物理过程,解题时,可以分段考虑,也可视为一整体过程,往往对全过程运用动能定理比较简便。
[例题析思][例题1]一列质量为M=5.0×105kg 的火车,在一段平直的轨道上始终以额定功率P 行驶,在300S 内的位移为 2.85×103m ,而速度由8m/s 增加到火车在此轨道上行驶的最大速度17m/s 。
设火车所受阻力f 大小恒定,求1、火车运动中所受阻力f 的大小;2、火车头的额定功率P 的大小。
[解析]火车的初速度和末速度分别用V 0和V t 表示,时间用t 表示,位移用S 表示,根据动能定理有: Pt-fs=2022121mV mV t -火车速度达到最大时,牵引力等于阻力f ,根据瞬时功率的计算公式有:P=fV e 。
N S V V V M f t t 4225202105.2)285030017(2)817(100.5)(2)(⨯=-⨯⨯-⨯⨯=--=N fV P t 541025.417105.2⨯=⨯⨯==[思考1]总质量为M 的列车,沿水平直线轨道匀速前进,其末节车厢质量为m ,中途脱节,司机发觉时,机车已行驶L 的距离,于是立即关闭发动机滑行,设运动的阻力与质量成正比,机车的牵引力是恒定的,当列车的两部分都停止时,它们的距离是多少?[提示]法一:脱节的列车整个运动过程有两个阶段,先做匀加速运动,后关闭发动机滑行做匀减速运动,运用动能定理,从全过程考虑有: FL-K(M-m)gS 1=0-20)(21V m M -对末节车厢根据动能定理有-kmgS 2=0-2021mV ,由于原来列车匀速,故有F=kmg ,则m M ML S S S -=-=∆/21法二:由于脱节后列车比末节车厢多行驶的那段距离内,克服阻力所做的功等于牵引力在L 这段距离内所做的功,所以有:)/()(m M ML S Sg m M K KMgL -=∆∆-=[例题2]如图6-25所示,ABCD 是一条长轨道,其中AB 段是倾角为θ的斜面,CD 段是水平的,BC 是与AB 和CD 都相切的一小段圆弧,其长度可以不计。
高中物理必修2动能定理和机械能守恒定律复习

高中物理必修2动能定理、机械能守恒定律复习考纲要求1、动能定理 (Ⅱ)2、做功与动能改变的关系 (Ⅱ)3、机械能守恒定律 (Ⅱ)知识归纳1、动能定理(1)推导:设一个物体的质量为m ,初速度为V 1,在与运动方向相同的恒力F 作用下,发生了一段位移S ,速度增加到V 2,如图所示。
在这一过程中,力F 所做的功W=F ·S ,根据牛顿第二定律有F=ma ;根据匀加速直线运动的规律,有:V 22-V 13=2aS ,即aV V S 22122-=。
可得:W=F ·S=ma ·2122212221212mV mV a V V -=- (2)定理:①表达式 W=E K2-E K1 或 W 1+W 2+……W n =21222121mV mV - ②意义 做功可以改变物体的能量—所有外力对物体所做的总功等于物体动能的变化。
ⅰ、如果合外力对物体做正功,则E K2>E K1 ,物体的动能增加;ⅱ、如果合外力对物体做负功,则E K2<E K1 ,物体的动能减少;ⅱ、如果合外力对物体不做功,则物体的动能不发生变化。
(3)理解:①外力对物体做的总功等于物体动能的变化。
W 总=△E K =E K2-E K1 。
它反映了物体动能变化与引起变化的原因——力对物体做功的因果关系。
可以理解为外力对物体做功等于物体动能增加,物体克服外力做功等于物体动能减少。
外力可以是重力、弹力、摩擦力,也可以是任何其他力,但物体动能的变化对应合外力的功,而不是某一个力的功。
②注意的动能的变化,指末动能减初动能。
用△E K 表示动能的变化,△E K >0,表示动能增加;△E K <0,表示动能减少。
③动能定理是标量式,功和动能都是标量,不能利用矢量法则分解,故动能定理无分量式。
(4)应用:①动能定理的表达式是在恒力作用且做匀加速直线运动的情况下得出的,但它也适用于减速运动、曲线运动和变力对物体做功的情况。
②动能定理对应的是一个过程,并且它只涉及到物体初末态的动能和整个过程中合外力的功,它不涉及物体运动过程中的加速度、时间和中间状态的速度、动能,因此用它处理问题比较方便。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考物理动能势能动能定理复习2012年高考物理----动能 势能 动能定理复习浙江台州篷街私立中学 王继安教学目标:理解功和能的概念,掌握动能定理,会熟练地运用动能定理解答有关问题教学重点:动能定理教学难点:动能定理的应用教学方法:讲练结合,计算机辅助教学教学过程:一、动能1.定义:物体由于运动而具有的能,叫动能。
其表达式为:221mv E k 。
2.对动能的理解(1)动能是一个状态量,它与物体的运动状态对应.动能是标量.它只有大小,没有方向,而且物体的动能总是大于等于零,不会出现负值.(2)动能是相对的,它与参照物的选取密切相关.如行驶中的汽车上的物品,对汽车上的乘客,物品动能是零;但对路边的行人,物品的动能就不为零。
二、重力势能1.定义:物体和地球由相对位置决定的能叫重力势能,是物体和地球共有的。
表达式:mgh,与零势能面Ep的选取有关。
2.对重力势能的理解(1)重力势能是物体和地球这一系统共同所有,单独一个物体谈不上具有势能.即:如果没有地球,物体谈不上有重力势能.平时说物体具有多少重力势能,是一种习惯上的简称.重力势能是相对的,它随参考点的选择不同而不同,要说明物体具有多少重力势能,首先要指明参考点(即零点).(2)重力势能是标量,它没有方向.但是重力势能有正、负.此处正、负不是表示方向,而是表示比零点的能量状态高还是低.势能大于零表示比零点的能量状态高,势能小于零表示比零点的能量状态低.零点的选择不同虽对势能值表述不同,但对物理过程没有影响.即势能是相对的,势能的变化是绝对的,势能的变化与零点的选择无关.(3)重力做功与重力势能重力做正功,物体高度下降,重力势能降低;重力做负功,物体高度上升,重力势能升高.可以证明,重力做功与路径无关,由物体所受的重力和物体初、末位置所在水平面的高度差决定,即:W G=mg △h.所以重力做的功等于重力势能增量的负值,即W G= -△E p= -(mgh2-mgh1).三、动能定理1.动能定理的表述合外力做的功等于物体动能的变化。
(这里的合外力指物体受到的所有外力的合力,包括重力)。
表达式为W=ΔE K动能定理也可以表述为:外力对物体做的总功等于物体动能的变化。
实际应用时,后一种表述比较好操作。
不必求合力,特别是在全过程的各个阶段受力有变化的情况下,只要把各个力在各个阶段所做的功都按照代数和加起来,就可以得到总功。
动能定理建立起过程量(功)和状态量(动能)间的联系。
这样,无论求合外力做的功还是求物体动能的变化,就都有了两个可供选择的途径。
功和动能都是标量,动能定理表达式是一个标量式,不能在某一个方向上应用动能定理。
【例1】 一个质量为m 的物体静止放在光滑水平面上,在互成60°角的大小相等的两个水平恒力作用下,经过一段时间,物体获得的速度为v ,在力的方向上获得的速度分别为v 1、v 2,那么在这段时间内,其中一个力做的功为A .261mvB .241mvC .231mvD .221mv 2.对外力做功与动能变化关系的理解:外力对物体做正功,物体的动能增加,这一外力有助于物体的运动,是动力;外力对物体做负功,物体的动能减少,这一外力是阻碍物体的运动,是阻力,外力对物体做负功往往又称物体克服阻力做功. 功是能量转化的量度,外力对物体做了多少功;就有多少动能与其它形式的能发生了转化.所以外力对物体所做的功就等于物体动能的变化量.即 .3.应用动能定理解题的步骤(1)确定研究对象和研究过程。
和动量定理不同,动能定理的研究对象只能是单个物体,如果是系统,那么系统内的物体间不能有相对运动。
(原因是:系统内所有内力的总冲量一定是零,而系统内所有内力做的总功不一定是零)。
(2)对研究对象进行受力分析。
(研究对象以外的物体施于研究对象的力都要分析,含重力)。
(3)写出该过程中合外力做的功,或分别写出各个力做的功(注意功的正负)。
如果研究过程中物体受力情况有变化,要分别写出该力在各个阶段做的功。
(4)写出物体的初、末动能。
(5)按照动能定理列式求解。
【例2】 如图所示,斜面倾角为α,长为L ,AB 段光滑,BC 段粗糙,且BC =2 AB 。
质量为m 的木块从斜面顶端无初速下滑,到达C 端时速度刚好减小到零。
求物体和斜面BC 段间的动摩擦因数μ。
【例3】 将小球以初速度v 0竖直上抛,在不计空气阻力的理想状况下,小球将上升到某一最大高度。
由于有空气阻力,小球实际上升的最大高度只有该理想高度的80%。
设空气阻力大小恒定,求小球落回抛出点时的速度大小v 。
Bv v f f【例4】质量为m的钢珠从高出地面h处由静止自由下落,落到地面进入沙坑h/10停止,则(1)钢珠在沙坑中受到的平均阻力是重力的多少倍?(2)若让钢珠进入沙坑h/8,则钢珠在h处的动能应为多少?设钢珠在沙坑中所受平均阻力大小不随深度改变。
四、动能定理的综合应用动能定理可以由牛顿定律推导出来,原则上讲用动能定律能解决物理问题都可以利用牛顿定律解决,但在处理动力学问题中,若用牛顿第二定律和运动学公式来解,则要分阶段考虑,且必须分别求每个阶段中的加速度和末速度,计算较繁琐。
但是,我们用动能定理来解就比较简捷。
我们通过下面的例子再来体会一下用动能定理解决某些动力学问题的优越性。
1.应用动能定理巧求变力的功如果我们所研究的问题中有多个力做功,其中只有一个力是变力,其余的都是恒力,而且这些恒力所做的功比较容易计算,研究对象本身的动能增量也比较容易计算时,用动能定理就可以求出这个变力所做的功。
【例5】如图所示,AB为1/4圆弧轨道,半径为R=0.8m,BC是水平轨道,长S=3m,BC处的摩擦系数为μ=1/15,今有质量m=1kg的物体,自A点从静止起下滑到C点刚好停止。
求物体在轨道AB段所受的阻力对物体做的功。
【例7】一辆车通过一根跨过定滑轮的绳PQ提升井中质量为m的物体,如图所示.绳的P端拴在车后的挂钩上,Q端拴在物体上.设绳的总长不变,绳的质量、定滑轮的质量和尺寸、滑轮上的摩擦都忽略不计.开始时,车在A点,左右两侧绳都已绷紧并且是竖直的,左侧绳长为H.提升时,车加速向左运动,沿水平方向从A经过B驶向C.设A到B的距离也为H,车过B点时的速度为v B.求在车由A移到B的过程中,绳Q端的拉力对物体做的功.2.应用动能定理简解多过程问题。
物体在某个运动过程中包含有几个运动性质不同的小过程(如加速、减速的过程),此时可以分段考虑,也可以对全过程考虑,但如能对整个过程利用动能定理列式则使问题简化。
【例8】如图所示,斜面足够长,其倾角为α,质量为m的滑块,距挡板P为s0,以初速度v0沿斜面上滑,滑块与斜面间的动摩擦因数为μ,滑块所受摩擦力小于滑块沿斜面方向的重力分力,若滑块每次与挡板相碰均无机械能损失,求滑块在斜面上经过的总路程为多少?3.利用动能定理巧求动摩擦因数【例9】如图所示,小滑块从斜面顶点A由静止滑至水平部分C点而停止。
已知斜面高为h,滑块运动的整个水平距离为s,设转角B处无动能损失,斜面和水平部分与小滑块的动摩擦因数相同,求此动摩擦因数。
4.利用动能定理巧求机车脱钩问题【例10】总质量为M的列车,沿水平直线轨道匀速前进,其末节车厢质量为m,中途脱节,司机发觉时,机车已行驶L的距离,于是立即关闭油门,除去牵引力。
设运动的阻力与质量成正比,机车的牵引力是恒定的。
当列车的两部分都停止时,它们的距离是多少?五、针对训练1.质量为m的物体,在距地面h高处以g/3 的加速度由静止竖直下落到地面.下列说法中正确的是A.物体的重力势能减少31mghB.物体的动能增加31mgh C.物体的机械能减少31mgh D.重力做功31mgh2.质量为m 的小球用长度为L 的轻绳系住,在竖直平面内做圆周运动,运动过程中小球受空气阻力作用.已知小球经过最低点时轻绳受的拉力为7m g ,经过半周小球恰好能通过最高点,则此过程中小球克服空气阻力做的功为A.m g L /4B.m g L /3C.m g L /2D.m g L3.如图所示,木板长为l ,板的A 端放一质量为m 的小物块,物块与板间的动摩擦因数为μ。
开始时板水平,在绕O 点缓慢转过一个小角度θ的过程中,若物块始终保持与板相对静止。
对于这个过程中各力做功的情况,下列说法正确的是 ( ) A 、摩擦力对物块所做的功为mgl sin θ(1-cos θ)B 、弹力对物块所做的功为mgl sin θcos θA θC、木板对物块所做的功为mgl sinθD、合力对物块所做的功为mgl cosθ4.如图所示,小球以大小为v0的初速度由A端向右运动,到B端时的速度减小为v B;若以同样大小的初速度由B端向左运动,到A端时的速度减小为v A。
已知小球运动过程中始终未离开该粗糙轨道。
比较v A、v B的大小,结论是A.v A>v BB.v A=v BC.v A<v BD.无法确定5.质量为m的飞机以水平速度v0飞离跑道后逐渐上升,若飞机在此过程中水平速度保持不变,同时受到重力和竖直向上的恒定升力(该升力由其他力的合力提供,不含重力),今测得当飞机在水平方向的位移为L时,它的上升高度为h,求:(1)飞机受到的升力大小;(2)从起飞到上升至h高度的过程中升力所做的功及在高度h处飞机的动能.6.如图所示,质量m=0.5kg的小球从距地面高H=5m处自由下落,到达地面恰能沿凹陷于地面的半圆形槽壁运动,半圆槽半径R =0.4m 。
小球到达槽最低点时速率为10m/s ,并继续沿槽壁运动直到从槽右端边缘飞出……,如此反复几次,设摩擦力恒定不变,求:(设小球与槽壁相碰时不损失能量)(1)小球第一次离槽上升的高度h ;(2)小球最多能飞出槽外的次数(取g =10m/s 2)。
参考答案:1.B 2.C 3.解析:C 该题是考查对功的计算的。
如果不理解W =Fs cos θ.中的F 必须是恒力,就会在AB 两选项上多用时间。
当然,也不能认为AB 中的功无法计算,而C 中的功为这两个功之和,所以也不能得出。
由W =△E K ,知合力对物块所做的功为零。
而W =W F +W G =0,故W F = -W G =mgl sin θ,这就是木板对物块所做的功。
正确选项是C 。
4.解析:A 小球向右通过凹槽C 时的速率比向左通过凹槽C 时的速率大,由向心力方程R mv mg N 2=-可知,对应的弹力N 一定大,滑动摩擦力也大,克服阻力做的功多;又小球向右通过凸起D 时的速率比向左通过凸起D 时的速率小,由向心力方程R mv N mg 2=-可知,对应的弹力N一定大,滑动摩擦力也大,克服阻力做的功多。
所以小球向右运动全过程克服阻力做功多,动能损失多,末动能小,选A 。