动能 势能 动能定理

合集下载

动能与势能相互转化

动能与势能相互转化

1、 在距离地面20m高处以15m/s的初速度 水平抛出一小球,不计空气阻力,取g= 10m/s2,求小球落地速度大小? 答案:25m/s
2 、如图所示,在竖直平面内有一段四分 之一圆弧轨道,半径OA在水平方向,一个质量 为m的小球从顶端A点由静止开始下滑,不计摩 擦,求小球到达轨道底端 B 点时小球对轨道压 力的大小为多少? 答案:3mg
重力势能相互转化,但 总量保持不变
(2)、动能与弹性势能的相互转化
实验探究
1 、运动中小球动能和势能如何 变化? 2、上述实验现象说明了什么? 结论:运动中动能与
弹性势能相互转化,但 总量保持不变
二、机械能守恒定律
如图,质量为m的物体在空中做平抛运动,在高度h1的A处 时速度为v1,在高度为h2的B处速度为v2。

E E
Ek 2 Βιβλιοθήκη p 2 Ek1 E p1
a、
1 1 2 2 mv2 mgh2 mv1 mgh1 2 2
意义:系统的初、末状态的机械能守恒,运用时必须 选取参考平面,把初末状态的重力势能正负表示清楚

B、
EP减 Ek增
E E E E
P1 P2 K2
K1
意义:系统减少(增加)的重力势能等于系统 增加(减少)的动能,运用时无需选取参考 平面,只需判断运动过程中系统的重力势能 的变化

C、
EA减 EB增
意义:A物体减少的机械能等于B物体增 加的机械能,运用时无需选取参考平面
机械能守恒定律的守恒条件
机 械 能 守 恒 定 律
只有重力(弹力)做功包括: ①只受重力(或系统内的弹力),不受其 他力(如所有做抛体运动的物体,不计阻力)。 ②还有其它力,但其它力都不做功或其他 力做功代数和时刻为零(只有重力和系统内部 的弹力做功) 。

动能 势能 动能定理汇总

动能  势能  动能定理汇总

§2 动能 势能 动能定理教学目标:理解功和能的概念,掌握动能定理,会熟练地运用动能定理解答有关问题教学重点:动能定理教学难点:动能定理的应用教学方法:讲练结合,计算机辅助教学教学过程:一、动能1.动能:物体由于运动而具有的能,叫动能。

其表达式为:。

221mv E k =2.对动能的理解(1)动能是一个状态量,它与物体的运动状态对应.动能是标量.它只有大小,没有方向,而且物体的动能总是大于等于零,不会出现负值.(2)动能是相对的,它与参照物的选取密切相关.如行驶中的汽车上的物品,对汽车上的乘客,物品动能是零;但对路边的行人,物品的动能就不为零。

3.动能与动量的比较(1)动能和动量都是由质量和速度共同决定的物理量,= 或221mv E k =m p 22k mE p 2=(2)动能和动量都是用于描述物体机械运动的状态量。

(3)动能是标量,动量是矢量。

物体的动能变化,则其动量一定变化;物体的动能变化,则其动量不一定变化。

(4)动能决定了物体克服一定的阻力能运动多么远;动量则决定着物体克服一定的阻力能运动多长时间。

动能的变化决定于合外力对物体做多少功,动量的变化决定于合外力对物体施加的冲量。

(5)动能是从能量观点出发描述机械运动的,动量是从机械运动本身出发描述机械运动状态的。

二、重力势能1.重力势能:物体和地球由相对位置决定的能叫重力势能,是物体和地球共有的。

表达式:,与零势能面的选取有关。

mgh E p 2.对重力势能的理解(1)重力势能是物体和地球这一系统共同所有,单独一个物体谈不上具有势能.即:如果没有地球,物体谈不上有重力势能.平时说物体具有多少重力势能,是一种习惯上的简称.重力势能是相对的,它随参考点的选择不同而不同,要说明物体具有多少重力势能,首先要指明参考点(即零点).(2)重力势能是标量,它没有方向.但是重力势能有正、负.此处正、负不是表示方向,而是表示比零点的能量状态高还是低.势能大于零表示比零点的能量状态高,势能小于零表示比零点的能量状态低.零点的选择不同虽对势能值表述不同,但对物理过程没有影响.即势能是相对的,势能的变化是绝对的,势能的变化与零点的选择无关.(3)重力做功与重力势能重力做正功,物体高度下降,重力势能降低;重力做负功,物体高度上升,重力势能升高.可以证明,重力做功与路径无关,由物体所受的重力和物体初、末位置所在水平面的高度差决定,即:W G =mg △h .所以重力做的功等于重力势能增量的负值,即W G = -△E p = -(mgh 2-mgh 1)三、动能定理1.动能定理的表述合外力做的功等于物体动能的变化。

11能量流动分析(上)——功、动能定理和势能定理

11能量流动分析(上)——功、动能定理和势能定理

第十一讲:能量流动分析(上)——功、动能定理和势能定理---------------------------------------------------------------------------------------------------------------------- 一、功【例1】如图所示,质量为m 的小球用长L 的细线悬挂而静止在竖直位置。

在下列三种情况下,分别用水平拉力F 将小球拉到细线与竖直方向成θ角的位置。

在此过程中,拉力F 做的功各是多少?⑴用F 缓慢地拉;⑵F 为恒力;⑶若F 为恒力,而且拉到该位置时小球的速度刚好为零。

可供选择的答案有A .θcos FLB .θsin FLC .()θcos 1-FLD .()θcos 1-mgL二、动能定理【例2】如图所示,游乐列车由许多节车厢组成。

列车全长为L ,圆形轨道半径为R ,(R 远大于一节车厢的高度h 和长度l ,但L>2πR )。

已知列车的车轮是卡在导轨上的光滑槽中只能使列车沿着圆周运动而不能脱轨。

试问:列车在水平轨道上应具有多大初速度V 0,才能使列车通过圆形轨道?三、势能定理【例3】物体间万有引力场中具有的势能叫做引力势能。

取两物体相距无穷远时的引力势能为零,一个质量为的质点距离质量为M 0的引力源中心为时。

其引力势能(式中G 为引力常数),一颗质地为的人造地球卫星以圆形轨道环绕地球飞行,已知地球的质量为M ,由于受高空稀薄空气的阻力作用。

卫星的圆轨道半径从逐渐减小到。

若在这个过程中空气阻力做功为,则在下面约会出的的四个表达式中正确的是:( )A .B .C .D .0m 0r 00r m GM E p -=m 1r 2r f W f W ⎪⎪⎭⎫⎝⎛--=2111r r GMm W f⎪⎪⎭⎫⎝⎛--=12112r r GMm W f ⎪⎪⎭⎫⎝⎛--=21113r r GMm W f ⎪⎪⎭⎫ ⎝⎛--=12113r r GMm W f【例4】有一个竖直固定在地面的透气圆筒,筒中有一劲度为k的轻弹簧,其下端固定,上端连接一质量为m的薄滑块,圆筒内壁涂有一层新型智能材料——ER流体,它对滑块的阻力可调。

动能势能动能定理

动能势能动能定理

§ 2动能势能动能定理 § 2 动能势能动能定理教学目标:理解功和能的概念,掌握动能定理,会熟练地运用动能定理解答有关问题 教学重点:动能定理 教学难点:动能定理的应用教学方法:讲练结合,计算机辅助教学 教学过程:一、动能一 一 一 1 21 .动能:物体由于运动而具有的能,叫动能。

其表达式为:E kmv 。

22•对动能的理解(1) 动能是一个状态量,它与物体的运动状态对应.动能是标量.它只有大小,没有方向,而且物体的动 能总是大于等于零,不会出现负值.(2) 动能是相对的,它与参照物的选取密切相关.如行驶中的汽车上的物品,对汽车上的乘客,物品动能是零;但对路边的行人,物品的动能就不为零。

3.动能与动量的比较(1) 动能和动量都是由质量和速度共同决定的物理量,(2) 动能和动量都是用于描述物体机械运动的状态量。

(3) 动能是标量,动量是矢量。

物体的动能变化,则其动量一定变化;物体的动量变化,则其动量不一定 变化。

(4) 动能决定了物体克服一定的阻力能运动多么远;动量则决定着物体克服一定的阻力能运动多长时间。

动能的变化决定于合外力对物体做多少功,动量的变化决定于合外力对物体施加的冲量。

(5) 动能是从能量观点出发描述机械运动的,动量是从机械运动本身出发描述机械运动状态的。

二、重力势能1.重力势能:物体和地球由相对位置决定的能叫重力势能,是物体和地球共有的。

表达式: E p与零势能面的选取有关。

2. 对重力势能的理解E k1 2mv 22P 2mp . 2mE kmgh ,(1)重力势能是物体和地球这一系统共同所有,单独一个物体谈不上具有势能.即:如果没有地球,物体谈不上有重力势能.平时说物体具有多少重力势能,是一种习惯上的简称.重力势能是相对的,它随参考点的选择不同而不同,要说明物体具有多少重力势能,首先要指明参考点(即零点).(2)重力势能是标量,它没有方向•但是重力势能有正、负•此处正、负不是表示方向,而是表示比零点的能量状态高还是低•势能大于零表示比零点的能量状态高,势能小于零表示比零点的能量状态低•零点的选择不同虽对势能值表述不同,但对物理过程没有影响.即势能是相对的,势能的变化是绝对的,势能的变化与零点的选择无关.(3)重力做功与重力势能重力做正功,物体高度下降,重力势能降低;重力做负功,物体高度上升,重力势能升高.可以证明,重力做功与路径无关,由物体所受的重力和物体初、末位置所在水平面的高度差决定,即:W G=mg A h .所以重力做的功等于重力势能增量的负值,即W G= -△ E p= - (mgh2-mgh i).三、动能定理1 .动能定理的表述合外力做的功等于物体动能的变化。

三、重力势能 动能 动能定理

三、重力势能   动能 动能定理
体的重力势能变化了多少?是增加了还是减少了?
如果是减少了,减少的重力势能到哪里去了?
9.如图,在光滑的桌面上有一根均匀柔软的质量为m、 长为L的绳,其绳长的1/4悬于桌面下,从绳子开始下滑 至绳子刚好全部离开桌面的过程中,重力对绳子做

,绳子的重力势能增量为
(桌面离地
高度大于L)。
答案:15mgL/32
3、重力势能
1、重力势能(Ep) (1)定义:物体由于被举高而具有的能 (2)影响因素:m、h (3)表达式:Ep=mgh 推导:
力F对物体所做的功为多少?
W Fh Gh mgh
物体获得了多少重力势能? 据功能关系有:
E W mgh
p
说明: ①单位是焦耳,1J=1kg.m/s2.m ②是物体和地球共有的 ③h为物体重心高度,不能看成质点的物体(弯折的 杆、链条)应分段考虑
慢地竖直提起一段高度h使重物A离开地面.这时重物
具有的重力势能为(以地面为零势能面)( C )
A.mg(L-h)
C.mg(h-mg/k)
B.mg(h-L+mg/k)
D.mg(h-L-mg/k)
4、动能 动能定理
1、动能(Ek) (1)定义:物体由于运动而具有的能 (2)影响因素:m、v (3)表达式: E
例1、一质量1.0kg的滑块,以4m/s的初速度在光滑水 平面上向左滑行,从某时刻起一向右水平力作用于滑 块,经过一段时间,滑块的速度方向变为向右,大小
为4m/s,则在这段时间内水平力所做的功为( )
A、0 B、8J
C、16J
D、32J
例2、一辆汽车以6m/s的速度沿水平路面行驶 时,急 刹车后能滑行3.6m;如果改以8m/s的速度行驶,急 刹车后滑行的距离为( A、6.4m ) B、5.6m

动能定理与弹性势能的计算

动能定理与弹性势能的计算

动能定理与弹性势能的计算动能定理是力学中的基本原理之一,它描述了物体的动能与物体所受力的关系。

在本文中,我们将探讨动能定理的原理和应用,并介绍弹性势能的计算方法。

一、动能定理的原理动能定理可以简单地表述为:物体的动能的增量等于物体所受力的功的增量。

数学表达式如下:ΔK = W其中,ΔK表示物体动能的增量,W表示物体所受力的功的增量。

二、动能定理的应用动能定理在力学中有着广泛的应用,我们将从以下两个方面进行探讨。

1. 运动力学中的应用在运动过程中,物体所受力的功的增量等于物体动能的增量。

根据动能定理,我们可以通过计算物体所受力的功,来确定物体动能的变化情况。

这一原理在解决运动相关的问题时非常有用。

比如,我们可以通过动能定理来计算物体的速度、加速度和位移等运动参数。

2. 力学中的能量守恒定理动能定理是能量守恒定律的基础之一。

能量守恒定律指出,一个封闭系统内的总能量保持不变。

根据能量守恒定律,我们可以将动能定理与其他形式的能量转换进行结合,来研究系统的能量变化。

例如,当物体从一种形式的能量转化为动能时,动能定理可以用来计算能量转化的大小。

三、弹性势能的计算弹性势能是弹性体在形变过程中具有的能量,是与弹性体形变程度相关的物理量。

根据胡克定律,弹性势能可以通过以下公式计算:Ep = (1/2)kx^2其中,Ep表示弹性势能,k表示弹性系数,x表示形变的位移。

弹性势能的计算是通过量化与物体形变相关的能量。

具体计算时,需要确定弹性系数k和形变的位移x。

根据胡克定律,弹性系数k可以根据物体的材料性质和形状进行确定。

而形变的位移x则取决于物体受力的大小和方向。

四、结论动能定理是描述物体动能与物体所受力的关系的基本原理。

它在力学中有着广泛的应用,可以用来计算运动相关的参数和研究能量转化过程。

弹性势能是弹性体形变过程中所具有的能量,可以通过胡克定律来计算。

掌握动能定理和弹性势能的计算方法,对于解决相关的物理问题具有重要的意义。

动力学中的动能定理与势能定理

动力学中的动能定理与势能定理

动力学中的动能定理与势能定理在动力学中,动能定理和势能定理是两个重要的物理定理,它们揭示了物体在不同力场中运动时的能量变化规律。

动能定理描述了物体动能的变化与物体所受力之间的关系,而势能定理则说明了物体在势能变化时所受力的大小。

本文将详细介绍这两个定理的含义和应用。

1. 动能定理动能定理是描述物体动能变化的定理,它表明物体所受的合外力所做的功等于物体动能的增量。

设物体质量为m,初始速度为v1,末速度为v2,根据动能定理可得:[公式]其中K1和K2分别表示初始和末态的动能。

根据动能定理,当物体所受的合外力做功时,物体的动能会发生变化。

动能定理的应用非常广泛,其中一个重要的应用是运动力学中动量定理的推导。

通过将动能定理与牛顿第二定律结合可以得到动量定理:[公式]其中F是物体所受的合外力,dp/dt是物体的动量变化率。

2. 势能定理势能定理是描述物体势能变化的定理,它表明物体在势能发生变化时所受的力的大小等于势能的变化率。

对于某个力场中的物体,在两个位置A和B之间势能的变化为∆U,根据势能定理可得:[公式]其中W_AB是对物体施加力的功,U_A和U_B分别表示位置A和位置B处的势能。

势能定理可以帮助我们理解力场对物体的作用。

在重力场中,物体从高处下落时,势能逐渐转化为动能,因此物体会加速下落。

同样地,在弹簧振子中,势能也会转化为动能,并在运动的过程中不断变化。

总结:动能定理和势能定理是研究物体在力场中运动时能量变化的重要定理。

动能定理表明物体所受的合外力做功等于物体动能的增量,而势能定理则说明物体在势能变化时所受力的大小。

这两个定理在物理学的研究和应用中发挥着重要的作用,帮助我们理解和分析物体的运动过程。

注:本文水平有限,仅提供基本的介绍和解释。

如需深入了解动力学中的动能定理与势能定理,请参考相关教材或专业资料。

动能定理与势能

动能定理与势能

动能定理与势能动能定理和势能是物理学中关于物体运动的两个重要概念。

本文将逐一介绍动能定理和势能的定义、原理及其应用。

动能定理动能定理是描述物体运动能量变化的一个基本原理。

它表明物体的动能与物体所受力之间存在着一定的关系。

动能定理可以用数学公式表示为:动能定理公式:K = 1/2 mv²其中,K代表物体的动能,m代表物体的质量,v代表物体的速度。

动能定理的基本原理是,当一个物体在运动过程中受到合力F作用,物体的速度将会发生改变,从而导致动能的变化。

如果合力F与物体的速度方向一致,物体的速度将增加,动能也将增加;如果合力F与物体的速度方向相反,物体的速度将减小,动能也将减小。

动能定理的应用非常广泛。

在机械领域中,它可以用来计算物体的机械能,从而分析物体的运动状态。

在运动学中,动能定理可以用来计算物体在不同速度下的动能变化情况。

在动力学中,动能定理可以用来分析物体在受力作用下的加速度和速度变化情况。

势能势能是物体由于其位置或状态而具有的能量。

势能可以分为多种类型,如重力势能、弹性势能、化学势能等。

本文将以重力势能为例进行介绍。

重力势能是物体在地球表面上的高度位置所具有的势能。

它可以用数学公式表示为:重力势能公式:E = mgh其中,E代表物体的重力势能,m代表物体的质量,g代表重力加速度,h代表物体的高度。

重力势能的基本原理是物体在高处具有较大的势能,当物体下落时,其重力势能将会转化为动能。

这个过程通常被称为势能转化为动能。

同样地,当物体上升时,动能将会转化为势能。

重力势能的应用广泛。

在日常生活中,我们可以根据物体的质量、高度和重力加速度来计算物体的重力势能,进而分析物体的动能和势能的转化情况。

在工程领域中,重力势能的概念与应用也是不可或缺的。

结论动能定理和势能是描述物体运动能量变化的两个重要概念。

动能定理通过描述物体的动能与所受力之间的关系,揭示了物体在运动中能量转化的规律。

而势能则描述了物体由于其位置或状态而具有的能量。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

§2 动能 势能 动能定理教学目标:理解功和能的概念,掌握动能定理,会熟练地运用动能定理解答有关问题教学重点:动能定理教学难点:动能定理的应用教学方法:讲练结合,计算机辅助教学教学过程:一、动能1.动能:物体由于运动而具有的能,叫动能。

其表达式为:221mv E k =。

2.对动能的理解(1)动能是一个状态量,它与物体的运动状态对应.动能是标量.它只有大小,没有方向,而且物体的动能总是大于等于零,不会出现负值.(2)动能是相对的,它与参照物的选取密切相关.如行驶中的汽车上的物品,对汽车上的乘客,物品动能是零;但对路边的行人,物品的动能就不为零。

3.动能与动量的比较(1)动能和动量都是由质量和速度共同决定的物理量,221mv E k ==m p 22 或 k mE p 2=(2)动能和动量都是用于描述物体机械运动的状态量。

(3)动能是标量,动量是矢量。

物体的动能变化,则其动量一定变化;物体的动能变化,则其动量不一定变化。

(4)动能决定了物体克服一定的阻力能运动多么远;动量则决定着物体克服一定的阻力能运动多长时间。

动能的变化决定于合外力对物体做多少功,动量的变化决定于合外力对物体施加的冲量。

(5)动能是从能量观点出发描述机械运动的,动量是从机械运动本身出发描述机械运动状态的。

二、重力势能1.重力势能:物体和地球由相对位置决定的能叫重力势能,是物体和地球共有的。

表达式:mghEp,与零势能面的选取有关。

2.对重力势能的理解(1)重力势能是物体和地球这一系统共同所有,单独一个物体谈不上具有势能.即:如果没有地球,物体谈不上有重力势能.平时说物体具有多少重力势能,是一种习惯上的简称.重力势能是相对的,它随参考点的选择不同而不同,要说明物体具有多少重力势能,首先要指明参考点(即零点).(2)重力势能是标量,它没有方向.但是重力势能有正、负.此处正、负不是表示方向,而是表示比零点的能量状态高还是低.势能大于零表示比零点的能量状态高,势能小于零表示比零点的能量状态低.零点的选择不同虽对势能值表述不同,但对物理过程没有影响.即势能是相对的,势能的变化是绝对的,势能的变化与零点的选择无关.(3)重力做功与重力势能重力做正功,物体高度下降,重力势能降低;重力做负功,物体高度上升,重力势能升高.可以证明,重力做功与路径无关,由物体所受的重力和物体初、末位置所在水平面的高度差决定,即:W G=mg△h.所以重力做的功等于重力势能增量的负值,即W G= -△E p= -(mgh2-mgh1)三、动能定理1.动能定理的表述合外力做的功等于物体动能的变化。

(这里的合外力指物体受到的所有外力的合力,包括重力)。

表达式为W=ΔE K动能定理也可以表述为:外力对物体做的总功等于物体动能的变化。

实际应用时,后一种表述比较好操作。

不必求合力,特别是在全过程的各个阶段受力有变化的情况下,只要把各个力在各个阶段所做的功都按照代数和加起来,就可以得到总功。

和动量定理一样,动能定理也建立起过程量(功)和状态量(动能)间的联系。

这样,无论求合外力做的功还是求物体动能的变化,就都有了两个可供选择的途径。

和动量定理不同的是:功和动能都是标量,动能定理表达式是一个标量式,不能在某一个方向上应用动能定理。

【例1】 一个质量为m 的物体静止放在光滑水平面上,在互成60°角的大小相等的两个水平恒力作用下,经过一段时间,物体获得的速度为v ,在力的方向上获得的速度分别为v 1、v 2,那么在这段时间内,其中一个力做的功为A .261mvB .241mvC .231mvD .221mv错解:在分力F 1的方向上,由动动能定理得2221161)30cos 2(2121mv v m mv W =︒==,故A 正确。

正解:在合力F 的方向上,由动动能定理得,221mv Fs W ==,某个分力的功为211412130cos 30cos 230cos mv Fs s F s F W ==︒︒=︒=,故B 正确。

2.对外力做功与动能变化关系的理解:外力对物体做正功,物体的动能增加,这一外力有助于物体的运动,是动力;外力对物体做负功,物体的动能减少,这一外力是阻碍物体的运动,是阻力,外力对物体做负功往往又称物体克服阻力做功. 功是能量转化的量度,外力对物体做了多少功;就有多少动能与其它形式的能发生了转化.所以外力对物体所做的功就等于物体动能的变化量.即.3.应用动能定理解题的步骤(1)确定研究对象和研究过程。

和动量定理不同,动能定理的研究对象只能是单个物体,如果是系统,那么系统内的物体间不能有相对运动。

(原因是:系统内所有内力的总冲量一定是零,而系统内所有内力做的总功不一定是零)。

(2)对研究对象进行受力分析。

(研究对象以外的物体施于研究对象的力都要分析,含重力)。

(3)写出该过程中合外力做的功,或分别写出各个力做的功(注意功的正负)。

如果研究过程中物体受力情况有变化,要分别写出该力在各个阶段做的功。

(4)写出物体的初、末动能。

(5)按照动能定理列式求解。

【例2】 如图所示,斜面倾角为α,长为L ,AB 段光滑,BC 段粗糙,且BC =2 AB 。

质量为m 的木块从斜面顶端无初速下滑,到达C 端时速度刚好减小到零。

求物体和斜面BC 段间的动摩擦因数μ。

解:以木块为对象,在下滑全过程中用动能定理:重力做的功为mgL sin α,摩擦力做的功为αμcos 32mgL -,支持力不做功。

初、末动能均为零。

mgL sin ααμcos 32mgL -=0,αμtan 23= 点评:从本例题可以看出,由于用动能定理列方程时不牵扯过程中不同阶段的加速度,所以比用牛顿定律和运动学方程解题简洁得多。

【例3】 将小球以初速度v 0竖直上抛,在不计空气阻力的理想状况下,小球将上升到某一最大高度。

由于有空气阻力,小球实际上升的最大高度只有该理想高度的80%。

设空气阻力大小恒定,求小球落回抛出点时的速度大小v 。

解:有空气阻力和无空气阻力两种情况下分别在上升过程对小球用动能定理: 2021mv mgH =和()20218.0mv H f mg =+,可得H=v 02/2g ,mg f 41= 再以小球为对象,在有空气阻力的情况下对上升和下落的全过程用动能定理。

全过程重力做的功为零,所以有:22021218.02mv mv H f -=⨯⋅,解得053v v = 点评:从本题可以看出:根据题意灵活地选取研究过程可以使问题变得简单。

有时取全过程简单;有时则取某一阶段简单。

原则是尽量使做功的力减少,各个力的功计算方便;或使初、末动能等于零。

【例4】如图所示,质量为m 的钢珠从高出地面h 处由静止自由下落,落到地面进入沙坑h /10停止,则vv /(1)钢珠在沙坑中受到的平均阻力是重力的多少倍?(2)若让钢珠进入沙坑h /8,则钢珠在h 处的动能应为多少?设钢珠在沙坑中所受平均阻力大小不随深度改变。

解析:(1)取钢珠为研究对象,对它的整个运动过程,由动能定理得W =W F +W G =△E K =0。

取钢珠停止处所在水平面为重力势能的零参考平面,则重力的功W G =1011mgh ,阻力的功W F =101- F f h , 代入得1011mgh 101-F f h =0,故有F f /mg =11。

即所求倍数为11。

(2)设钢珠在h 处的动能为E K ,则对钢珠的整个运动过程,由动能定理得W =W F +W G =△E K =0,进一步展开为9mgh /8—F f h /8= —E K ,得E K =mgh /4。

点评:对第(2)问,有的学生这样做,h /8—h /10= h /40,在h /40中阻力所做的功为F f h /40=11mgh /40,因而钢珠在h 处的动能E K =11mgh /40。

这样做对吗?请思考。

【例5】 质量为M 的木块放在水平台面上,台面比水平地面高出h =0.20m ,木块离台的右端L =1.7m 。

质量为m =0.10M 的子弹以v 0=180m/s 的速度水平射向木块,并以v =90m/s 的速度水平射出,木块落到水平地面时的落地点到台面右端的水平距离为s =1.6m ,求木块与台面间的动摩擦因数为μ。

解:本题的物理过程可以分为三个阶段,在其中两个阶段中有机械能损失:子弹射穿木块阶段和木块在台面上滑行阶段。

所以本题必须分三个阶段列方程:子弹射穿木块阶段,对系统用动量守恒,设木块末速度为v 1,mv 0= mv +Mv 1……①木块在台面上滑行阶段对木块用动能定理,设木块离开台面时的速度为v 2,有:22212121Mv Mv MgL -=μ……② 木块离开台面后的平抛阶段,g h v s 22=……③由①、②、③可得μ=0.50点评:从本题应引起注意的是:凡是有机械能损失的过程,都应该分段处理。

从本题还应引起注意的是:不要对系统用动能定理。

在子弹穿过木块阶段,子弹和木块间的一对摩擦力做的总功为负功。

如果对系统在全过程用动能定理,就会把这个负功漏掉。

四、动能定理的综合应用动能定理可以由牛顿定律推导出来,原则上讲用动能定律能解决物理问题都可以利用牛顿定律解决,但在处理动力学问题中,若用牛顿第二定律和运动学公式来解,则要分阶段考虑,且必须分别求每个阶段中的加速度和末速度,计算较繁琐。

但是,我们用动能定理来解就比较简捷。

我们通过下面的例子再来体会一下用动能定理解决某些动力学问题的优越性。

1.应用动能定理巧求变力的功如果我们所研究的问题中有多个力做功,其中只有一个力是变力,其余的都是恒力,而且这些恒力所做的功比较容易计算,研究对象本身的动能增量也比较容易计算时,用动能定理就可以求出这个变力所做的功。

【例6】如图所示,AB为1/4圆弧轨道,半径为R=0.8m,BC是水平轨道,长S=3m,BC处的摩擦系数为μ=1/15,今有质量m=1kg的物体,自A点从静止起下滑到C点刚好停止。

求物体在轨道AB段所受的阻力对物体做的功。

解析:物体在从A滑到C的过程中,有重力、AB段的阻力、BC段的摩擦力共三个力做功,W G=mgR,f BC=μmg,由于物体在AB段受的阻力是变力,做的功不能直接求。

根据动能定理可知:W外=0,所以mgR-μmgS-W AB=0即W AB=mgR-μmgS=1×10×0.8-1×10×3/15=6 J【例7】一辆车通过一根跨过定滑轮的绳PQ提升井中质量为m的物体,如图所示.绳的P端拴在车后的挂钩上,Q端拴在物体上.设绳的总长不变,绳的质量、定滑轮的质量和尺寸、滑轮上的摩擦都忽略不计.开始时,车在A点,左右两侧绳都已绷紧并且是竖直的,左侧绳长为H.提升时,车加速向左运动,沿水平方向从A经过B驶向C.设A到B的距离也为H,车过B点时的速度为v B.求在车由A移到B的过程中,绳Q端的拉力对物体做的功.解析:设绳的P 端到达B 处时,左边绳与水平地面所成夹角为θ,物体从井底上升的高度为h ,速度为v ,所求的功为W ,则据动能定理可得: 221mv mgh W =- 因绳总长不变,所以: H H h -=θsin 根据绳联物体的速度关系得:v =v B cosθ 由几何关系得:4πθ=由以上四式求得: H mg mv W B )12(412-+= 2.应用动能定理简解多过程问题。

相关文档
最新文档