第四章曲线运动 第 2 课时抛体运动的规律及其应用
高中物理高考 2022年高考物理一轮复习(新高考版2(粤冀渝湘)适用) 第4章 第2讲 抛体运动

03
考点三 与斜面或半圆有关的平抛运动
考向1 与斜面有关的平抛运动
1.顺着斜面平抛
(1)落到斜面上,已知位移方向沿斜面向下(如图10)
处理方法:分解位移.
x=v0t y=12gt2 tan θ=yx
可求得
t=2v0tgan
θ .
图10
(2)物体离斜面距离最大,已知速度方向沿斜面向下(如图11)
示位置被水平抛出,落地点在同一点M,B球抛出点离地面高度为h,与落
地点M水平距离为x,A球抛出点离地面高度为2h,与落地点M水平距离为2x,
忽略空气阻力,重力加速度为g,关于A、B两小球的说法正确的是
A.A球的初速度是B球初速度的两倍
B.要想A、B两球同时到达M点,A球
应先抛出的时间是
2h g
√C.A、B两小球到达M点时速度方向一定相同
大一轮复习讲义
第四章 曲线运动
第2讲 抛体运动
【目标要求】 1.掌握平抛运动的规律,会用运动的合成与分解方法分析平抛运动. 2.会处理平抛运动中的临界、极值问题.
内容索引
NEIRONGSUOYIN
考点一 平抛运动的规律及应用 考点二 平抛运动的临界、极值问题 考点三 与斜面或半圆有关的平抛运动 考点四 斜抛运动 课时精练
56
6.(对着斜面抛)(多选)如图15,轰炸机沿水平方向匀速飞行,到达山坡
底端正上方时释放一颗炸弹,击中坡上的目标A.已知A点高度为h,山坡
倾角为θ,重力加速度为g,由此可算出
√A.轰炸机的飞行高度 √B.轰炸机的飞行速度
√C.炸弹的飞行时间
D.炸弹投出时的动能
图15
56
解析 设轰炸机投弹位置高度为H,炸弹水平位移为x,
高中物理第四章 第2讲 平抛运动的规律及应用

【变式训练】在同一平台上的O点抛出的3个物体,做平抛运动 的轨迹如图所示,则3个物体做平抛运动的初速度vA、vB、vC的 关系及落地时间tA、tB、tC的关系分别是( )
A.vA>vB>vC,tA>tB>tC C.vA<vB<vC,tA>tB>tC
Байду номын сангаас
B.vA=vB=vC,tA=tB=tC D.vA<vB<vC,tA<tB<tC
考点 3 平抛运动的综合问题(三年6考)
解题技巧 【考点解读】 涉及平抛运动的综合问题主要是以下几种类型: (1)平抛运动与其他运动形式(如匀速直线运动、竖直上抛运动、 自由落体运动、圆周运动等)的综合题目,在这类问题的分析中 要注意平抛运动与其他运动过程在时间上、位移上、速度上的
方 分 解 速 度
法
内
容
斜
面
总
结
水平:vx=v0 竖直:vy=gt 合速度: v= v x 2 v y 2 水平:x=v0t 合位移: x 合= x 2 y 2
1 竖直:y= gt2 2
分解速 度,构建 速度三 角形
分 解 位 移
分解位 移,构建 位移三 角形
【典例透析 2】滑雪比赛惊险刺激,如图所示,一名跳台滑雪运 动员经过一段加速滑行后从O点水平飞出,经过3.0s落到斜坡上
g 2h 知,时间取决于下落高度h,与初速度v0 g
(3)落地速度:v= v x 2 v y 2 v0 2 2gh ,以θ 表示落地速度与 x轴正方向间的夹角,有tanθ = 初速度v0和下落高度h有关。
vy vx 2gh ,所以落地速度只与 v0
(4)速度改变量:因为平抛运动的加速度为恒 定的重力加速度g,所以做平抛运动的物体在 任意相等时间间隔Δ t内的速度改变量
(统考版)高考物理一轮复习 第四章 曲线运动 万有引力与航天 第2讲 抛体运动的规律及应用学生用书

第2讲抛体运动的规律及应用一、平抛运动1.定义:将物体以一定的初速度沿水平方向抛出,物体只在________作用下的运动.2.性质:平抛运动是加速度为g的________曲线运动,运动轨迹是抛物线.3.研究方法:运动的合成与分解.(1)水平方向:________直线运动;(2)竖直方向:________运动.4.基本规律:如图所示,以抛出点O为坐标原点,以初速度v0方向(水平方向)为x轴正方向,竖直向下为y轴正方向.(1)位移关系(2)速度关系(3)常用推论:①图中C点为水平位移中点;②tan θ=2tan α.注意θ与α不是2倍关系.二、斜抛运动1.定义:将物体以初速度v0________或斜向下方抛出,物体只在________作用下的运动.如图所示.2.性质:斜抛运动是加速度为g的________曲线运动,运动轨迹是________.3.研究方法:运动的合成与分解(1)水平方向:________直线运动;(2)竖直方向:________直线运动.,生活情境1.一架投放救灾物资的飞机在受灾区域的上空水平地匀速飞行,从飞机上投放的救灾物资在落地前的运动中(不计空气阻力)(1)速度和加速度都在不断改变.( )(2)速度和加速度方向之间的夹角一直减小.( )(3)在相等的时间内速度的改变量相等.( )(4)在相等的时间内速率的改变量相等.( )(5)在相等的时间内动能的改变量相等.( )教材拓展2.(多选)为了验证平抛运动的小球在竖直方向上做自由落体运动,用如图所示的装置进行实验.小锤打击弹性金属片,A球水平抛出,同时B球被松开,自由下落,关于该实验,下列说法中正确的有( )A.两球的质量应相等B.两球应同时落地C.应改变装置的高度,多次实验D.实验也能说明A球在水平方向上做匀速直线运动考点一平抛运动规律的应用用“化曲为直”的思想处理平抛运动中落点在水平面上的问题时,将研究对象抽象为质点平抛运动模型,处理平抛运动的基本方法是运动的分解(化曲为直).即同时又要注意合运动与分运动的独立性、等时性.例1.[2021·河北卷,2]铯原子钟是精确的计时仪器.图1中铯原子从O点以100 m/s 的初速度在真空中做平抛运动,到达竖直平面MN所用时间为t1;图2中铯原子在真空中从P点做竖直上抛运动,到达最高点Q再返回P点,整个过程所用时间为t2.O点到竖直平面MN、P点到Q点的距离均为0.2 m.重力加速度取g=10m.则t1∶t2为( )s2A.100∶1 B.1∶100跟进训练1.在高空中匀速飞行的轰炸机,每隔时间t投放一颗炸弹,若不计空气阻力,则投放的炸弹在空中的位置是选项中的(图中竖直的虚线将各图隔离)( )2.[2022·陕西五校联考]墙网球又叫壁球,场地类似于半个网球场,如图所示,在场地一侧立有一竖直墙壁,墙壁上离地面一定高度的位置画了水平线(发球线),在发球区发出的球必须击中发球线以上位置才有效,假设运动员在某个固定位置将球发出,发球速度(球离开球拍时的速度)方向与水平面的夹角为θ,球击中墙壁位置离地面的高度为h,球每次都以垂直墙壁的速度撞击墙壁,设球撞击墙壁的速度大小为v,球在与墙壁极短时间的撞击过程中无机械能损失,球撞到墙壁反弹后落地点到墙壁的水平距离为x,不计空气阻力,球始终在与墙壁垂直的平面内运动,则下列说法正确的是( )A.h越大,x越大B.v越小,x越大C.h越大,θ越大 D.v越大,h越大考点二平抛运动与各种面结合问题角度1落点在斜面上分解位移,构建位移三例2. [2022·江西八校联考](多选)如图所示,小球A从斜面顶端水平抛出,落在斜面上的Q点,在斜面底端P点正上方水平抛出小球B,小球B也刚好落在斜面上的Q点,B球,A、B 抛出点离斜面底边的高度是斜面高度的一半,Q点到斜面顶端的距离是斜面长度的23两球均可视为质点,不计空气阻力,则A、B两球( )A.平抛运动的时间之比为2∶1B.平抛运动的时间之比为3∶1C.平抛运动的初速度之比为1∶2D.平抛运动的初速度之比为1∶1角度2落点在曲面上例3. [2022·浙江温州一模]如图所示为某种水轮机的示意图,水平管出水口的水流速度恒定为v 0,当水流冲击到水轮机上某挡板时,水流的速度方向刚好与该挡板垂直,该档板的延长线过水轮机的转轴O ,且与水平方向的夹角为30°.当水轮机圆盘稳定转动后,挡板的线速度恰为冲击该挡板的水流速度的一半.忽略挡板的大小,不计空气阻力,若水轮机圆盘的半径为R ,则水轮机圆盘稳定转动的角速度大小为( )A.v 02R B .v0RC .√3v 0RD .2v 0R跟进训练.3 [2022·浙江名校统测]如图所示,水平地面有一个坑,其竖直截面为y =kx 2的抛物线(k =1,单位为m -1),ab 沿水平方向,a 点横坐标为-3s2,在a 点分别以初速度v 0、2v 0(v 0未知)沿ab 方向抛出两个石子并击中坑壁,且以v 0、2v 0抛出的石子做平抛运动的时间相等.设以v 0和2v 0抛出的石子做平抛运动的时间为t ,击中坑壁瞬间的速度分别为v 1和v 2,下落高度为H ,仅s 和重力加速度g 为已知量,不计空气阻力,则(选项中只考虑数值大小,不考虑单位)( )A .不可以求出tB .可求出t 的大小为 √4sg C .可以求出v 1的大小为 √3g+16gs 24D .可求出H 的大小为2s 2考点三 生活中的平抛运动(STSE 问题)素养提升情境1投篮游戏[2021·新疆第二次联考]如图甲所示,投篮游戏是小朋友们最喜欢的项目之一,小朋友站立在水平地面上双手将皮球水平抛出,皮球进入篮筐且不擦到篮筐就能获得一枚小红旗.如图乙所示,篮筐的半径为R,皮球的半径为r,篮筐中心和出手处皮球的中心高度为h1和h2,两中心在水平地面上的投影点O1、O2之间的距离为d.忽略空气的阻力,已知重力加速度为g.设出手速度为v,要使皮球能入筐,则下列说法中正确的是( )A.出手速度大的皮球进筐前运动的时间也长B.速度v只能沿与O1O2连线平行的方向C.速度v的最大值为(d+R-r)√g2(h2−h1)D.速度v的最小值为(d-R+r)√2gh2−h1[思维方法]1.处理平抛运动中的临界问题要抓住两点(1)找出临界状态对应的临界条件;(2)用分解速度或者分解位移的思想分析平抛运动的临界问题.2.平抛运动临界极值问题的分析方法(1)确定研究对象的运动性质;(2)根据题意确定临界状态;(3)确定临界轨迹,画出轨迹示意图;(4)应用平抛运动的规律结合临界条件列方程求解.情境2农林灌溉农林灌溉需要扩大灌溉面积,通常在水管的末端加上一段尖管,示意图如图所示,尖管,尖管水平,不考虑空气阻力的影响,下列说法正确的是( )的直径是水管直径的13A.由于增加尖管,单位时间的出水量增加2倍B.由于增加尖管,水平射程增加3倍C.增加尖管前后,空中水的质量不变D.由于增加尖管,水落地时的速度大小增加8倍情境3海鸥捕食[2021·山东卷,16] 海鸥捕到外壳坚硬的鸟蛤(贝类动物)后,有时会飞到空中将它丢下,利用地面的冲击打碎硬壳.一只海鸥叼着质量m=0.1 kg的鸟蛤,在H=20 m的高度、,以v0=15 m/s的水平速度飞行时,松开嘴巴让鸟蛤落到水平地面上.取重力加速度g=10ms2忽略空气阻力.(1)若鸟蛤与地面的碰撞时间Δt =0.005 s ,弹起速度可忽略,求碰撞过程中鸟蛤受到的平均作用力的大小F ;(碰撞过程中不计重力)(2)在海鸥飞行方向正下方的地面上,有一与地面平齐、长度L =6 m 的岩石,以岩石左端为坐标原点,建立如图所示坐标系.若海鸥水平飞行的高度仍为20 m ,速度大小在15~17 m/s 之间,为保证鸟蛤一定能落到岩石上,求释放鸟蛤位置的x 坐标范围.第2讲 抛体运动的规律及应用必备知识·自主排查一、 1.重力 2.匀变速3.(1)匀速 (2)自由落体 4.(1)12gt 2√x 2+y 2yx(2)√v x 2+v y 2 v y v x二、1.斜向上方 重力 2.匀变速 抛物线 3.(1)匀速 (2)匀变速生活情境1.(1)× (2)√ (3)√ (4)× (5)× 教材拓展2.解析:根据合运动与分运动的等时性和独立性特点可知,两球应同时落地,为减小实验误差,应改变装置的高度,多次做实验,选项B 、C 正确;平抛运动的实验与小球的质量无关,选项A 错误;此实验只能说明A 球在竖直方向做自由落体运动,选项D 错误.答案:BC关键能力·分层突破例1 解析:设距离d =0.2 m ,铯原子做平抛运动时有d =v 0t 1,做竖直上抛运动时有d =12g (t 22)2,解得t 1t 2=1200.故A 、B 、D 错误,C 正确.答案:C1.解析:由题意可知,炸弹被投放后做平抛运动,它在水平方向上做匀速直线运动,与飞机速度相等,所以所有离开飞机的炸弹与飞机应在同一条竖直线上,故A 、C 错误;炸弹在竖直方向上做自由落体运动,从上至下,炸弹间的距离越来越大.故B 正确,D 错误.答案:B 2.解析:将球离开球拍后撞向墙壁的运动反向视为平抛运动,该平抛运动的初速度大小为v ,反弹后球做平抛运动的初速度大小也为v ,两运动的轨迹有一部分重合,运动员在某个固定位置发球,因此不同的发球速度对应击中墙壁的不同高度h ,但所有轨迹均经过发球点,如图所示,h 越大,球从发球点运动到击墙位置的运动时间越长,墙壁到发球点的水平位移x ′相同,则v 越小,由图可知,反弹后球做平抛运动的水平位移x 越小,选项A 、B 、D 错误;设球击中墙壁的位置到发球点的高度为h ′,由平抛运动的推论可知2h ′x ′=tan θ,则h ′越大,即h 越大,θ越大,选项C 正确.答案:C例2 解析:依题意及几何关系可知,小球A 下落的高度为斜面高度的23,小球B 下落高度为斜面高度的12再减去斜面高度的13,则根据公式h =12gt 2,可知A 、B 两球平抛运动时间之比为tA tB =2,选项A 正确,B 错误;两小球在水平方向做匀速直线运动,有x =v 0t ,小球A水平分位移为斜面宽度的23,小球B 水平分位移为斜面宽度的13,代入上式联立可得v 0A v 0B=1,选项C 错误,D 正确.答案:AD 例3 解析:由几何关系可知,水流冲击挡板时,水流的速度方向与水平方向成60°角,则有vy v 0=tan 60°,所以水流速度为v =√v 02+v y2 =2v 0,根据题意知被冲击后的挡板的线速度为v ′=12v =v 0,所以水轮机圆盘稳定转动的角速度大小为ω=v ′R=v0R,选项B 正确.答案:B3.解析:由题可知,两个石子做平抛运动,运动时间一样,则下落的高度H 一样,又因为落在抛物线上,a 、b 是关于y 轴对称的点,可得如下关系3s 2-v 0t =2v 0t -3s2,可得v 0t =s ,可分别得出落在坑壁上两个石子的横坐标分别为-s 2和s2,由y =kx 2,可得初始高度为9s 24,可求得此时高度为s 24,所以利用高度值差可求得H =2s 2,由H =12gt 2可求出平抛运动的运动时间t = √2Hg =2s √1g ,故选项D 正确,A 、B 错误;由前面可求出v 0=st =√g2,竖直方向上的速度v y =gt =2s √g ,由运动的合成可得v 1=√v 02+v y2 =√g+16gs 24,故选项C 错误.答案:D情境1 解析:本题考查平抛,属于应用性题.平抛运动的时间由下落的高度决定,则进筐的皮球运动时间相同,A 错误;与O 1O 2连线方向成一个合适的角度投出的皮球也可能进筐,B 错误;皮球沿与O 1O 2连线平行的方向投出,下落的高度为h 2-h 1,水平射程临界分别为d +R -r 和d +r -R ,则投射的最大速度为v max =√2(h 2−h 1)g=(d +R -r ) √g2(h 2−h 1)最小速度为v min =√2(h 2−h 1)g=(d -R +r ) √g2(h 2−h 1)C 正确,D 错误. 答案:C情境2 解析:单位时间的出水量与单位时间输入水管的量有关,与是否增加尖管无关,选项A 错误;设尖管中水的流速为v 0,水管中水的流速为v ,水管的半径为r ,根据相同时间Δt 内水的流量相同可得,π(r3)2v 0Δt =πr 2v Δt ,得水管、尖管中水的流速之比为v v 0=19,根据平抛运动规律,有h =12gt 2,增加尖管后水平射程x 0=v 0t =v 0√2hg ,不加尖管时水平射程x =vt =v √2hg,可得xx 0=19,Δx =x 0-x =8x ,故由于增加尖管,水平射程增加8倍,选项B 错误;不加尖管时,空中水的质量m =ρπr 2x ,加尖管时空中水的质量为m 0=ρ·π(r 3)2·x 0=πρr 2x ,则m =m 0,选项C 正确;由动能定理有mgh =12mv 12-12mv 2、m 0gh =12m 0v −2212m 0v 02,解得增加尖管前后水落地时的速度分别为v1=√2g ℎ+v 2、v2=√2g ℎ+v 02 ,v 2−v 1v 1≠8,选项D 错误.答案:C情境3 解析:(1)设平抛运动的时间为t,鸟蛤落地前瞬间的速度大小为v.竖直方向gt2,v y=gt,v=√v02+v y2.分速度大小为v y,根据运动的合成与分解得H=12在碰撞过程中,以鸟蛤为研究对象,取速度v的方向为正方向,由动量定理得-FΔt =0-mv联立并代入数据得F=500 N(2)若释放鸟蛤的初速度为v1=15 m/s,设击中岩石左端时,释放点的x坐标为x1,击中岩石右端时,释放点的x坐标为x2,则有x1=v1t,x2=x1+L联立并代入数据得x1=30 m,x2=36 m若释放鸟蛤时的初速度为v2=17 m/s,设击中岩石左端时,释放点的x坐标为x′1,击中岩石右端时,释放点的x坐标为x′2,则有x′1=v2t,x′2=x′1+L联立并代入数据得x′1=34 m,x′2=40 m综上得x坐标范围为[34 m,36 m].。
高考物理一轮复习第四章第2节抛体运动学案

(5)从同一高度平抛的物体,不计空气阻力时,在空中飞行的时间是相同的。(√)
(6)无论平抛运动还是斜抛运动,都是匀变速曲线运动。(√)
(7)做平抛运动的物体,在任意相等的时间内速度的变化量是相同的。(√)
二、选择题
1.[人教版必修2 P10做一做改编](多选)为了验证平抛运动的小球在竖直方向上做自由落体运动,用如图所示的装置进行实验。小锤打击弹性金属片后,A球水平抛出,同时B球被松开,自由下落。关于该实验,下列说法中正确的是()
分解平行于斜面的速度v
由vy=gt得t=
考法(二)落点在竖直面上的平抛运动
[例2](多选)从竖直墙的前方A处,沿AO方向水平发射三颗弹丸a、b、c,在墙上留下的弹痕如图所示。已知Oa=ab=bc,则a、b、c三颗弹丸(不计空气阻力)()
A.初速度之比是 ∶ ∶
B.初速度之比是1∶ ∶
C.从射出至打到墙上过程速度增量之比是1∶ ∶
[答案]AC
[题型技法]
如图所示,水平初速度v0不同时,虽然落点不同,但水平位移d相同,t= ,注意t并不相等。
B.图中三个小球相比较,落在c点的小球初速度最大
C.图中三个小球相比较,落在c点的小球运动过程中速度变化最快
D.无论小球抛出时速度多大,落到两个斜面上的瞬时速度都不可能与斜面垂直
解析:选ABD小球在竖直方向做自由落体运动,有h= gt2,运动的时间为t= ,可知其运动时间是由竖直方向的位移决定的,由题图可知,落在a点的小球下落的高度最大,所以落在a点的小球运动的时间最长,A正确;落在c点的小球下落的高度最小,运动的时间最短,由于其水平位移最大,根据x=v0t知,落在c点的小球初速度最大,B正确;三个小球都做平抛运动,加速度都等于重力加速度,所以速度变化的快慢是相同的,C错误;落在左侧斜面上的小球的速度不可能与斜面垂直,分析落在右侧斜面上的小球,其竖直速度是gt,水平速度是v0,斜面与水平方向的夹角是,要使合速度垂直于斜面,需要满足v0=gttanθ,即v0=gt,则经过t时间,竖直位移为gt2,水平位移为v0t=gt)t=gt2,即若要满足这个关系,水平位移和竖直位移需相等,由于落在右侧斜面上的小球的水平位移必定大于竖直位移,显然上述关系式不成立,则无论小球抛出时速度多大,落到两个斜面上的瞬时速度都不可能与斜面垂直,D正确。
抛体运动的规律及应用

抛体运动的规律及应用抛体运动是物理学中研究自由落体运动在水平方向上加有初速度的运动形式。
其运动轨迹为抛物线,具有一定的规律性,并且在日常生活和科学研究中有着广泛的应用。
抛体运动的规律可以从以下几个方面来进行阐述:1. 运动规律:抛体运动受到重力的作用,但在水平方向上速度恒定。
因此,抛体在垂直方向上受到重力的作用,自由落体加速度为g,而在水平方向上速度保持恒定。
由于水平方向上初速度的存在,抛体会沿抛物线运动。
2. 抛体运动的方程:对于一个抛体运动,可以根据运动学知识得到其在任意时刻的位置和速度。
抛体运动的方程可以表示为以下形式:水平方向上的运动方程:x = v₀t垂直方向上的运动方程:y = v₀y t - 1/2gt²其中,x表示抛体的水平位移;y表示抛体的垂直位移;v₀表示抛体的初速度;v₀y表示抛体的垂直初速度;t表示时间;g表示重力加速度。
3. 最大高度和飞行时间:根据抛体运动的加速度方程,在垂直方向上速度v= v ₀y - gt,可以得出抛体运动的垂直最大高度和飞行时间。
最大高度的时候速度为零,即v=0,可得v₀y = gt。
代入垂直方向上的运动方程,可以得到最大高度为H = v₀y²/2g,飞行时间为T = 2v₀y/g。
从以上的运动规律中可以看出,抛体运动具有一定的规律性和可计算性,可以通过运动方程得到抛体的各种运动参数。
抛体运动在日常生活中有着广泛的应用,以下是一些典型的应用:1. 抛出物体:在进行运动射击、投掷物体等活动时,我们需要考虑抛体运动的特点。
通过研究抛体运动,可以预测到物体落点的位置和抛出物体的最大射程等信息,从而提高准确性和效果。
2. 运动轨迹分析:抛体运动的轨迹为抛物线,常用于拟合运动物体的轨迹。
例如,在篮球比赛中,可以通过分析篮球的抛体运动轨迹来研究球员的投篮技术和篮球运动的规律。
3. 导弹和火箭的轨迹研究:在军事领域,研究导弹和火箭的运动轨迹是非常重要的。
2014届一轮复习第4章曲线运动_万有引力与航天

必修2 第四章 曲线运动 万有引力与航天第 1 课时 曲线运动 质点在平面内的运动基础知识归纳1.曲线运动(1)曲线运动中的速度方向做曲线运动的物体,速度的方向时刻在改变,在某点(或某一时刻)的速度方向是曲线上该点的 切线 方向.(2)曲线运动的性质由于曲线运动的速度方向不断变化,所以曲线运动一定是 变速 运动,一定存在加速度.(3)物体做曲线运动的条件物体所受合外力(或加速度)的方向与它的速度方向 不在同一直线 上.①如果这个合外力的大小和方向都是恒定的,即所受的合外力为恒力,物体就做 匀变速曲线 运动,如平抛运动.②如果这个合外力大小恒定,方向始终与速度方向垂直,物体就做 匀速圆周 运动.③做曲线运动的物体,其轨迹向合外力所指一方弯曲,即合外力总是指向曲线的内侧.根据曲线运动的轨迹,可以判断出物体所受合外力的大致方向.说明:当物体受到的合外力的方向与速度方向的夹角为锐角时,物体做曲线运动的速率将 增大 ,当物体受到的合外力的方向与速度方向的夹角为钝角时,物体做曲线运动的速率将 减小 .2.运动的合成与分解(1)合运动与分运动的特征①等时性:合运动和分运动是 同时 发生的,所用时间相等.②等效性:合运动跟几个分运动共同叠加的效果 相同 .③独立性:一个物体同时参与几个分运动,各个分运动 独立 进行,互不影响.(2)已知分运动来求合运动,叫做运动的合成,包括位移、速度和加速度的合成,遵循 平行四边形 定则.①两分运动在同一直线上时,先规定正方向,凡与正方向相同的取正值,相反的取负值,合运动为各分运动的代数和.②不在同一直线上,按照平行四边形定则合成(如图所示).③两个分运动垂直时,x 合=22y x x x +,v 合=22y x v v +,a 合=22y x a a + (3)已知合运动求分运动,叫运动的分解,解题时应按实际“效果”分解,或正交分解.重点难点突破一、怎样确定物体的运动轨迹1.同一直线上的两个分运动(不含速率相等,方向相反的情形)的合成,其合运动一定是直线运动.2.不在同一直线上的两分运动的合成.(1)若两分运动为匀速运动,其合运动一定是匀速运动.(2)若两分运动为初速度为零的匀变速直线运动,其合运动一定是初速度为零的匀变速直线运动.(3)若两分运动中,一个做匀速运动,另一个做匀变速直线运动,其合运动一定是匀变速曲线运动(如平抛运动).(4)若两分运动均为初速度不为零的匀加(减)速直线运动,其合运动不一定是匀加(减)速直线运动,如图甲、图乙所示.图甲情形为匀变速曲线运动;图乙情形为匀变速直线运动(匀减速情形图未画出),此时有2121a a v v =. 二、船过河问题的分析与求解方法1.处理方法:船在有一定流速的河中过河时,实际上参与了两个方向的运动,即随水流的运动(水冲船的运动)和船相对水的运动(即在静水中船的运动),船的实际运动是这两种运动的合运动.2.对船过河的分析与讨论.设河宽为d ,船在静水中速度为v 船,水的流速为v 水.(1)船过河的最短时间如图所示,设船头斜向上游与河岸成任意夹角θ,这时船速在垂直河岸方向的速度分量为v 1=v 船sin θ,则过河时间为t =θsin 1船v d v d =,可以看出,d 、v 船一定时,t 随sin θ增大而减小.当θ=90°时,即船头与河岸垂直时,过河时间最短t min =船v d ,到达对岸时船沿水流方向的位移x =v 水t min =船水v v d . (2)船过河的最短位移①v 船>v 水如上图所示,设船头斜指向上游,与河岸夹角为θ.当船的合速度垂直于河岸时,此情形下过河位移最短,且最短位移为河宽d .此时有v 船cos θ=v 水,即θ=arccos 船水v v . ②v 船<v 水如图所示,无论船向哪一个方向开,船不可能垂直于河岸过河.设船头与河岸成θ角,合速度v 合与河岸成α角.可以看出:α角越大,船漂下的距离x 越短,那么,在什么条件下α角最大呢?以v 水的矢尖为圆心,v 船为半径画圆,当v 合与圆相切时,α角最大,根据cos θ=水船v v ,船头与河岸的夹角应为θ=arccos 水船v v ,船沿河漂下的最短距离为x min =(船水v v -cos θ) θsin 船v d .此情形下船过河的最短位移x =d v v d 船水=θ cos . 三、如何分解用绳(或杆)连接物体的速度1.一个速度矢量按矢量运算法则分解为两个速度,若与实际情况不符,则所得分速度毫无物理意义,所以速度分解的一个基本原则就是按实际效果进行分解.通常先虚拟合运动(即实际运动)的一个位移,看看这个位移产生了什么效果,从中找到两个分速度的方向,最后利用平行四边形画出合速度和分速度的关系图,由几何关系得出它们的关系.2.由于高中研究的绳都是不可伸长的,杆都是不可伸长和压缩的,即绳或杆的长度不会改变,所以解题原则是:把物体的实际速度分解为垂直于绳(或杆)和平行于绳(或杆)的两个分量,根据沿绳(杆)方向的分速度大小相同求解.典例精析1.曲线运动的动力学问题【例1】光滑平面上一运动质点以速度v 通过原点O ,v 与x 轴正方向成α角(如图所示),与此同时对质点加上沿x 轴正方向的恒力F x 和沿y 轴正方向的恒力F y ,则( )A.因为有F x ,质点一定做曲线运动B.如果F y >F x ,质点向y 轴一侧做曲线运动C.质点不可能做直线运动D.如果F x >F y cot α,质点向x 轴一侧做曲线运动【解析】当F x 与F y 的合力F 与v 共线时质点做直线运动,F 与v 不共线时做曲线运动,所以A 、C 错;因α大小未知,故B 错,当F x >F y cot α时,F 指向v 与x 之间,因此D 对.【答案】D【思维提升】(1)物体做直线还是曲线运动看合外力F 与速度v 是否共线.(2)物体做曲线运动时必偏向合外力F 一方,即合外力必指向曲线的内侧.【拓展1】如图所示,一物体在水平恒力作用下沿光滑的水平面做曲线运动,当物体从M 点运动到N 点时,其速度方向恰好改变了90°,则物体在M 点到N 点的运动过程中,物体的动能将( C )A.不断增大B.不断减小C.先减小后增大D.先增大后减小【解析】水平恒力方向必介于v M 与v N 之间且指向曲线的内侧,因此恒力先做负功后做正功,动能先减小后增大,C 对.2.小船过河模型【例2】小船渡河,河宽d =180 m ,水流速度v 1=2.5 m/s.(1)若船在静水中的速度为v 2=5 m/s ,求:①欲使船在最短的时间内渡河,船头应朝什么方向?用多长时间?位移是多少?②欲使船渡河的航程最短,船头应朝什么方向?用多长时间?位移是多少?(2)若船在静水中的速度v 2=1.5 m/s ,要使船渡河的航程最短,船头应朝什么方向?用多长时间?位移是多少?【解析】(1)若v 2=5 m/s①欲使船在最短时间内渡河,船头应朝垂直河岸方向.当船头垂直河岸时,如图所示,合速度为倾斜方向,垂直分速度为v 2=5 m/st =51802==⊥v d v d s =36 s v 合=2221v v +=525 m/s s =v 合t =905 m②欲使船渡河航程最短,应垂直河岸渡河,船头应朝上游与垂直河岸方向成某一角度α.垂直河岸过河这就要求v ∥=0,所以船头应向上游偏转一定角度,如图所示,由v 2sinα=v 1得α=30°所以当船头向上游偏30°时航程最短. s =d =180 mt =324s 32518030 cos 2==︒=⊥v d v d s (2)若v 2=1.5 m/s与(1)中②不同,因为船速小于水速,所以船一定向下游漂移,设合速度方向与河岸下游方向夹角为α,则航程s =αsin d ,欲使航程最短,需α最大,如图所示,由出发点A 作出v 1矢量,以v 1矢量末端为圆心,v 2大小为半径作圆,A 点与圆周上某点的连线即为合速度方向,欲使v 合与水平方向夹角最大,应使v 合与圆相切,即v 合⊥v 2.sin α=535.25.112==v v 解得α=37° t =2.118037 cos 2=︒=⊥v d v d s =150 s v 合=v 1cos 37°=2 m/s s =v 合•t =300 m 【思维提升】(1)解决这类问题的关键是:首先要弄清楚合速度与分速度,然后正确画出速度的合成与分解的平行四边形图示,最后依据不同类型的极值对应的情景和条件进行求解.(2)运动分解的基本方法:按实际运动效果分解.【拓展2】在民族运动会上有一个骑射项目,运动员骑在奔驰的马背上,弯弓放箭射击侧向的固定目标.假设运动员骑马奔驰的速度为v 1,运动员静止时射出的弓箭速度为v 2,跑道离固定目标的最近距离为d ,则( BC )A.要想命中目标且箭在空中飞行时间最短,运动员放箭处离目标的距离为12v dv B.要想命中目标且箭在空中飞行时间最短,运动员放箭处离目标的距离为22221v v v d + C.箭射到靶的最短时间为2v d D.只要击中侧向的固定目标,箭在空中运动的合速度的大小为v =2221v v +易错门诊3.绳(杆)连物体模型【例3】如图所示,卡车通过定滑轮牵引河中的小船,小船一直沿水面运动.在某一时刻卡车的速度为v ,绳AO 段与水平面夹角为θ,不计摩擦和轮的质量,则此时小船的水平速度多大?【错解】将绳的速度按右图所示的方法分解,则v 1即为船的水平速度v 1=v •cos θ【错因】上述错误的原因是没有弄清船的运动情况.船的实际运动是水平向左运动,每一时刻船上各点都有相同的水平速度,而AO 绳上各点的运动比较复杂.以连接船上的A 点来说,它有沿绳的速度v ,也有与v 垂直的法向速度v n ,即转动分速度,A 点的合速度v A 即为两个分速度的矢量和v A =θcos v 【正解】小船的运动为平动,而绳AO 上各点的运动是平动加转动.以连接船上的A点为研究对象,如图所示,A 的平动速度为v ,转动速度为v n ,合速度v A 即与船的平动速度相同.则由图可以看出v A =θcos v 【思维提升】本题中不易理解绳上各点的运动,关键是要弄清合运动就是船的实际运动,只有实际位移、实际加速度、实际速度才可分解,即实际位移、实际加速度、实际速度在平行四边形的对角线上.第 2 课时 抛体运动的规律及其应用基础知识归纳 1.平抛运动(1)定义:将一物体水平抛出,物体只在 重力 作用下的运动.(2)性质:加速度为g 的匀变速 曲线 运动,运动过程中水平速度 不变 ,只是竖直速度不断 增大 ,合速度大小、方向时刻 改变 . (3)研究方法:将平抛运动分解为水平方向的 匀速直线 运动和竖直方向的 自由落体运动,分别研究两个分运动的规律,必要时再用运动合成方法进行合成.(4)规律:设平抛运动的初速度为v 0,建立坐标系如图.速度、位移: 水平方向:v x =v 0,x =v 0t 竖直方向:v y =gt ,y =21gt 2 合速度大小(t 秒末的速度): vt=22yx v v + 方向:tan φ=00v gt v v y = 合位移大小(t 秒末的位移):s =22y x +方向:tan θ=00222/v gt t v gt x y == 所以tan φ=2tan θ 运动时间:由y =21gt 2得t = 2 g y (t 由下落高度y 决定). 轨迹方程:y = 2 220x v g(在未知时间情况下应用方便).可独立研究竖直分运动:a.连续相等时间内竖直位移之比为1∶3∶5∶…∶(2n -1)(n =1,2,3…)b.连续相等时间内竖直位移之差为Δy =gt 2一个有用的推论:平抛物体任意时刻瞬时速度方向的反向延长线与初速度延长线的交点到抛出点的距离都等于水平位移的一半.2.斜抛运动(1)将物体斜向上射出,在 重力 作用下,物体做曲线运动,它的运动轨迹是 抛物线 ,这种运动叫做“斜抛运动”.(2)性质:加速度为g 的 匀变速曲线 运动.根据运动独立性原理,可以把斜抛运动看成是水平方向的 匀速直线 运动和竖直方向的 上抛 运动的合运动来处理.取水平方向和竖直向上的方向为x 轴和y 轴,则这两个方向的初速度分别是:v 0x =v 0cos θ,v 0y =v 0sin θ.重点难点突破一、平抛物体运动中的速度变化水平方向分速度保持v x =v 0,竖直方向,加速度恒为g ,速度v y =gt ,从抛出点看,每隔Δt 时间的速度的矢量关系如图所示.这一矢量关系有两个特点:1.任意时刻v 的速度水平分量均等于初速度v 0;2.任意相等时间间隔Δt 内的速度改变量均竖直向下,且Δv =Δv y =g Δt .二、类平抛运动平抛运动的规律虽然是在地球表面的重力场中得到的,但同样适用于月球表面和其他行星表面的平抛运动.也适用于物体以初速度v 0运动时,同时受到垂直于初速度方向,大小、方向均不变的力F 作用的情况.例如带电粒子在电场中的偏转运动、物体在斜面上的运动以及带电粒子在复合场中的运动等等.解决此类问题要正确理解合运动与分运动的关系.三、平抛运动规律的应用平抛运动可看做水平方向的匀速直线运动和竖直方向的自由落体运动的合运动.物体在任意时刻的速度和位移都是两个分运动对应时刻的速度和位移的矢量和.解决与平抛运动有关的问题时,应充分注意到两个分运动具有独立性和等时性的特点,并且注意与其他知识的结合.典例精析1.平抛运动规律的应用【例1】(2009•广东)为了清理堵塞河道的冰凌,空军实施投弹爆破.飞机在河道上空高H 处以速度v 0水平匀速飞行,投掷炸弹并击中目标.求炸弹刚脱离飞机到击中目标所飞行的水平距离及击中目标时的速度大小(不计空气阻力).【解析】设飞行的水平距离为s ,在竖直方向上H =21gt 2 解得飞行时间为t =g H 2 则飞行的水平距离为s =v 0t =v 0g H 2 设击中目标时的速度为v ,飞行过程中,由机械能守恒得mgH +2021mv =21mv 2解得击中目标时的速度为v =202v gH +【思维提升】解平抛运动问题一定要抓住水平与竖直两个方向分运动的独立性与等时性,有时还要灵活运用机械能守恒定律、动能定理、动量定理等方法求解.【拓展1】用闪光照相方法研究平抛运动规律时,由于某种原因,只拍到了部分方格背景及小球的三个瞬时位置(见图).若已知闪光时间间隔为t =0.1 s ,则小球运动中初速度大小为多少?小球经B 点时的竖直分速度大小多大?(g 取10 m/s 2,每小格边长均为L =5cm).【解析】由于小球在水平方向做匀速直线运动,可以根据小球位臵的水平位移和闪光时间算出水平速度,即抛出的初速度.小球在竖直方向做自由落体运动,根据匀变速直线运动规律即可算出竖直分速度.因A 、B (或B 、C )两位臵的水平间距和时间间隔分别为x AB =2L =(2×5) cm =10 cm =0.1 m t AB =Δt =0.1 s所以,小球抛出的初速度为v 0=ABAB t x =1 m/s 设小球运动至B 点时的竖直分速度为v By 、运动至C 点时的竖直分速度为v Cy ,B 、C 间竖直位移为y BC ,B 、C 间运动时间为t B C .根据竖直方向上自由落体运动的公式得BC B C gy v v y y 222=- 即(v By +gt BC )2-BC B gy v y22= v By =BCBC BC t gt y 222- 式中y BC =5L =0.25 m t BC =Δt =0.1 s 代入上式得B 点的竖直分速度大小为v By =2 m/s 2.平抛运动与斜面结合的问题【例2】如图所示,在倾角为θ的斜面上A 点以水平速度v 0抛出一个小球,不计空气阻力,它落到斜面上B 点所用的时间为( ) A.g v θ sin 20 B. g v θ tan 20 C. g v θ sin 0 D. gv θ tan 0 【解析】设小球从抛出至落到斜面上的时间为t ,在这段时间内水平位移和竖直位移分别为x =v 0t ,y =21gt 2 如图所示,由几何关系可知 tan θ=002221v gt t v gt x y == 所以小球的运动时间t =g v θ tan 20 【答案】B【思维提升】上面是从常规的分运动方法来研究斜面上的平抛运动,还可以变换一个角度去研究.如图所示,把初速度v 0、重力加速度g 都分解成沿斜面和垂直斜面的两个分量.在垂直斜面方向上,小球做的是以v 0y 为初速度、g y 为加速度的竖直上抛运动.小球“上、下”一个来回的时间等于它从抛出至落到斜面上的运动时间,于是立即可得t =gv g v g v y y θθθ tan 2 cos sin 22000== 采用这种观点,还可以很容易算出小球从斜面上抛出后的运动过程中离斜面的最大距离、从抛出到离斜面最大的时间、斜面上的射程等问题.【拓展2】一固定的斜面倾角为θ,一物体从斜面上的A 点平抛并落到斜面上的B 点,试证明物体落在B 点的速度与斜面的夹角为定值.【证明】作图,设初速度为v 0,到B 点竖直方向速度为v y ,设合速度与竖直方向的夹角为α,物体经时间t 落到斜面上,则tan α=yx gt t v gt v v v y x 2200===α为定值,所以β=(2π-θ)-α也为定值,即速度方向与斜面的夹角与平抛初速度无关,只与斜面的倾角有关.3.类平抛运动【例3】如图所示,有一倾角为30°的光滑斜面,斜面长L 为10 m ,一小球从斜面顶端以10 m/s 的速度沿水平方向抛出,求:(1)小球沿斜面滑到底端时的水平位移x ;(2)小球到达斜面底端时的速度大小(g 取10 m/s 2).【解析】(1)在斜面上小球沿v 0方向做匀速运动,垂直v 0方向做初速度为零的匀加速运动,加速度a =g sin 30° x =v 0t① L =21g sin 30°t 2 ② 由②式解得t =︒30 sin 2g L ③ 由①③式解得x =v 0︒30 sin 2g L =105.010102⨯⨯ m =20 m (2)设小球运动到斜面底端时的速度为v ,由动能定理得mgL sin 30°=21mv 2-2021mv v =101010220⨯+=+gL v m/s ≈14.1 m/s 【思维提升】物体做类平抛运动,其受力特点和运动特点类似于平抛运动,因此解决的方法可类比平抛运动——采用运动的合成与分解.关键的问题要注意:(1)满足条件:受恒力作用且与初速度的方向垂直.(2)确定两个分运动的速度方向和位移方向,分别列式求解.易错门诊【例4】如图所示,一高度为h =0.2 m 的水平面在A 点处与一倾角为θ=30°的斜面连接,一小球以v 0=5 m/s 的速度在水平面上向右运动.求小球从A 点运动到地面所需的时间(平面与斜面均光滑,取g =10 m/s 2).【错解】小球沿斜面运动,则θ sin h =v 0t +21g sin θ•t 2,可求得落地的时间t . 【错因】小球应在A 点离开平面做平抛运动,而不是沿斜面下滑.【正解】落地点与A 点的水平距离x =v 0t =v 0102.0252⨯⨯=g h m =1 m 斜面底宽l =h cot θ=0.2×3m =0.35 m因为x >l ,所以小球离开A 点后不会落到斜面,因此落地时间即为平抛运动时间.所以t =102.022⨯=gh s =0.2 s 【思维提升】正确解答本题的前提是熟知平抛运动的条件与平抛运动的规律.第 3 课时 描述圆周运动的物理量 匀速圆周运动基础知识归纳1.描述圆周运动的物理量(1)线速度:是描述质点绕圆周 运动快慢 的物理量,某点线速度的方向即为该点 切线 方向,其大小的定义式为 tl v ∆∆=. (2)角速度:是描述质点绕圆心 运动快慢 的物理量,其定义式为ω=t∆∆θ,国际单位为 rad/s . (3)周期和频率:周期和频率都是描述圆周 运动快慢 的物理量,用周期和频率计算线速度的公式为 π2π2 rf T r v ==,用周期和频率计算角速度的公式为 π2π2 f T==ω.(4)向心加速度:是描述质点线速度方向变化快慢的物理量,向心加速度的方向指向圆心,其大小的定义式为 2rv a =或 a =r ω2 . (5)向心力:向心力是物体做圆周运动时受到的总指向圆心的力,其作用效果是使物体获得向心加速度(由此而得名),其效果只改变线速度的 方向 ,而不改变线速度的 大小 ,其大小可表示为2rv m F = 或 F =m ω2r ,方向时刻与运动的方向 垂直 ,它是根据效果命名的力. 说明:向心力,可以是几个力的合力,也可以是某个力的一个分力;既可能是重力、弹力、摩擦力,也可能是电场力、磁场力或其他性质的力.如果物体做匀速圆周运动,则所受合力一定全部用来提供向心力.2.匀速圆周运动(1)定义:做圆周运动的物体,在相同的时间内通过的弧长都 相等 .在相同的时间内物体与圆心的连线转过的角度都 相等 .(2)特点:在匀速圆周运动中,线速度的大小 不变 ,线速度的方向时刻 改变 .所以匀速圆周运动是一种 变速 运动.做匀速圆周运动的物体向心力就是由物体受到的 合外力 提供的.3.离心运动(1)定义:做匀速圆周运动的物体,当其所受向心力突然 消失 或 力不足以 提供向心力时而产生的物体逐渐远离圆心的运动,叫离心运动.(2)特点:①当合F =mr ω2的情况,即物体所受合外力等于所需向心力时,物体做圆周运动.②当合F <mr ω2的情况,即物体所受合外力小于所需向心力时,物体沿曲线逐渐远离圆心做离心运动.了解离心现象的特点,不要以为离心运动就是沿半径方向远离圆心的运动.③当合F >mr ω2的情况,即物体所受合外力大于所需向心力时,表现为向心运动的趋势.重点难点突破一、描述匀速圆周运动的物理量之间的关系共轴转动的物体上各点的角速度相同,不打滑的皮带传动的两轮边缘上各点线速度大小相等.二、关于离心运动的问题物体做离心运动的轨迹可能为直线或曲线.半径不变时物体做圆周运动所需的向心力是与角速度的平方(或线速度的平方)成正比的.若物体的角速度增加了,而向心力没有相应地增大,物体到圆心的距离就不能维持不变,而要逐渐增大使物体沿螺线远离圆心.若物体所受的向心力突然消失,将沿着切线方向远离圆心而去.三、圆周运动中向心力的来源分析向心力可以是重力、弹力、摩擦力等各种力,也可以是某些力的合力,或某力的分力.它是按力的作用效果来命名的.分析物体做圆周运动的动力学问题,应首先明确向心力的来源.需要指出的是:物体做匀速圆周运动时,向心力才是物体受到的合外力.物体做非匀速圆周运动时,向心力是合外力沿半径方向的分力(或所有外力沿半径方向的分力的矢量和).典例精析1.圆周运动各量之间的关系【例1】(2009•上海)小明同学在学习了圆周运动的知识后,设计了一个课题,名称为:快速测量自行车的骑行速度.他的设想是:通过计算踏脚板转动的角速度,推算自行车的骑行速度.经过骑行,他得到如下的数据:在时间t 内踏脚板转动的圈数为N ,那么踏脚板转动的角速度ω= ;要推算自行车的骑行速度,还需要测量的物理量有 ;自行车骑行速度的计算公式v = .【解析】根据角速度的定义式得ω=tN t π2=θ;要求自行车的骑行速度,还要知道自行车后轮的半径R ,牙盘的半径r 1、飞轮的半径r 2、自行车后轮的半径R ;由v 1=ωr 1=v 2=ω2r 2,又ω2=ω后,而v =ω后R ,以上各式联立解得v =2121π2tr Nr R R r r =ω 【答案】t N π2;牙盘的齿轮数m 、飞轮的齿轮数n 、自行车后轮的半径R (牙盘的半径r 1、飞轮的半径r 2、自行车后轮的半径R );nm R ω或2πR nt mN (2πR t r N r 21或21r r R ω) 【思维提升】在分析传动问题时,要抓住不等量和相等量的关系.同一个转轮上的角速度相同,而线速度跟该点到转轴的距离成正比.【拓展1】如图所示,O 1为皮带传动装置的主动轮的轴心,轮的半径为r 1;O 2为从动轮的轴心,轮的半径为r 2;r 3为与从动轮固定在一起的大轮的半径.已知r 2=1.5r 1,r 3=2r 1.A 、B 、C 分别是三个轮边缘上的点,那么质点A 、B 、C 的线速度之比是 3∶3∶4 ,角速度之比是 3∶2∶2 ,向心加速度之比是 9∶6∶8 ,周期之比是 2∶3∶3 .【解析】由于A 、B 轮由不打滑的皮带相连,故v A =v B又由于v =ωr ,则235.111===r r r r A B B A ωω 由于B 、C 两轮固定在一起 所以ωB =ωC由v =ωr 知4325.111===r r r r v v C B C B 所以有ωA ∶ωB ∶ωC =3∶2∶2 v A ∶v B ∶v C =3∶3∶4 由于v A =v B ,依a =rv 2得23==A B B A r r a a 由于ωB =ωC ,依a =ω2r 得43==C B C B r r a a a A ∶a B ∶a C =9∶6∶8 再由T =ωπ2知T A ∶T B ∶T C =31∶21∶21=2∶3∶3 2.离心运动问题【例2】物体做离心运动时,运动轨迹( )A.一定是直线B.一定是曲线C.可能是直线,也可能是曲线D.可能是圆【解析】一个做匀速圆周运动的物体,当它所受的向心力突然消失时,物体将沿切线方向做直线运动,当它所受向心力逐渐减小时,则提供的向心力比所需要的向心力小,物体做圆周运动的轨道半径会越来越大,物体的运动轨迹是曲线. 【答案】C【思维提升】理解离心运动的特点是解决本题的前提.【拓展2】质量为M =1 000 kg 的汽车,在半径为R =25 m 的水平圆形路面转弯,汽车所受的静摩擦力提供转弯的向心力,静摩擦力的最大值为重力的0.4倍.为了避免汽车发生离心运动酿成事故,试求汽车安全行驶的速度范围.(取g =10 m/s 2)【解析】汽车所受的静摩擦力提供向心力,为了保证汽车行驶安全,根据牛顿第二定律,依题意有kMg ≥M Rv 2,代入数据可求得v ≤10 m/s 易错门诊3.圆周运动的向心力问题【例3】如图所示,水平转盘的中心有个竖直小圆筒,质量为m 的物体A 放在转盘上,A 到竖直筒中心的距离为r .物体A 通过轻绳、无摩擦的滑轮与物体B 相连,B 与A 质量相同.物体A与转盘间的最大静摩擦力是正压力的μ倍,则转盘转动的角速度在什么范围内,物体A 才能随盘转动.【错解】当A 将要沿盘向外滑时,A 所受的最大静摩擦力F m ′指向圆心,则F m ′=m 2m ωr ①由于最大静摩擦力是压力的μ倍,即 F m ′=μF N =μmg②。
高考物理一轮复习 第四章 第2节 抛体运动讲义
权掇市安稳阳光实验学校抛体运动(1)以一定的初速度水平抛出的物体的运动是平抛运动。
(×)(2)做平抛运动的物体的速度方向时刻在变化,加速度方向也时刻在变化。
(×)(3)做平抛运动的物体初速度越大,水平位移越大。
(×)(4)做平抛运动的物体,初速度越大,在空中飞行时间越长。
(×)(5)从同一高度平抛的物体,不计空气阻力时,在空中飞行的时间是相同的。
( √)(6)无论平抛运动还是斜抛运动,都是匀变速曲线运动。
(√)(7)做平抛运动的物体,在任意相等的时间内速度的变化量是相同的。
(√)突破点(一) 平抛运动的规律1.基本规律(1)速度关系(2)位移关系2.实用结论(1)速度改变量:物体在任意相等时间内的速度改变量Δv=gΔt相同,方向恒为竖直向下,如图甲所示。
(2)水平位移中点:因tan α=2tan β,所以OC=2BC,即速度的反向延长线通过此时水平位移的中点,如图乙所示。
[题点全练]1.(2019·南通调研)如图所示,某同学以不同的初速度将篮球从同一位置抛出,篮球两次抛出后均垂直撞在竖直墙上,图中曲线为篮球第一次运动的轨迹,O为撞击点,篮球第二次抛出后与墙的撞击点在O点正下方。
忽略空气阻力。
下列说法正确的是( ) A.篮球在空中运动的时间相等B.篮球第一次撞墙时的速度较小C.篮球第一次抛出时速度的竖直分量较小D.篮球第一次抛出时的初速度较小解析:选B 将篮球的运动反向处理,即可视为平抛运动,第二次下落的高度较小,所以运动时间较短,故A错误;水平射程相等,由x=v0t得知第二次水平分速度较大,即篮球第二次撞墙的速度较大,第一次撞墙时的速度较小,故B正确;第二次运动时间较短,则由v y=gt可知,第二次抛出时速度的竖直分量较小,故C错误;根据速度的合成可知,不能确定抛出时的速度大小,故D错误。
2.[多选](2019·扬州模拟)如图所示,滑板运动员以速度v0从离地高度h处的平台末端水平飞出,落在水平地面上。
抛体运动的规律及其应用
第2节抛体运动的规律及其应用知识点1平抛运动1.定义将物体以一定的初速度沿水平方向抛出,不考虑空气阻力,物体只在重力作用下所做的运动.2.性质加速度为重力加速度的匀变速曲线运动,轨迹是抛物线.3.方法平抛运动可以分解为水平方向的匀速直线运动,竖直方向的自由落体运动.4.基本规律(如图)(1)位移关系(2)速度关系知识点2斜抛运动1.定义将物体以v沿斜向上方或斜向下方抛出,物体只在重力作用下的运动.2.性质加速度为重力加速度的匀变速曲线运动,轨迹是抛物线.3.研究方法斜抛运动可以看做水平方向的匀速直线运动和竖直方向的竖直上抛(或竖直下抛)运动的合运动.4.基本规律(以斜上抛运动为例,如图所示)(1)水平方向:v0x=v0cos_θ,F合x=0.(2)竖直方向:v0y=v0sin_θ,F合y=mg.1.正误判断(1)以一定的初速度水平抛出的物体的运动是平抛运动.()(2)平抛运动的轨迹是抛物线,速度方向时刻变化,加速度方向也可能时刻变化.()(3)无论初速度是斜向上方还是斜向下方的斜抛运动都是匀变速曲线运动.()(4)做平抛运动的物体质量越大,水平位移越大.()(5)做平抛运动的物体初速度越大,落地时竖直方向的速度越大.()(6)做平抛运动的物体初速度越大,在空中运动的时间越长.()(7)从同一高度水平抛出的物体,不计空气阻力,初速度大的落地速度大.() 2.[对斜抛运动的理解]做斜抛运动的物体,到达最高点时()A.速度为零,加速度方向向下B.速度为零,加速度为零C.具有水平方向的速度和竖直向下的加速度D.具有水平方向的速度和加速度3.[平抛运动规律的理解]从高度为h处以水平速度v0抛出一个物体,要使该物体的落地速度与水平地面的夹角较大,则h与v0的取值应为下列四组中的哪一组()A.h=30m,v0=10m/s B.h=30m,v0=30m/sC.h=50m,v0=30m/s D.h=50m,v0=10m/s4.[平抛运动规律的应用]如图423所示为高度差h1=0.2m的AB、CD两个水平面,在AB平面的上方与竖直面BC距离x=1.0m处,小物体以水平速度v=2.0m/s抛出,抛出点的高度h2=2.0m,不计空气阻力,重力加速度取g=10m/s2.则()A.落在平面AB上B.落在平面CD上C.落在竖直面BC上D.落在C点考点一平抛运动基本规律的应用1.飞行时间t=2hg,飞行时间取决于下落高度h,与初速度v0无关.2.水平射程x=v0t=v02hg,即水平射程由初速度v0和下落高度h共同决定,与其他因素无关.3.落地速度v=v2x+v2y=v20+2gh,以θ表示落地时速度与x轴正方向间的夹角,有tanθ=v yv x=2ghv0,所以落地速度也只与初速度v0和下落高度h有关.4.速度改变量因为平抛运动的加速度为恒定的重力加速度g,所以做平抛运动的物体在任意相等时间间隔Δt内的速度改变量Δv=gΔt相同,方向恒为竖直向下,如图所示.5.两个重要推论(1)做平抛(或类平抛)运动的物体任一时刻的瞬时速度的反向延长线一定通过此时水平位移的中点,如图425甲中A点和B点所示.甲乙(2)做平抛(或类平抛)运动的物体在任一时刻任一位置处,设其速度方向与水平方向的夹角为θ,位移与水平方向的夹角为α,则tanθ=2tanα,如图425乙所示.[题组通关]1(2017·长春模拟)如图426所示,将小球从空中的A点以速度v水平向右抛出,不计空气阻力,小球刚好擦过竖直挡板落在地面上的B点.若使小球的落地点位于挡板和B点之间,下列方法可行的是()A .在A 点将小球以小于v 的速度水平抛出B .在A 点将小球以大于v 的速度水平抛出C .在A 点正下方某位置将小球以小于v 的速度水平抛出D .在A 点正上方某位置将小球以小于v 的速度水平抛出2.(2017·山东师大附中一模)以v 0的速度水平抛出一物体,当其水平分位移与竖直分位移相等时,下列说法错误的是()A .此时速度的大小是5v 0B .运动时间是2v 0gC .竖直分速度大小等于水平分速度大小D .运动的位移是22v 20g3.(2017·长沙模拟)如图427所示,水平面上有一个足够长的平板车,平板车左端O 点固定一竖直板,竖直板上有两个水平小支架,两支架与平板车上表面的距离之比为1∶2,支架上分别放有A 、B 两个小球,初始时平板车与两个小球一起向左做匀速直线运动,不计一切摩擦和阻力.若平板车突然以恒定的加速度向左做加速运动,两小球离开支架落到平板车上,则小球A 、B 在平板车上的落地到O 点的距离之比为()A .1∶4B .1∶2C .4∶1D .2∶1考点2与斜面有关的平抛运动1.两种模型(1)物体从空中抛出垂直落在斜面上;(2)从斜面上抛出落在斜面上.2.两种模型对比如下:方法内容斜面总结分解速度水平:v x =v 0竖直:v y =gt 合速度:v =v 2x +v 2y分解速度,构建速度三角形分解位移水平:x =v 0t竖直:y =12gt 2合位移:s =x 2+y 2分解位移,构建位移三角形●考向1物体从空中抛出落在斜面上1.(2017·湛江模拟)如图428所示,某同学对着墙壁练习打乒乓球,某次球与墙壁上A点碰撞后水平弹离,恰好垂直落在球拍上的B点,已知球拍与水平方向夹角θ=60°,AB两点高度差h=1m,忽略空气阻力,重力加速度g取10m/s2,则球刚要落到球拍上时速度大小为()A.25m/s B.215m/s15m/sC.45m/s D.43●考向2物体从斜面上平抛又落在斜面上2.(多选)如图429所示,倾角为θ的斜面上有A、B、C三点,现从这三点分别以不同的初速度水平抛出一小球,三个小球均落在斜面上的D点,今测得AB∶BC∶CD=5∶3∶1由此可判断()A.A、B、C处三个小球运动时间之比为1∶2∶3B.A、B、C处三个小球落在斜面上时速度与初速度间的夹角之比为1∶1∶1C.A、B、C处三个小球的初速度大小之比为3∶2∶1D.A、B、C处三个小球的运动轨迹可能在空中相交考点3多体平抛问题[母题](多选)如图4210所示,x轴在水平地面内,y轴沿竖直方向.图中画出了从y轴上沿x轴正向抛出的三个小球a、b和c的运动轨迹,其中b和c是从同一点抛出的:不计空气阻力,则()A.a的飞行时间比b的长B.B.b和c的飞行时间相同C.a的初速度比b的小D.D.b的初速度比c的大[母题迁移]迁移1三个物体落在不同的高度上1.(2017·贵阳模拟)如图4211所示,在同一平台上的O点水平抛出的三个物体分别落到a、b、c三点,不计空气阻力,则三个物体运动的初速度v a、v b、v c的关系和三个物体运动的时间t a、t b、t c的关系分别是()A.v a>v b>v c;t a>t b>t c B.v a<v b<v c;t a=t b=t cC.v a<v b<v c;t a>t b>t c D.v a>v b>v c;t a<t b<t c●迁移2两个物体的平抛问题2.如图4212所示,将a、b两小球以大小为205m/s的初速度分别从A、B 两点相差1s先后水平相向抛出,a小球从A点抛出后,经过时间t,a、b两小球恰好在空中相遇,且速度方向相互垂直,不计空气阻力,g取10m/s2,则抛出点A、B间的水平距离是()A.805m B.100mC.200m D.1805m●迁移3两个物体平抛又和斜面结合3.(多选)(2017·石家庄模拟)如图4213所示,一固定斜面倾角为θ,将小球A从斜面顶端以速率v0水平向右抛出,击中了斜面上的P点;将小球B从空中某点以相同速率v0水平向左抛出,恰好垂直斜面击中Q点.不计空气阻力,重力加速度为g,下列说法正确的是()图4213A.若小球A在击中P点时速度方向与水平方向所夹锐角为φ,则tanθ=2tanφB.若小球A在击中P点时速度方向与水平方向所夹锐角为φ,则tanφ=2tanθC.小球A、B在空中运动的时间比为2tan2θ∶1D.小球A、B在空中运动的时间比为tan2θ∶1考点4与圆周运动相结合1.如图所示为四分之一圆柱体OAB 的竖直截面,半径为R ,在B 点上方的C 点水平抛出一个小球,小球轨迹恰好在D 点与圆柱体相切,OD 与OB 的夹角为60°,则C 点到B 点的距离为()A.R B .R 2C.3R 4D .R 42.如图所示,P 是水平面上的圆弧凹槽。
抛体运动的规律 课件-高一物理课件(人教版2019必修第二册)
初速度方向,y轴竖直向下。设小球的落地点为P,下落的时间为t,则满足
所以小球落地的时间
h 1 gt 2 2
t 2h 2 20s 2s
g
10
(2)因此,小球落地点与释放点之间的水平距离 l v0t 2 2m 4m
教学分析
1
vy=v0sin 30°=300× 2 m/s=150 m/s,
炮弹飞行的总时间为t= (2v0sin 300) =30 s。故炮弹飞行的水平距离
g
为x=vxt=150×30 m≈7 794 m7 794 m>7 500 m,故不能击中7500 m
远的目标。
教学分析
Teaching Analysis
2.条件:①初速度沿水平方向 ②只受重力作用
3.运动性质:匀变速曲线运动(a=g) 水平方向:不受力
4.受力特点: 竖直方向:仅受重力
教学分析
Teaching Analysis
平抛运动的速度 一物体以初速度v0水平抛出,不计空气阻力,经过时间t运
动到P点,求此时P的速度? 第一步:建立直角坐系标
以抛出点为原点,以初速度v0作
例3.一门大炮的炮筒与水平面的夹角β=30°,当炮弹以初速度v0 =300 m/s的速度发出,炮弹能否击中离大炮7 500 m远的目标?(g
取10 m/s2)
教学分析
Teaching Analysis
解析:炮弹发出后将做斜抛运动,如图所示,
vx=v0cos
30°=300×
3 2
m/s=150
3 m/s,
处理平抛运动总结:
把平抛运动分解成竖直方向的分运 动和水平方向的分运动: 竖直方向分运动是自由落体运动
17 第四章 第2讲 抛体运动
【重难诠释】 1.平抛运动物体速度变化量的特点 由于平抛运动的加速度为重力加速度g,故做平抛运动的 物体在任意相等时间间隔Δt内的速度改变量Δv=gΔt是相 同的,方向恒为竖直向下,如图甲所示。
2.两个重要推论 (1)平抛运动的物体在任意时刻的瞬时速度的反向延长线与初速度方向的 延长线的交点一定通过对应水平位移的中点,如图乙所示,即 xB=x2A 。
A.将击中 P 点,t 大于Lv C.将击中 P 点上方,t 大于Lv
√B.将击中 P 点,t 等于Lv
D.将击中 P 点下方,t 等于Lv
B [由题意知枪口与 P 点等高,子弹和小积木在竖直方向上做自由落 体运动,当子弹击中积木时子弹和积木运动时间相同,根据 h=12 gt2, 可知下落高度相同,所以将击中 P 点;又由于初始状态子弹到 P 点的 水平距离为 L,子弹在水平方向上做匀速直线运动,故有 t=Lv ,故 选 B。]
第四章 曲线运动
第2讲 抛体运动
内容 索引
➢考点一 平抛运动的理解及应用 ➢考点二 有约束条件的平抛运动问题 ➢考点三 平抛运动中的临界问题 ➢考点四 斜抛运动问题 ➢课时精练(十七) 抛体运动
01
考点一 平抛运动的理解及应用
(重难共研类)
【知识梳理】 1.平抛运动 (1)定义:将物体以一定的初速度沿 水平方向抛出,物体只在 重力作 用下的运动。 (2)性质:平抛运动是加速度为g的 匀变速 曲线运动,运动轨迹是 _抛__物__线___。 (3)研究方法:①水平方向: 匀速直线 运动;②竖直方向:_自_由__落__体__ 运动。
推导:
乙y=2xyAA
→xB=x2A
(2)平抛运动的物体在任意时刻(任意位置处)的速度偏向角θ与位移偏 向角α的关系一定满足:tan θ=2tan α。(如图乙所示)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第 2 课时 抛体运动的规律及其应用基础知识归纳1.平抛运动(1)定义:将一物体水平抛出,物体只在 重力 作用下的运动.(2)性质:加速度为g 的匀变速 曲线 运动,运动过程中水平速度 不变 ,只是竖直速度不断 增大 ,合速度大小、方向时刻 改变 .(3)研究方法:将平抛运动分解为水平方向的 匀速直线 运动和竖直方向的 自由落体 运动,分别研究两个分运动的规律,必要时再用运动合成方法进行合成.(4)规律:设平抛运动的初速度为v 0,建立坐标系如图. 速度、位移:水平方向:v x =v 0,x =v 0t 竖直方向:v y =gt ,y =21gt 2合速度大小(t 秒末的速度):v t =22y x v v +方向:tan φ=00v gt v v y =合位移大小(t 秒末的位移):s =22y x + 方向:tan θ=0222/v gt t v gtxy ==所以tan φ=2tan θ 运动时间:由y =21gt 2得t =2gy (t 由下落高度y 决定).轨迹方程:y = 222x v g (在未知时间情况下应用方便).可独立研究竖直分运动:a.连续相等时间内竖直位移之比为1∶3∶5∶…∶(2n -1)(n =1,2,3…)b.连续相等时间内竖直位移之差为Δy =gt 2 一个有用的推论:平抛物体任意时刻瞬时速度方向的反向延长线与初速度延长线的交点到抛出点的距离都等于水平位移的一半. 2.斜抛运动(1)将物体斜向上射出,在 重力 作用下,物体做曲线运动,它的运动轨迹是 抛物线 ,这种运动叫做“斜抛运动”.(2)性质:加速度为g 的 匀变速曲线 运动.根据运动独立性原理,可以把斜抛运动看成是水平方向的 匀速直线 运动和竖直方向的 上抛 运动的合运动来处理.取水平方向和竖直向上的方向为x 轴和y 轴,则这两个方向的初速度分别是:v 0x =v 0cos θ,v 0y =v 0sin θ.重点难点突破一、平抛物体运动中的速度变化水平方向分速度保持v x =v 0,竖直方向,加速度恒为g ,速度v y =gt ,从抛出点看,每隔Δt 时间的速度的矢量关系如图所示.这一矢量关系有两个特点:1.任意时刻v 的速度水平分量均等于初速度v 0;2.任意相等时间间隔Δt 内的速度改变量均竖直向下,且Δv =Δv y=g Δt .二、类平抛运动平抛运动的规律虽然是在地球表面的重力场中得到的,但同样适用于月球表面和其他行星表面的平抛运动.也适用于物体以初速度v 0运动时,同时受到垂直于初速度方向,大小、方向均不变的力F 作用的情况.例如带电粒子在电场中的偏转运动、物体在斜面上的运动以及带电粒子在复合场中的运动等等.解决此类问题要正确理解合运动与分运动的关系. 三、平抛运动规律的应用平抛运动可看做水平方向的匀速直线运动和竖直方向的自由落体运动的合运动.物体在任意时刻的速度和位移都是两个分运动对应时刻的速度和位移的矢量和.解决与平抛运动有关的问题时,应充分注意到两个分运动具有独立性和等时性的特点,并且注意与其他知识的结合.典例精析1.平抛运动规律的应用【例1】(2009•广东)为了清理堵塞河道的冰凌,空军实施投弹爆破.飞机在河道上空高H 处以速度v 0水平匀速飞行,投掷炸弹并击中目标.求炸弹刚脱离飞机到击中目标所飞行的水平距离及击中目标时的速度大小(不计空气阻力). 【解析】设飞行的水平距离为s ,在竖直方向上H =21gt 2解得飞行时间为t =gH 2则飞行的水平距离为s =v 0t =v 0gH 2设击中目标时的速度为v ,飞行过程中,由机械能守恒得 mgH +221mv =21mv 2解得击中目标时的速度为v =202v gH【思维提升】解平抛运动问题一定要抓住水平与竖直两个方向分运动的独立性与等时性,有时还要灵活运用机械能守恒定律、动能定理、动量定理等方法求解.【拓展1】用闪光照相方法研究平抛运动规律时,由于某种原因,只拍到了部分方格背景及小球的三个瞬时位置(见图).若已知闪光时间间隔为t =0.1 s ,则小球运动中初速度大小为多少?小球经B 点时的竖直分速度大小多大?(g 取10 m/s 2,每小格边长均为L =5 cm).【解析】由于小球在水平方向做匀速直线运动,可以根据小球位置的水平位移和闪光时间算出水平速度,即抛出的初速度.小球在竖直方向做自由落体运动,根据匀变速直线运动规律即可算出竖直分速度.因A 、B (或B 、C )两位置的水平间距和时间间隔分别为x AB =2L =(2×5) cm =10 cm =0.1 m t AB =Δt =0.1 s所以,小球抛出的初速度为v 0=ABAB t x =1 m/s设小球运动至B 点时的竖直分速度为v By 、运动至C 点时的竖直分速度为v Cy ,B 、C 间竖直位移为y BC ,B 、C 间运动时间为t B C .根据竖直方向上自由落体运动的公式得BC B C gy v v y y 222=-即(v By +gt BC )2-BC B gy v y22= v By =BCBCBC t gt y 222-式中y BC =5L =0.25 m t BC =Δt =0.1 s代入上式得B 点的竖直分速度大小为v By =2 m/s 2.平抛运动与斜面结合的问题【例2】如图所示,在倾角为θ的斜面上A 点以水平速度v 0抛出一个小球,不计空气阻力,它落到斜面上B 点所用的时间为( )A.gv θsi n 20 B.gv θtan 20 C.gv θ sin 0 D.gv θ tan 0【解析】设小球从抛出至落到斜面上的时间为t ,在这段时间内水平位移和竖直位移分别为x =v 0t ,y =21gt 2如图所示,由几何关系可知tan θ=02221v gt tv gt xy ==所以小球的运动时间t =gv θtan 20【答案】B【思维提升】上面是从常规的分运动方法来研究斜面上的平抛运动,还可以变换一个角度去研究.如图所示,把初速度v 0、重力加速度g 都分解成沿斜面和垂直斜面的两个分量.在垂直斜面方向上,小球做的是以v 0y 为初速度、g y 为加速度的竖直上抛运动.小球“上、下”一个来回的时间等于它从抛出至落到斜面上的运动时间,于是立即可得t =gv g v g v yy θθθ tan 2 cos sin 22000==采用这种观点,还可以很容易算出小球从斜面上抛出后的运动过程中离斜面的最大距离、从抛出到离斜面最大的时间、斜面上的射程等问题.【拓展2】一固定的斜面倾角为θ,一物体从斜面上的A 点平抛并落到斜面上的B 点,试证明物体落在B 点的速度与斜面的夹角为定值.【证明】作图,设初速度为v 0,到B 点竖直方向速度为v y ,设合速度与竖直方向的夹角为α,物体经时间t 落到斜面上,则tan α=yx gtt v gt v v v yx 2200===α为定值,所以β=(2π-θ)-α也为定值,即速度方向与斜面的夹角与平抛初速度无关,只与斜面的倾角有关.3.类平抛运动【例3】如图所示,有一倾角为30°的光滑斜面,斜面长L 为10 m ,一小球从斜面顶端以10 m/s 的速度沿水平方向抛出,求:(1)小球沿斜面滑到底端时的水平位移x ; (2)小球到达斜面底端时的速度大小(g 取10 m/s 2).【解析】(1)在斜面上小球沿v 0方向做匀速运动,垂直v 0方向做初速度为零的匀加速运动,加速度a =g sin 30°x =v 0t ①L =21g sin 30°t 2② 由②式解得t =︒30 sin 2g L③由①③式解得x =v 0︒30 sin 2g L =105.010102⨯⨯ m =20 m(2)设小球运动到斜面底端时的速度为v ,由动能定理得mgL sin 30°=21mv 2-2021mvv =101010220⨯+=+gL v m/s ≈14.1 m/s【思维提升】物体做类平抛运动,其受力特点和运动特点类似于平抛运动,因此解决的方法可类比平抛运动——采用运动的合成与分解.关键的问题要注意:(1)满足条件:受恒力作用且与初速度的方向垂直.(2)确定两个分运动的速度方向和位移方向,分别列式求解. 易错门诊【例4】如图所示,一高度为h =0.2 m 的水平面在A 点处与一倾角为θ=30°的斜面连接,一小球以v 0=5 m/s 的速度在水平面上向右运动.求小球从A 点运动到地面所需的时间(平面与斜面均光滑,取g =10 m/s 2).【错解】小球沿斜面运动,则θsin h =v 0t +21g sin θ•t 2,可求得落地的时间t .【错因】小球应在A 点离开平面做平抛运动,而不是沿斜面下滑. 【正解】落地点与A 点的水平距离x =v 0t =v 0102.0252⨯⨯=gh m =1 m斜面底宽l =h cot θ=0.2×3m =0.35 m因为x >l ,所以小球离开A 点后不会落到斜面,因此落地时间即为平抛运动时间. 所以t =102.022⨯=gh s =0.2 s【思维提升】正确解答本题的前提是熟知平抛运动的条件与平抛运动的规律.。