江苏省南京市七年级数学上学期第一次月考试题苏科

合集下载

苏科版七年级数学上册第一次月考试卷

苏科版七年级数学上册第一次月考试卷

苏科版七年级数学上册第一次月考试题一、单选题1.()32-的指数是( ) A .2B .﹣2C .3D .﹣32.在数轴上把表示2的点向右移动5个单位长度后,所得的对应点是( ) A .7 B .﹣3 C .6 D .8 3.下列各对数中互为相反数的是( )A .﹣(+5)和+(﹣5)B .﹣(﹣5)和+(﹣5)C .﹣(+5)和﹣5D .+(﹣5)和﹣54.下列各式中,结果为正数的是( ). A .﹣|﹣2|B .﹣(﹣2)C .﹣22D .(﹣2)×2 5.已知数轴上的点E 、F 、G 、H 表示的数分别是 4.2-、213、128、-0.8,那么其中离原点最近的点是( ) A .点EB .点FC .点GD .点H6.下面说法中正确的有( )A .非负数一定是正数B .有最小的正整数,有最小的正有理数C .﹣a 一定是负数D .正整数和正分数统称正有理数7.已知a ,b ,c 三个数的位置如图所示.则下列结论不正确的是( )A .a+b <0B .b ﹣a >0C .a+b >0D .a+c <08.如图1,圆的周长为4个单位,在该圆的4等分点处分别标上字母m 、n 、p 、q ,如图2,先让圆周上表示m 的点与数轴原点重合,再将数轴按逆时针方向环绕在该圆上,则数轴上表示-2019的点与圆周上重合的点对应的字母是( )A .mB .nC .pD .q二、填空题9.﹣3的相反数是__________.10.某地某天早晨气温是﹣2℃,到中午气温上升了9℃,这天中午气温是__________℃。

11.如果向南走48m ,记作﹢48m ,则向北走56m ,记作_____________。

12.“社会主义核心价值观”要求我们牢记心间,小明在“百度”搜索“社会主义核心价值观”,找到相关结果约为4280000个,数据4280000用科学记数法表示为 . 13.比较数的大小:45-_____ 23- 14.已知|x |=3,|y |=4,且x <y ,则x +y = ______ .15.数轴上点P 表示的数是﹣2,那么到P 点的距离是3个单位长度的点表示的数是_____. 16.已知()2320x y -++=,则x y =________.. 17.定义一种新运算,其运算规则是a b c d =ad -bc ,那么220.54-=____. 18.如图所示是计算机某计算程序,若开始输入x =2,则最后输出的结果是 ______ .19.(本题共6分)已知在纸面上有一数轴(如图所示).操作一:(1)折叠纸面,使数1表示的点与数﹣1表示的点重合,则此时数﹣2表示的点与数 表示的点重合; 操作二:(2)折叠纸面,使数5表示的点与数﹣1表示的点重合,回答下列问题: ①数6表示的点与数 表示的点重合;②若这样折叠后,数轴上有A 、B 两点也重合,且A 、B 两点之间的距离为11(A 在B 的左侧),则A 点表示的数为 ,B 点表示的数为 .三、解答题 20.计算题: (1)32215545353⎛⎫⎛⎫+-++- ⎪ ⎪⎝⎭⎝⎭(2)()()94811649-÷⨯÷- (3)()20181122106⎡⎤--⨯⨯-+⎣⎦ (4)()75373696418⎛⎫-+-⨯- ⎪⎝⎭(5)71993672-⨯(6)22218134333⎛⎫⨯-+⨯-⨯ ⎪⎝⎭21.请画一条数轴,把它们表示数轴上表示出来,并用“>”连接各数.153 4.5,02,224,,,---22.把下列各数填入相应的括号内.2-,5.2,0,π3,1.1212212221…,2005,0.3-. 整数集合:{ ⋯} 正数集合:{ ⋯} 分数集合:{ ⋯} 无理数集合:{ ⋯}23.去年“十•一”黄金周期间,某风景区在7天假期中每天接待游客的人数变化如下表:(正数表示比前一天多的人数,负数表示比前一天少的人数)(1)请判断七天内游客人数最多的是哪天?最少的是哪天?它们相差多少万人?(2)若9月30日游客人数为3万人,门票每人次200元, 2%的游客符合免费条件,8%的游客符合减半收费条件,求该风景区7天门票总收入是多少万元?24.已知:212112111,,,133********=-=-=-⨯⨯⨯ (1)照上面算式,你能猜出2_________;20052007=⨯ (2)利用上面的规律计算:1111114477101013301304++++⋯+⨯⨯⨯⨯⨯的值.25.观察下列各式的计算结果:2113131124422-=-==⨯ 2118241139933-=-==⨯ 2111535114161644-=-==⨯ 2112446115252555-=-==⨯··· (1)用你发现的规律填写下列各式的结果:2116-=______________×______________ 21110-=_______________×____________ (2)用你发现的规律计算:222111111234⎛⎫⎛⎫⎛⎫-⨯-⨯-⨯ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭···22111120132014⎛⎫⎛⎫⨯-⨯- ⎪ ⎪⎝⎭⎝⎭参考答案1.C【解析】【分析】在a n中,a为底数,n为指数.【详解】根据乘方的概念,()32-的指数是3,即答案选C.【点睛】此题考察了有理数乘方的概念,熟悉掌握相关知识是解题关键.2.A【解析】【分析】根据点在数轴上移动,向右移动则数字是增大.【详解】向右移动5个单位,则2+5=7.即答案选A.【点睛】本题考查了数轴、两点间的距离,了解数轴上点的移动规律是解题的关键.3.B【解析】试题解析:选项A、C、D中的两个数相等.只有选项B中的两个数互为相反数. 故选B.点睛:只有符号不同的两个数互为相反数.4.B【解析】A--=-,此选项错误,试题解析:.22().22B--=,此选项正确,2C-=-,此选项错误,.24()D-⨯=-,此选项错误..224故选B.5.D【解析】根据数轴上点到原点的距离是其绝对值,可知-0.8的绝对值最小,故其离原点最近.故选D.6.D【解析】【分析】根据有理数,即可解答.【详解】A、非负数是正数和0,故本选项错误;B、有最小的正整数,没有最小的正有理数,故本选项错误;C、-a不一定是负数还有可能是0,故本选项错误;D、正整数和正分数统称正有理数,正确;所以D选项是正确的.【点睛】本题主要考查有理数的定义,熟悉掌握是关键.7.C试题解析:∵从数轴可知:a<b<0<c,|a|>|c|>|b|,∴A、a+b<0,正确,故本选项错误;B、b-a>0,正确,故本选项错误;C、a+b>0,错误,故本选项正确;D、a+c<0,正确,故本选项错误;故选C.8.B【解析】由于圆的周长为4个单位长度,所以只需先求出此圆在数轴上环绕的距离,再用这个距离除以4,如果余数分别是0,-1,-2,-3,则分别与圆周上表示字母为m,q,p,n的点重合.2016÷4=504,故-2016与m点重合.故选A.点睛:本题考查了数轴.找出圆运动的周期与数轴上的数字的对应关系是解答此类题目的关键.9.3【解析】【详解】解:一个数的相反数就是在这个数前面添上“﹣”号.所以﹣(﹣3)=3故答案为3考点:相反数10.7【解析】【分析】根据题意列出算式为(-2)+(+9),求出即可.【详解】解:(-2)+(+9)=7℃.故这天中午气温是7℃.故答案为:7.本题考查了有理数的加法运算,关键是能根据题意列出算式. 11.-56m 【解析】 【分析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示. 【详解】解:“正”和“负”相对,所以如果向南走48m ,记作+48m , 则乙向北走56m ,记为-56m . 故答案为:-56m . 【点睛】本题考查了正数与负数的知识,解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量. 12.4.28×106. 【解析】试题解析:64280000 4.2810.=⨯ 故答案为64.2810⨯.点睛:科学记数法的表示形式为:10n a ⨯,其中110.a ≤< 13.< 【解析】∵45 > 23, ∴45- < 23-(绝对值大的反而小).故答案是:<. 14.1或7 【解析】根据绝对值的意义,可知x=±3,y=±4,由于x <y ,可知x=3时,y=4或x=-3时,y=4,解得x+y=7或x+y=1.故答案为1或7.15.﹣5或1【解析】【分析】在数轴上表示出P点,找到与点P距离3个长度单位的点所表示的数即可.此类题注意两种情况:要求的点可以在已知点2-的左侧或右侧.【详解】解:如图,根据数轴可以得到在数轴上与点A距离3个长度单位的点所表示的数是:5-或1.故答案为:5-或1.【点睛】此题考查了数轴、绝对值的有关内容,用几何方法借助数轴来求解,非常直观,且不容易遗漏,体现了数形结合的优点.16.-8【解析】由题意,得3020xy-=⎧⎨+=⎩,解得=32xy⎧⎨=-⎩.即x=3,y=−2.故答案为−8. 17.-9【解析】根据运算规则,得220.54-=(-2)×4-2×0.5=-8-1=-9.故答案为-9.18.22【解析】根据运算程序,可列式为2×4=8,8-2=6,6<10,再次输入为6×4=24,24-2=22>10,输出结果为22.故答案为22.点睛:此题是一个图表信息题,解题时根据图表找到计算关系,然后按要求计算,直到得出正确结果即可.19.(1)2;(2)①﹣2;②﹣3.5、7.5. 【解析】试题分析:(1)根据折叠的性质,判断出对称点是原点,推得此时数﹣2表示的点与数2表示的点重合即可.(2)根据数5表示的点与数﹣1表示的点重合,确定出对称点是表示2的点,①数6表示的点与对称点距离为4,在对称点左侧且与对称点距离为4的点是﹣2表示的点,据此解答即可.②根据题意,可得A 、B 两点距离对称点的距离为5.5,据此求出A 、B 两点表示的数各是多少即可.试题解析:(1)使数1表示的点与数﹣1表示的点重合,则此时数﹣2表示的点与数2表示的点重合.(2)根据数5表示的点与数﹣1表示的点重合,确定出对称点是表示2的点,①数6表示的点与对称点距离为4,在对称点左侧且与对称点距离为4的点是﹣2表示的点,∴数6表示的点与数﹣2表示的点重合.②根据题意,可得A 、B 两点距离对称点的距离为5.5,∵对称点是表示2的点,∴A 、B 两点表示的数分别是﹣3.5,7.5. 考点:数轴.20.(1)4 (2)1(3)-2 (4)-11 (5)-359912(6)-6 【解析】 【分析】根据有理数的混合运算法则,先化简再进行运算. 【详解】(1)原式=285-173+225-13=505-183=10-6=4(2)原式=-81·49·49·(-116)=1(3)原式=-116·(-4+10)=-1-1=-2(4)原式=-28+30-27+14=-11(5)原式=-(100-172)·36=-(3600-12)=-359912(6)原式=(13-18-4)·23=-6 【点睛】此题考查了有理数的混合运算,有理数混合运算的四种运算技巧:1.转化法:一是将除法转化为乘法,二是将乘方转化为乘法,三是在乘除混合运算中,通常将小数转化为分数进行约分计算. 2.凑整法:在加减混合运算中,通常将和为零的两个数,分母相同的两个数,和为整数的两个数,乘积为整数的两个数分别结合为一组求解. 3.分拆法:先将带分数分拆成一个整数与一个真分数的和的形式,然后进行计算. 4.巧用运算律:在计算中巧妙运用加法运算律或乘法运算律往往使计算更简便.21.见解析,-4.5<-2<54-<0<2<132【解析】【分析】将数字化成相同形式再根据有理数大小的排序法则进行合理排序.【详解】见上图数轴红点从左往右-4.5<-2<54-<0<2<132【点睛】根据有理数大小的排序法则进行合理排序,并且明白画图原则是解答本题的关键. 22.详见解析.【解析】试题分析:依据整数,正数,分数,无理数的概念判断即可.试题解析:整数集合:{}2,0,2005,-正数集合: π5.2,,1.1211121112,2005,3⎧⎫⎨⎬⎩⎭分数集合:{}5.2,0.3,- 无理数集合:π,1.1212212221.3⎧⎫⎨⎬⎩⎭点睛:整数包含正整数,零,负整数.比0大的数叫做正数.无限不循环小数叫做无理数. 23.(1)2.4万人(2)34万人;6392万元【解析】试题分析:(1)根据有理数的加减法,即可解答;(2)计算出7天的总人数,再根据有理数的乘法,即可解答.试题解析:(1)根据题意,10月3日游客最多,比9月30日多:1.6+0.8+0.4=2.8(万人),10月7日游客最少,比9月30日多,1.6+0.8+0.4-0.4-0.8+0.2-1.4=0.4(万人),最多与最少相差:2.8-0.4=2.4(万人).(2)根据题意10月1日至10月7日游客人数分别是:3+1.6=4.6(万人),4.6+0.8=5.4(万人),5.4+0.4=5.8(万人),5.8-0.4=5.4(万人),5.4-0.8=4.6(万人),4.6+0.2=4.8(万人),4.8-1.4=3.4(万人),7天游客的总数是:4.6+5.4+5.8+5.4+4.6+4.8+3.4=34(万人),7天门票的总收入是:100×34×8%+200×34×90%=6392(万元).24.(1)1120052017-;(2)101304. 【解析】【分析】(1)根据规律进行变形;(2)每个分数都提取13后,将括号内裂项相消后即可得. 【详解】(1)∵212112111,,133********=-=-=-⨯⨯⨯,∴2112005200720052007=-⨯, 故答案:1120052017-; (2)1111114477101013301304++++⋯+⨯⨯⨯⨯⨯,1111111111(1),34477101013301304=-+-+-+-+⋯+- 11101(1).3304304=-=【点睛】考查学生对探究规律题的分析能力和运用能力,是中考常考题型,难度中等. 25.56 76 910 1110【解析】【分析】(1)根据平方差公式即可求解;(2)先根据平方差公式变形,再约分计算即可求解.【详解】 (1)211?6-=56·76,21911010-=·1110(2)222111111234⎛⎫⎛⎫⎛⎫-⨯-⨯-⨯ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭···22111120132014⎛⎫⎛⎫⨯-⨯- ⎪ ⎪⎝⎭⎝⎭ =132435223344⨯⨯⨯⨯⨯⨯ (2013)201520142014⨯⨯ =1201522014⨯ =20154028.【点睛】此题考查了有理数的混合运算,熟练掌握数字运算的规律是解本题的关键.。

最新2021学年度苏科版七年级数学上册第一次月考试卷(有答案)

最新2021学年度苏科版七年级数学上册第一次月考试卷(有答案)

第一学期苏科版七年级数学上册 第一次月考试卷(九月第一二三章)考试总分: 120 分 考试时间: 120 分钟学校:__________ 班级:__________ 姓名:__________ 考号:__________一、选择题(共 10 小题 ,每小题 3 分 ,共 30 分 ) 1.下列各数中,为负数的是( ) A.−(−12)B.−|−12|C.(−12)2D.|−12|2.某产品原价100元,提价10%后又降价了10%,则现在的价格是( ) A.90元B.110元C.100元D.99元3.在−(−8),(−1)2007,−32,−|−1|,−|0|,π3,−2.131131113中,负有理数共有( ) A.4个B.3个C.2个D.1个4.x 2+ax −2y +7−(bx 2−2x +9y −1)的值与x 的取值无关,则−a +b 的值为( ) A.3B.1C.−2D.25.“十•一”黄金周期间,雁荡山风景区在7天假期中每天旅游的人数变化如下表(正数表示比前一天多的人数,负数表示比前一天少的人数):请判断七天内游客人数最多的是()A.1日B.2日C.3日D.6日6.绝地值相等的两个数在数轴上对应的两点距离为8,则这两个数为()A.+8或−8B.+4或−4C.−4或+8D.−8或+47.下面说法中,正确的是()A.S=ab是代数式B.a,0,1x,都是单项式C.单项式和多项式都是整式D.多项式a2−3ab+2b2由a2,3ab,2b2组成8.下列说法中,①a的相反数的绝对值是a;②最大的负数是−0.1;③一个有理数的平方一定是正数;④−1,0,1的倒数是本身.其中正确的是()A.0个B.1个C.2个D.3个9.国庆期间,某商店推出全店打8折的优惠活动,持贵宾卡的客户还可在8折的基础上再打9折.某人持贵宾卡买了一件商品共花了a元,则该商品的标价是()A.17 20a元B.2017a元C.18 25a元D.2518a元10.数轴上的两点A 、B 分别表示−6和−3,那么A 、B 两点间的距离是( ) A.−6+(−3) B.−6−(−3) C.|−6+(−3)|D.|−3−(−6)|二、填空题(共 10 小题 ,每小题 3 分 ,共 30 分 ) 11.若|x −2|+(y +23)2=0,那么y x =________.12.观察下面的一列数,从中寻找规律,然后按规律填写接下去的3个数.12,−34,56,−78,910,________,________,________,… 13.计算:14+112+124+140+160+184+1112+1144+1180+1220+1264=________. 14.若|a|=3,|b|=2,且a +b >0,那么a −b 的值是________.15.−5的相反数是________;−5的绝对值是________;−5的立方是________;−0.5的倒数是________.16.已知a 、b 互为相反数(a ≠b),c 、d 互为倒数,|x|=1,则ba +cdx 的值为________.17.两个数的和一定大于这两数的差.________.(判断对错) 18.单项式−2πab 23的系数是________;次数是________.19.已知a 、b 互为倒数,c 、d 互为相反数,则代数式3ab −c −d 的值为________. 20.−112的倒数是________,绝对值等于4的数是________. 三、解答题(共 6 小题 ,每小题 10 分 ,共 60 分 )21.[114−(38+16−34)×24]÷5.22.化简:(1)5a2+3ab−4−2ab−5a2 (2)−x+2(2x−2)−3(3x+5) 23.(1)已知4=2(x2−y2),B=x2−2x−y2,求A−B.23. (2)若|x+3|+|y−2|=0,求A−B的值.24.某班将买一些乒乓球和乒乓球拍.了解信息如下:甲、乙两家商店出售两种同样品牌的乒乓球和乒乓球拍.乒乓球拍每副定价30元,乒乓球每盒定价5元;经洽谈:甲店每买一副球拍赠一盒乒乓球;乙店全部按定价的9折优惠.该班需球拍5副,乒乓球若干盒(不小于5盒).问:(1)当购买乒乓球x盒时,两种优惠办法各应付款多少元?(用含x的代数式表示)(2)如果要购买15盒乒乓球时,请你去办这件事,你打算去哪家商店购买?为什么?25.阅读下面第(1)题的解答过程,然后解答第(2)题.(1)已知−2x m+5n y5与4x2y m−3n是同类项,求m+n的值.解:根据同类项的意义,可知x的指数相同,即:m+5n=2.y的指数也相同,即m−3n=5.所以:(m+5n)+(m−3n)=2+5,即:2m+2n=2(m+n)=7所以:m+n=72x3y3m+11n是同类项,求m+2n的值.(2)已知x m−3n y7与−1226.下表记录的是流花河今年某一周内的水位变化情况,上周末(星期六)的水位已达到警戒水位33米.(正号表示水位比前一天上升,负号表示水位比前一天下降)(1)本周哪一天河流的水位最高?哪一天河流的水位最低?它们位于警戒水位之上还是之下?(2)与上周末相比,本周末河流的水位是上升了还是下降了?答案1.B2.D3.A4.A5.C6.B7.C8.A9.D10.D11.4912.−11121314−151613.112414.5,115.55−125−216.0或−217.×18.−2π3319.320.−23±421.解:原式=(54−9−4+18)×15=14+1=54.22.解:(1)原式=5a2−5a2+3ab−2ab−4=.0+ab−4=ab−4(2)原式=−x+4x−4−9x−15=−6x−1923.解:(1)A−B=2(x2−y2)−(x2−2x−y2)=2x2−2y2−x2+2x+y2= x2+2x−y2;(2)∵|x+3|+|y−2|=0,∴|x+3|=0,|y−2|=0,∴x+3=0,y−2=0,解得:x=−3,y=2,则A−B=x2+2x−y2=(−3)2+2×(−3)−22=−1.24.解:(1)设购买乒乓球x盒时,在甲家购买所需5(x−5)+30×5=5x+125(元);在乙家购买所需90%×(5×30+5x)=4.5x+135(元);(2)去甲商店购买,理由:当x=15时,当选择甲商店时,收费为5×15+125=200(元),当选择乙商店时,收费为4.5×15+135=202.5(元),则选择甲商店合算.25.解:根据同类项的意义,可知x的指数相同,即:m−3n=3.y的指数也相同,即3m+11n=7.所以:(m−3n)+(3m+11n)=3+7,即:4m+8n=4(m+2n)=10所以:m+2n=5.226.解:(1)正号表示水位比前一天上升,负号表示水位比前一天下降:周日:33+0.2=33.2周一:33.2+0.8=34,周二:34−0.4=+33.6,周三:33.6+0.2=33.8,周四:33.8+0.3=34.1,周五:34.1−0.5=33.6,周六:33.6−0.2=33.4.故本周四水位最高,周六水位最低,它们位于警戒水位之上;(2)本周末的水位高为33.4米,上周末的水位为33米,故水位上升了.。

最新苏教版七年级数学上册第一次月考考试及答案【精品】

最新苏教版七年级数学上册第一次月考考试及答案【精品】

最新苏教版七年级数学上册第一次月考考试及答案【精品】 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.﹣2的绝对值是( )A .2B .12C .12-D .2-2.如图,在OAB 和OCD 中,,,,40OA OB OC OD OA OC AOB COD ==>∠=∠=︒,连接,AC BD 交于点M ,连接OM .下列结论:①AC BD =;②40AMB ∠=︒;③OM 平分BOC ∠;④MO 平分BMC ∠.其中正确的个数为( ).A .4B .3C .2D .13.如图,在△ABC 中,AB=20cm ,AC=12cm ,点P 从点B 出发以每秒3cm 速度向点A 运动,点Q 从点A 同时出发以每秒2cm 速度向点C 运动,其中一个动点到达端点,另一个动点也随之停止,当△APQ 是以PQ 为底的等腰三角形时,运动的时间是( )秒A .2.5B .3C .3.5D .44.已知5x =3,5y =2,则52x ﹣3y =( )A .34B .1C .23D .985.若数a 使关于x 的不等式组232x a x a ->⎧⎨-<-⎩无解,且使关于x 的分式方程5355ax x x-=---有正整数解,则满足条件的整数a 的值之积为( ) A .28 B .﹣4 C .4 D .﹣26.将二次函数y=x 2﹣2x+3化为y=(x ﹣h )2+k 的形式,结果为( )A .y=(x+1)2+4B .y=(x ﹣1)2+4C .y=(x+1)2+2D .y=(x ﹣1)2+27.关于x 的不等式x-b>0恰有两个负整数解,则b 的取值范围是( ) A .32b -≤<- B .32b -<≤- C .32b -≤≤- D .-3<b<-28.如图,直线AB 、CD 、EF 相交于点O ,其中AB ⊥CD ,∠1:∠2=3:6,则∠EOD =( )A .120°B .130°C .60°D .150°9.下列各组数值是二元一次方程x ﹣3y =4的解的是( )A .11x y =⎧⎨=-⎩B .21x y =⎧⎨=⎩C .12x y =-⎧⎨=-⎩D .41x y =⎧⎨=-⎩ 10.下列等式变形正确的是( ) A .若﹣3x =5,则x =35 B .若1132x x -+=,则2x+3(x ﹣1)=1 C .若5x ﹣6=2x+8,则5x+2x =8+6D .若3(x+1)﹣2x =1,则3x+3﹣2x =1二、填空题(本大题共6小题,每小题3分,共18分)1.27-的立方根是________.2.如图,在△ABC 中,BO 、CO 分别平分∠ABC 、∠ACB .若∠BOC=110°,则∠A=________.3.已知有理数a ,b 满足ab <0,a+b >0,7a+2b+1=﹣|b ﹣a|,则()123a b a b ⎛⎫++- ⎪⎝⎭ 的值为________. 4+x x -有意义,+1x =___________.5.若一个数的平方等于5,则这个数等于________.6.如果20a b --=,那么代数式122a b +-的值是________.三、解答题(本大题共6小题,共72分)1.解下列方程:(1)4x +7=12x ﹣5 (2)4y ﹣3(5﹣y )=6(3)3157146x x ---= (4)20.30.40.50.3a a -+-=12.若不等式组0122x a x x +≥⎧⎨->-⎩①有解;②无解.请分别探讨a 的取值范围.3.如图1,在平面直角坐标系中,A (a ,0)是x 轴正半轴上一点,C 是第四象限内一点,CB ⊥y 轴交y 轴负半轴于B (0,b ),且|a ﹣3|+(b+4)2=0,S 四边形AOBC =16.(1)求点C的坐标.(2)如图2,设D为线段OB上一动点,当AD⊥AC时,∠ODA的角平分线与∠CAE的角平分线的反向延长线交于点P,求∠APD的度数;(点E在x轴的正半轴).(3)如图3,当点D在线段OB上运动时,作DM⊥AD交BC于M点,∠BMD、∠DAO的平分线交于N点,则点D在运动过程中,∠N的大小是否会发生变化?若不变化,求出其值;若变化,请说明理由.4.如图,将两个全等的直角三角形△ABD、△ACE拼在一起(图1).△ABD不动,(1)若将△ACE绕点A逆时针旋转,连接DE,M是DE的中点,连接MB、MC (图2),证明:MB=MC.(2)若将图1中的CE向上平移,∠CAE不变,连接DE,M是DE的中点,连接MB、MC(图3),判断并直接写出MB、MC的数量关系.(3)在(2)中,若∠CAE的大小改变(图4),其他条件不变,则(2)中的MB、MC的数量关系还成立吗?说明理由.5.九年三班的小雨同学想了解本校九年级学生对哪门课程感兴趣,随机抽取了部分九年级学生进行调查(每名学生必只能选择一门课程).将获得的数据整理绘制如下两幅不完整的统计图.据统计图提供的信息,解答下列问题:(1)在这次调查中一共抽取了名学生,m的值是.(2)请根据据以上信息直在答题卡上补全条形统计图;(3)扇形统计图中,“数学”所对应的圆心角度数是度;(4)若该校九年级共有1000名学生,根据抽样调查的结果,请你估计该校九年级学生中有多少名学生对数学感兴趣.6.一艘轮船在相距90千米的甲、乙两地之间匀速航行,从甲地到乙地顺流航行用6小时,逆流航行比顺流航行多用4小时.(1)求该轮船在静水中的速度和水流速度;(2)若在甲、乙两地之间建立丙码头,使该轮船从甲地到丙地和从乙地到丙地所用的航行时间相同,问甲、丙两地相距多少干米?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、B3、D4、D5、B6、D7、A8、D9、A10、D二、填空题(本大题共6小题,每小题3分,共18分)1、-3.2、40°3、0.4、15、6、5三、解答题(本大题共6小题,共72分)1、(1) x=32;(2) y=3;(3)x=﹣1;(4)a=4.4.2、①a>-1②a≤-13、(1) C(5,﹣4);(2)90°;(3)略4、(1)略;(2)MB=MC.略;(3)MB=MC还成立,略.5、(1)50,18;(2)补全的条形统计图见解析;(3)108;(4)该校九年级学生中有300名学生对数学感兴趣.6、(1)该轮船在静水中的速度是12千米/小时,水流速度是3千米/小时;(2)甲、丙两地相距2254千米.。

最新苏教版七年级数学上册第一次月考试卷及答案

最新苏教版七年级数学上册第一次月考试卷及答案

最新苏教版七年级数学上册第一次月考试卷及答案 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.在平面直角坐标系的第二象限内有一点M ,点M 到x 轴的距离为3,到y 轴的距离为4,则点M 的坐标是( )A .(3,4)-B .(4,3)-C .(4,3)-D .()3,4-2.如图,点O 在直线AB 上,射线OC 平分∠DOB .若∠COB =35°,则∠AOD 等于( ).A .35°B .70°C .110°D .145°3.若229x kxy y -+是一个完全平方式,则常数k 的值为( )A .6B .6-C .6±D .无法确定4.如果a 与1互为相反数,则|a+2|等于( )A .2B .-2C .1D .-15.如图,过A 点的一次函数的图象与正比例函数y=2x 的图象相交于点B ,则这个一次函数的解析式是( )A .y=2x+3B .y=x ﹣3C .y=2x ﹣3D .y=﹣x+36.在平面直角坐标系中,将点A (1,﹣2)向上平移3个单位长度,再向左平移2个单位长度,得到点A ′,则点A ′的坐标是( )A .(﹣1,1)B .(﹣1,﹣2)C .(﹣1,2)D .(1,2)7.《九章算术》是我国古代数学名著,卷七“盈不足”中有题译文如下:今有人合伙买羊,每人出5钱,会差45钱;每人出7钱,会差3钱.问合伙人数、羊价各是多少?设合伙人数为x 人,所列方程正确的是( )A .54573x x -=-B .54573x x +=+C .45357x x ++=D .45357x x --= 8.如图,已知1l AB ∕∕,AC 为角平分线,下列说法错误的是( )A .14∠=∠B .15∠=∠C .23∠∠=D .13∠=∠9.运行程序如图所示,规定:从“输入一个值x ”到“结果是否>95”为一次程序操作,如果程序操作进行了三次才停止,那么x 的取值范围是( )A .x ≥11B .11≤x <23C .11<x ≤23D .x ≤2310.如图,在菱形ABCD 中,AC=62,BD=6,E 是BC 边的中点,P ,M 分别是AC ,AB 上的动点,连接PE ,PM ,则PE+PM 的最小值是( )A .6B .3C .6D .4.5二、填空题(本大题共6小题,每小题3分,共18分)116________.2.如果5的小数部分为a ,13的整数部分为b ,则5a b +-=______3.已知M =x 2-3x -2,N =2x 2-3x -1,则M ______N .(填“<”“>”或“=”)4.方程()()()()32521841x x x x +--+-=的解是_________.5.如图,在△ABC 和△DEF 中,点B 、F 、C 、E 在同一直线上,BF = CE ,AC ∥DF ,请添加一个条件,使△ABC ≌△DEF ,这个添加的条件可以是________.(只需写一个,不添加辅助线)6.如图,已知AB ∥CD ,F 为CD 上一点,∠EFD=60°,∠AEC=2∠CEF ,若6°<∠BAE <15°,∠C 的度数为整数,则∠C 的度数为________.三、解答题(本大题共6小题,共72分)1.解方程:3531132x x -+-=2.已知22(4)(2)80m x m x --++=是关于未知数x 的一元一次方程,求代数式199()(2)m x m x m -+-+的值.3.如图,直线AB //CD ,BC 平分∠ABD ,∠1=54°,求∠2的度数.4.如图,在△ABC和△ADE中,AB=AC,AD=AE,且∠BAC=∠DAE,点E在BC 上.过点D作DF∥BC,连接DB.求证:(1)△ABD≌△ACE;(2)DF=CE.5.随着社会的发展,通过微信朋友圈发布自己每天行走的步数已经成为一种时尚.“健身达人”小陈为了了解他的好友的运动情况.随机抽取了部分好友进行调查,把他们6月1日那天行走的情况分为四个类别:A(0~5000步)(说明:“0~5000”表示大于等于0,小于等于5000,下同),B(5001~10000步),C(10001~15000步),D(15000步以上),统计结果如图所示:请依据统计结果回答下列问题:(1)本次调查中,一共调查了位好友.(2)已知A类好友人数是D类好友人数的5倍.①请补全条形图;②扇形图中,“A”对应扇形的圆心角为度.③若小陈微信朋友圈共有好友150人,请根据调查数据估计大约有多少位好友6月1日这天行走的步数超过10000步?6.某学校为改善办学条件,计划采购A、B两种型号的空调,已知采购3台A 型空调和2台B型空调,需费用39000元;4台A型空调比5台B型空调的费用多6000元.(1)求A型空调和B型空调每台各需多少元;(2)若学校计划采购A、B两种型号空调共30台,且A型空调的台数不少于B 型空调的一半,两种型号空调的采购总费用不超过217000元,该校共有哪几种采购方案?(3)在(2)的条件下,采用哪一种采购方案可使总费用最低,最低费用是多少元?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、C2、C3、C4、C5、D6、A7、B8、B9、C10、C二、填空题(本大题共6小题,每小题3分,共18分)1、22、13、<x=.4、35、AC=DF(答案不唯一)6、36°或37°.三、解答题(本大题共6小题,共72分)x=.1、32、15943、72°4、(1)证明略;(2)证明略.5、(1)30;(2)①补图见解析;②120;③70人.6、(1)A型空调和B型空调每台各需9000元、6000元;(2)共有三种采购方案,方案一:采购A型空调10台,B型空调20台,方案二:采购A型空调11台,B型空调19台,案三:采购A型空调12台,B型空调18台;(3)采购A型空调10台,B型空调20台可使总费用最低,最低费用是210000元.。

24-25七年级数学第一次月考卷(考试版A4)【测试范围:苏科版2024七上第1章-第2章】(苏科版

24-25七年级数学第一次月考卷(考试版A4)【测试范围:苏科版2024七上第1章-第2章】(苏科版

2024-2025学年七年级数学上学期第一次月考卷(苏科版2024)(考试时间:120分钟 试卷满分:120分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

写在本试卷上无效。

3.回答填空题和解答题时,将答案写在答题卡上。

写在本试卷上无效。

4.测试范围:苏科版2024七年级上册第1章-第2章。

5.难度系数:0.8。

一、选择题:本题共10小题,每小题3分,共30分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.在数学史上,中国古代著作《九章算术》是最早采用正负数表示相反意义量的.如果公元前500年记作500-,那么公元2024年记作( )A .2024-B .2024C .1524D .25242.下列各组数中,互为相反数的是( )A .()7-+与()7+-B .(0.5)-+与()0.5+-C .114æöç÷-+ç÷èø与45æö--ç÷èøD .()0.01+-与1100æö--ç÷èø3.2024年6月25日14时07分,嫦娥六号返回器准确着陆于内蒙古四子王旗预定区域,标志着探月工程嫦娥六号任务取得圆满成功,实现世界首次月球背面采样返回.嫦娥六号返回器在距地面高度约120公里处,以接近第二宇宙速度(约为112000米/秒)高速在大西洋上空第一次进入地球大气层,实施初次气动减速.其中112000用科学记数法可表示为( )A .311210´B .411.210´C .51.1210´D .61.1210´4.将()()()()5632--+++--+写成省略加号后的形式是( )A .5632+--B .5632-+--C .5632++-D .5632-+-+5.实数,a b 在数轴上对应点的位置如图所示,下列结论正确的是( )A .0ab >B .0a b +<C .a b >D .0a b -<6.下列计算不正确的是( )A .()212343--´-+=-B .()2123415--´--=-C .()2(1)23415--´--=D .()2(1)2341--´-+=-7.如图,正六边形ABCDEF (每条边都相等)在数轴上的位置如图所示,点A 、F 对应的数分别为2-和1-,现将正六边形ABCDEF 绕着顶点顺时针方向在数轴上连续翻转,翻转1次后,点E 所对应的数为0,连续翻转后数轴上2025这个数所对应的点是( )A .A 点B .B 点C .C 点D .F 点8.把长为2022个单位长度的线段AB 放在单位长度为1的数轴上,则线段AB 能盖住的整点有( )A .2021个B .2022个C .2021或2022个D .2022或2023个9.数轴上的三点A 、B 、C 所表示的数分别为a 、b 、c 且满足0a b +>,0a c ×<,则原点在( )A .点A 左侧B .点A 点B 之间(不含点A 点B )C .点B 点C 之间(不含点B 点C )D .点C 右侧10.数形结合是解决一些数学问题的重要思想方法,比如12x x -在数轴上表示数1x ,2x 对应的点之间的距离.现定义一种“H 运算”,对于若干个数,先将每两个数作差,再将这些差的绝对值进行求和.例如:对1-,1,2进行“H 运算”,得1112126--+--+-=.下列说法:①对m ,1-进行“H 运算”的结果是3,则m 的值是4-;②对n ,3-,5进行“H 运算”的结果是16,则n 的取值范围是35n -<<;③对a a b c ,,,进行“H 运算”,化简后的结果可能存在6种不同的表达式.其中正确的个数是( )A .0B .1C .2D .3二、填空题:本题共8小题,每小题4分,共32分。

江苏省南京市七年级数学上学期第一次月考试卷(含解析)苏科版

江苏省南京市七年级数学上学期第一次月考试卷(含解析)苏科版

2016-2017学年江苏省南京市求真中学七年级(上)第一次月考数学试卷一.选择题:1.﹣8的相反数是()A.﹣8 B.8 C.D.2.在下图中,表示数轴正确的是()A.B.C.D.3.下列各数中3.14,,1.090090009…,,0,3.1415是无理数的有()A.1个B.2个C.3个D.4个4.下列各组数中,相等的一组是()A.(﹣3)2与﹣32B.|﹣3|2与﹣32C.(﹣3)3与﹣33D.|﹣3|3与﹣335.绝对值与相反数都是它的本身有()A.1个B.2个C.3个D.不存在6.表示a,b两数的点在数轴上位置如图所示,则下列判断错误的是()A.a+b<0 B.a﹣b>0 C.a×b>0 D.a<|b|二.填空题:7.比﹣2016大1的数是.8.﹣的相反数是,1.5的倒数是,﹣的绝对值为.9.比较大小:﹣﹣;(﹣2)3(﹣3)2;﹣(﹣5)﹣|﹣5|.10.A是数轴上一点,一只蚂蚁从A出发爬了4个单位长度到了原点,则点A所表示的数是.11.绝对值大于1而不大于3的所有整数的和是.12.今后三年内各级政府拟投入医疗卫生领域的资金将达到8500000000元人民币,用科学记数法表示“8500000000”为.13.将一张完好无缺的白纸对折n次后,数了一下共有128层,则n= .14.如图所示是计算机某计算程序,若开始输入x=﹣1,则最后输出的结果是.三.解答题:(共58分)15.(20分)计算(1)﹣20+(﹣14)﹣(﹣14)﹣13(2)﹣1.25×÷(﹣)×(﹣8)(3)(﹣+)×(﹣36)(4)9×(﹣5)(5)2×(﹣3)2﹣5÷(﹣)×(﹣2)16.先把下列各数在数轴上表示出来,再按从小到大的顺序用“<”号把这些数连接起来:﹣,|﹣2.5|,0,﹣22,﹣(﹣4)17.已知a、b互为相反数且a≠0,c、d互为倒数,m的绝对值是最小的正整数,求的值.(注:cd=c×d)解:∵a、b互为相反数且a≠0,∴a+b= , = ;又∵c、d互为倒数,∴cd= ;又∵m的绝对值是最小的正整数,∴m= ,∴m2= ;∴原式= .18.若|a|=5,|b|=3,①求a+b的值;②若a+b<0,求a﹣b的值.19.66路公交车沿东西方向行驶,如果把车站的起点记为0,向东行驶记为正,向西行驶记为负,其中一辆车从车站出发以后行驶的路程(单位:km)依次如下表所示:序号 1 2 3 4 5 6 7路程+5 ﹣3 +10 ﹣8 ﹣6 +12 ﹣10(1)该车最后是否回到了车站?为什么?(2)这辆车离开出发点最远是多少千米?用数轴表示.(3)这辆车在上述过程中一共行驶了多少千米?20.我们定义一种新运算:a*b=a2﹣b+ab.例如:1*3=12﹣2+1×2=1(1)求2*(﹣3)的值.(2)求(﹣2)*[2*(﹣3)]的值.21.同学们都知道,|4﹣(﹣2)|表示4与﹣2的差的绝对值,实际上也可理解为4与﹣2两数在数轴上所对应的两点之间的距离;同理|x﹣3|也可理解为x与3两数在数轴上所对应的两点之间的距离.试探索:(1)求|4﹣(﹣2)|= ;(2)若|x﹣2|=5,则x= ;(3)请你找出所有符合条件的整数x,使得|1﹣x|+|x+2|=3.2016-2017学年江苏省南京市求真中学七年级(上)第一次月考数学试卷参考答案与试题解析一.选择题:1.﹣8的相反数是()A.﹣8 B.8 C.D.【考点】相反数.【分析】直接根据相反数的定义进行解答即可.【解答】解:由相反数的定义可知,﹣8的相反数是﹣(﹣8)=8.故选B.【点评】本题考查的是相反数的定义,即只有符号不同的两个数叫做互为相反数.2.在下图中,表示数轴正确的是()A.B.C.D.【考点】数轴.【分析】根据数轴的定义及特点进行解答即可.【解答】解:A、符合数轴的定义,故本选项正确;B、因为﹣1>﹣2,所以﹣1应在﹣2的右边,故本选项错误;C、数轴是规定了原点、正方向、单位长度的直线,而此直线没有原点,故本选项错误;D、数轴是规定了原点、正方向、单位长度的直线,而此直线没有正方向,故本选项错误.故选A.【点评】本题考查了数轴的定义及特点,即数轴是规定了原点、正方向、单位长度的直线叫做数轴,数轴上右边的数总比左边的大.3.下列各数中3.14,,1.090090009…,,0,3.1415是无理数的有()A.1个B.2个C.3个D.4个【考点】无理数.【分析】根据无理数是无限不循环小数,可得无理数的个数.【解答】解:在3.14,,1.090090009…,,0,3.1415中无理数有,1.090090009…,无理数的有2个.故选:B.【点评】本题考查了无理数,无理数是无限不循环小数.4.下列各组数中,相等的一组是()A.(﹣3)2与﹣32B.|﹣3|2与﹣32C.(﹣3)3与﹣33D.|﹣3|3与﹣33【考点】有理数的乘方.【专题】计算题.【分析】各项中利用乘方的意义计算得到结果,即可做出判断.【解答】解:A、(﹣3)2=9,﹣32=﹣9,不相等;B、|﹣3|2=9,﹣32=﹣9,不相等;C、(﹣3)3=﹣27,﹣33=﹣27,相等;D、|﹣3|3=27,﹣33=﹣27,不相等;故选D【点评】此题考查了有理数的乘方,熟练掌握乘方的意义是解本题的关键.5.绝对值与相反数都是它的本身有()A.1个B.2个C.3个D.不存在【考点】绝对值;相反数.【分析】根据相反数的定义和绝对值的意义得绝对值和相反数都等于它本身为0.【解答】解:由相反数的定义和绝对值的意义得绝对值和相反数都等于它本身为0,有1个.故选:A.【点评】本题考查了绝对值和相反数,解决本题的关键是熟记相反数的定义和绝对值的意义得绝对值和相反数都等于它本身为0.6.表示a,b两数的点在数轴上位置如图所示,则下列判断错误的是()A.a+b<0 B.a﹣b>0 C.a×b>0 D.a<|b|【考点】数轴.【分析】先根据a、b两点在数轴上的位置判断出a、b的符号及绝对值的大小,再对各选项进行逐一分析即可.【解答】解:由图可知,b<0<a.|b|>|a|,A、∵b<0<a,|b|>|a|,∴a+b<0,故本选项正确;B、∵b<0<a,∴a﹣b>0,故本选项正确;C、∵b<0<a,∴a×b<0,故本选项错误;D、∵b<0<a.|b|>|a|,∴a<|b|,故本选项正确.故选C.【点评】本题考查的是数轴,先根据a、b两点在数轴上的位置判断出a、b的符号及绝对值的大小是解答此题的关键.二.填空题:7.比﹣2016大1的数是﹣2015 .【考点】有理数的加法.【分析】根据题意列式即可求得结果.【解答】解:﹣2016+1=﹣2015.故答案为:﹣2015.【点评】本题考查了有理数的加法,熟记有理数的加法的法则是解题的关键.8.﹣的相反数是,1.5的倒数是,﹣的绝对值为.【考点】倒数;相反数;绝对值.【分析】依据相反数、倒数、绝对值的定义回答即可.【解答】解:﹣的相反数是,1.5的倒数是,﹣的绝对值.故答案为:;;.【点评】本题主要考查的是倒数、相反数、绝对值的定义,熟练掌握相关知识是解题的关键.9.比较大小:﹣>﹣;(﹣2)3<(﹣3)2;﹣(﹣5)>﹣|﹣5|.【考点】有理数大小比较;绝对值.【分析】根据有理数大小比较法则逐一比较可得.【解答】解:∵|﹣|=,|﹣|=,且<,∴﹣>﹣;∵(﹣2)3=﹣8,(﹣3)2=9,∴(﹣2)3<(﹣3)2;∵﹣(﹣5)=5,﹣|﹣5|=﹣5,∴﹣(﹣5)>﹣|﹣5|,故答案为:>,<,>.【点评】本题主要考查有理数的大小比较,熟练掌握有理数的大小比较法则和方法是解题的关键.10.A是数轴上一点,一只蚂蚁从A出发爬了4个单位长度到了原点,则点A所表示的数是±4 .【考点】数轴.【分析】由题意可知:点A表示到原点的距离是4,故这样的数是±4.【解答】解:依题意得,该点所表示的数的绝对值为4,因此这个数是±4.【点评】结合数轴进行考虑,注意数形结合的思想.11.绝对值大于1而不大于3的所有整数的和是0 .【考点】有理数的加法;绝对值.【专题】计算题.【分析】找出绝对值大于1而不大于3的所有整数,求出之和即可.【解答】解:绝对值大于1而不大于3的所有整数为﹣2,﹣3,2,3,之和为0.故答案为:0.【点评】此题考查了有理数的加法,以及绝对值,熟练掌握运算法则是解本题的关键.12.今后三年内各级政府拟投入医疗卫生领域的资金将达到8500000000元人民币,用科学记数法表示“8500000000”为8.5×109.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将8500000000用科学记数法表示为:8.5×109.故答案为:8.5×109.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.13.将一张完好无缺的白纸对折n次后,数了一下共有128层,则n= 7 .【考点】有理数的乘方.【专题】应用题.【分析】对折一次是2,二次是4,三次是8,四次是16…,这些数又可记作21,22,23,24….【解答】解:因为27=128,所以n=7.【点评】此题的关键是联系生活实际找出规律进行计算.14.如图所示是计算机某计算程序,若开始输入x=﹣1,则最后输出的结果是﹣14 .【考点】有理数的混合运算.【分析】根据计算程序先将x=﹣1代入结果为﹣2,不小于﹣5,所以继续从头代入;当x=﹣2时,代入结果为﹣5,不小于﹣5,继续代入;当x=﹣5时,代入结果为﹣14,小于﹣5,所以结果为﹣14.【解答】解:由题意得:﹣1×3﹣(﹣1)=﹣3+1=﹣2,﹣2×3﹣(﹣1)=﹣6+1=﹣5,﹣5×3﹣(﹣1)=﹣15+1=﹣14<﹣5,∴输出的结果是﹣14,故答案为:﹣14.【点评】本题是有理数的混合计算,注意运算顺序和计算程序,难度不大,关键是结果是否满足小于﹣5,才是输出结果.三.解答题:(共58分)15.计算(1)﹣20+(﹣14)﹣(﹣14)﹣13(2)﹣1.25×÷(﹣)×(﹣8)(3)(﹣+)×(﹣36)(4)9×(﹣5)(5)2×(﹣3)2﹣5÷(﹣)×(﹣2)【考点】有理数的混合运算.【分析】(1)去掉括号后,再根据有理数的加减运算,即可得出结论;(2)化小数为分数以及化除为乘,再根据有理数的乘法运算,即可得出结论;(3)利用乘法分配律将原算式分开,再根据有理数的乘法运算求出每项的值,加减后即可得出结论;(4)化带分数为假分数,再根据有理数的乘法运算,即可得出结论;(5)先求出乘方的值以及化除为乘,再根据有理数的乘法运算求出每项的值,相减后即可得出结论.【解答】解:(1)﹣20+(﹣14)﹣(﹣14)﹣13=﹣20﹣14+14﹣13=﹣33;(2)﹣1.25×÷(﹣)×(﹣8)=﹣××(﹣)×(﹣8)=﹣;(3)(﹣+)×(﹣36)=×(﹣36)﹣×(﹣36)+×(﹣36)=﹣9;(4)9×(﹣5)=×(﹣5)=﹣;(5)2×(﹣3)2﹣5÷(﹣)×(﹣2)=2×9﹣5×(﹣2)×(﹣2)=18﹣20=﹣2.【点评】本题考查了有理数的混合运算,牢记有理数混合运算的法则及运算顺序是解题的关键.16.先把下列各数在数轴上表示出来,再按从小到大的顺序用“<”号把这些数连接起来:﹣,|﹣2.5|,0,﹣22,﹣(﹣4)【考点】有理数大小比较;数轴.【分析】先计算|﹣2.5|=2.5,﹣(﹣4)=4,﹣22=﹣4,再根据数轴表示数的方法表示所给的5个数,然后写出它们的大小关系.【解答】解:如图,用“<”号把这些数连接起来为:.【点评】本题考查了有理数的大小比较:比较有理数的大小可以利用数轴,他们从左到有的顺序,即从大到小的顺序(在数轴上表示的两个有理数,右边的数总比左边的数大);也可以利用数的性质比较异号两数及0的大小,利用绝对值比较两个负数的大小.17.已知a、b互为相反数且a≠0,c、d互为倒数,m的绝对值是最小的正整数,求的值.(注:cd=c×d)解:∵a、b互为相反数且a≠0,∴a+b= 0 , = ﹣1 ;又∵c、d互为倒数,∴cd= 1 ;又∵m的绝对值是最小的正整数,∴m= ±1 ,∴m2= 1 ;∴原式= 1 .【考点】有理数的混合运算;相反数;绝对值;倒数.【专题】计算题.【分析】根据互为相反数两数之和为0得到a+b的值,除0外之商为﹣1,互为倒数两数之积为1,绝对值最小的正整数为1或﹣1,确定出m的值,代入原式计算即可求出值.【解答】解:∵a、b互为相反数且a≠0,∴a+b=0, =﹣1;又∵c、d互为倒数,∴cd=1;又∵m的绝对值是最小的正整数,∴m=±1,∴m2=1;∴原式=1﹣(﹣1)+0﹣1=1.故答案为:0;﹣1;1;±1;1;1【点评】此题考查了有理数的混合运算,相反数,绝对值,以及倒数,熟练掌握各自的定义是解本题的关键.18.若|a|=5,|b|=3,①求a+b的值;②若a+b<0,求a﹣b的值.【考点】有理数的加法;绝对值;有理数的减法.【分析】(1)由于|a|=5,|b|=3,那么a=±5,b=±3,再分4种情况分别计算即可;(2)由于a=±5,b=±3,且a+b<0,易求a=﹣5,b=±3,进而分2种情况计算即可.【解答】解:(1)∵|a|=5,|b|=3,∴a=±5,b=±3,∴a+b=8或2或﹣2或﹣8;(2)∵a=±5,b=±3,且a+b<0,∴a=﹣5,b=±3,∴a﹣b=﹣8或﹣2.【点评】本题考查了绝对值,解题的关键是注意互为相反数的绝对值相同,要考虑多种情况.19.66路公交车沿东西方向行驶,如果把车站的起点记为0,向东行驶记为正,向西行驶记为负,其中一辆车从车站出发以后行驶的路程(单位:km)依次如下表所示:序号 1 2 3 4 5 6 7路程+5 ﹣3 +10 ﹣8 ﹣6 +12 ﹣10(1)该车最后是否回到了车站?为什么?(2)这辆车离开出发点最远是多少千米?用数轴表示.(3)这辆车在上述过程中一共行驶了多少千米?【考点】正数和负数.【分析】(1)把七个数值相加,再根据有理数加减混合运算的法则计算,计算结果是正数,则是离开车站向东,是负数,则是离开车站向西,等于0,则是回到车站;(2)求出各站点离开出发点的距离,即可求出最远路程;(3)求出所有路程的绝对值的和即可.【解答】解:(1)+5﹣3+10﹣8﹣6+12﹣10=0,该车最后回到了车站;(2)5﹣3=2;2+10=12;12﹣8=4;4﹣6=﹣2;﹣2+12=10;10﹣10=0;∴离开出发点最远是12km;(3)|+5|+|﹣3|+|+10|+|﹣8|+|﹣6|+|+12|+|﹣10|,=5+3+10+8+6+12+10,=54km.【点评】本题主要考查了有理数加减混合运算,熟练掌握混合运算的顺序是解题的关键.20.我们定义一种新运算:a*b=a2﹣b+ab.例如:1*3=12﹣2+1×2=1(1)求2*(﹣3)的值.(2)求(﹣2)*[2*(﹣3)]的值.【考点】有理数的混合运算.【分析】(1)根据新运算的定义式a*b=a2﹣b+ab,代入数据即可算出结论;(2)根据(1)可知2*(﹣3)=1,再根据新运算的定义式a*b=a2﹣b+ab,代入数据即可算出结论.【解答】解:(1)2*(﹣3)=22﹣(﹣3)+2×(﹣3)=4+3﹣6=1;(2)(﹣2)*[2*(﹣3)]=(﹣2)*1=(﹣2)2﹣1+(﹣2)×1=4﹣1﹣2=1.【点评】本题考查了有理数的混合运算,读懂题意并理解新运算的定义式a*b=a2﹣b+ab是解题的关键.21.同学们都知道,|4﹣(﹣2)|表示4与﹣2的差的绝对值,实际上也可理解为4与﹣2两数在数轴上所对应的两点之间的距离;同理|x﹣3|也可理解为x与3两数在数轴上所对应的两点之间的距离.试探索:(1)求|4﹣(﹣2)|= 6 ;(2)若|x﹣2|=5,则x= 7或﹣3 ;(3)请你找出所有符合条件的整数x,使得|1﹣x|+|x+2|=3.【考点】绝对值;数轴.【分析】根据题意给出的定义即可求出答案.【解答】解:(1)原式=6;(2)∵|x﹣2|=5,∴x﹣2=±5,∴x=7或﹣3;(3)由题意可知:|1﹣x|+|x+2|表示数x到1和﹣2的距离之和,∴﹣2≤x≤1,∴x=﹣2或﹣1或0或1.故答案为(1)6;(2)7或﹣3;【点评】本题考查绝对值的定义,涉及绝对值的几何意义.。

苏教版七年级数学上册第一次月考试卷及答案【精品】

苏教版七年级数学上册第一次月考试卷及答案【精品】 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.若()286m n a b a b =,那么22m n -的值是 ( ) A .10 B .52 C .20 D .322.如图,将▱ABCD 沿对角线AC 折叠,使点B 落在B ′处,若∠1=∠2=44°,则∠B 为( )A .66°B .104°C .114°D .124°3.如图,∠ACD 是△ABC 的外角,CE 平分∠ACD ,若∠A=60°,∠B=40°,则∠ECD 等于( )A .40°B .45°C .50°D .55°4.某气象台发现:在某段时间里,如果早晨下雨,那么晚上是晴天;如果晚上下雨,那么早晨是晴天,已知这段时间有9天下了雨,并且有6天晚上是晴天,7天早晨是晴天,则这一段时间有( )A .9天B .11天C .13天D .22天5.若m n >,下列不等式不一定成立的是( )A .33m n ++>B .33m n ﹣<﹣C .33m n >D .22m n >6.若A =(2+1)(22+1)(24+1)(28+1)+1,则A 的末位数字是( )A .2B .4C .6D .87.在平面直角坐标中,点M(-2,3)在( )A .第一象限B .第二象限C .第三象限D .第四象限8.若长度分别为,3,5a 的三条线段能组成一个三角形,则a 的值可以是( )A .1B .2C .3D .89.已知实数a 、b 满足a+b=2,ab=34,则a ﹣b=( ) A .1 B .﹣52 C .±1 D .±5210.若|x 2﹣4x+4|与23x y --互为相反数,则x+y 的值为( )A .3B .4C .6D .9二、填空题(本大题共6小题,每小题3分,共18分)1.若1m +与2-互为相反数,则m 的值为_______.2.如图,//AB EF ,设90C ∠=︒,那么x ,y ,z 的关系式________.3.若点P (2x ,x-3)到两坐标轴的距离之和为5,则x 的值为____________.4.己知三角形三边长分别为6,6,23,则此三角形的最大边上的高等于________.5.如果一个角的补角是150°,那么这个角的余角的度数是________度.6.设4x 2+mx+121是一个完全平方式,则m=________三、解答题(本大题共6小题,共72分)1.(1)解方程组:(2)解方程组:2.设m 为整数,且关于x 的一元一次方程(5)30m x m -+-=m 时,求方程的解;(1)当2m的值.(2)若该方程有整数..解,求3.如图1,BC⊥AF于点C,∠A+∠1=90°.(1)求证:AB∥DE;(2)如图2,点P从点A出发,沿线段AF运动到点F停止,连接PB,PE.则∠ABP,∠DEP,∠BPE三个角之间具有怎样的数量关系(不考虑点P与点A,D,C重合的情况).并说明理由.4.如图,已知直线AB∥CD,直线EF分别与AB,CD相交于点O,M,射线OP在∠AOE的内部,且OP⊥EF,垂足为点O.若∠AOP=30°,求∠EMD的度数.5.九年三班的小雨同学想了解本校九年级学生对哪门课程感兴趣,随机抽取了部分九年级学生进行调查(每名学生必只能选择一门课程).将获得的数据整理绘制如下两幅不完整的统计图.据统计图提供的信息,解答下列问题:(1)在这次调查中一共抽取了名学生,m的值是.(2)请根据据以上信息直在答题卡上补全条形统计图;(3)扇形统计图中,“数学”所对应的圆心角度数是度;(4)若该校九年级共有1000名学生,根据抽样调查的结果,请你估计该校九年级学生中有多少名学生对数学感兴趣.6.为支援灾区,某校爱心活动小组准备用筹集的资金购买A、B两种型号的学习用品共1000件.已知B型学习用品的单价比A型学习用品的单价多10元,用180元购买B型学习用品的件数与用120元购买A型学习用品的件数相同.(1)求A、B两种学习用品的单价各是多少元?(2)若购买这批学习用品的费用不超过28000元,则最多购买B型学习用品多少件?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、C3、C4、B5、D6、C7、B8、C9、C10、A二、填空题(本大题共6小题,每小题3分,共18分)1、1.2、90x y z +-=︒3、2或2-34、35、606、±44三、解答题(本大题共6小题,共72分)1、(1);(2).2、(1)13x =-;(2)6m =或4m =,7m =或3m =3、(1)略(2)∠BPE=∠DEP ﹣∠ABP ,略.4、60°5、(1)50,18;(2)补全的条形统计图见解析;(3)108;(4)该校九年级学生中有300名学生对数学感兴趣.6、(1)A型学习用品20元,B型学习用品30元;(2)800.。

最新苏教版七年级数学上册第一次月考试卷【及参考答案】

最新苏教版七年级数学上册第一次月考试卷【及参考答案】 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.若方程:()2160x --=与3103a x --=的解互为相反数,则a 的值为( ) A .-13 B .13C .73D .-1 2.如图,正方形ABCD 的边长为2cm ,动点P 从点A 出发,在正方形的边上沿A →B →C 的方向运动到点C 停止,设点P 的运动路程为x(cm),在下列图象中,能表示△ADP 的面积y(cm 2)关于x(cm)的函数关系的图象是( )A .B .C .D .3.如图,P 是直线l 外一点,A ,B ,C 三点在直线l 上,且PB ⊥l 于点B ,∠APC =90°,则下列结论:①线段AP 是点A 到直线PC 的距离;②线段BP 的长是点P 到直线l 的距离;③PA ,PB ,PC 三条线段中,PB 最短;④线段PC 的长是点P 到直线l 的距离,其中,正确的是( )A .②③B .①②③C .③④D .①②③④4.将一副三角板和一张对边平行的纸条按如图摆放,两个三角板的一直角边重合,含30°角的直角三角板的斜边与纸条一边重合,含45°角的三角板的一个顶点在纸条的另一边上,则∠1的度数是( )A .15°B .22.5°C .30°D .45°5.实效m ,n 在数轴上的对应点如图所示,则下列各式子正确的是( )A .m n >B .||n m ->C .||m n ->D .||||m n <6.如图,要把河中的水引到水池A 中,应在河岸B 处(AB ⊥CD )开始挖渠才能使水渠的长度最短,这样做依据的几何学原理是( )A .两点之间线段最短B .点到直线的距离C .两点确定一条直线D .垂线段最短7.如图所示,下列说法不正确的是( )A .∠1和∠2是同旁内角B .∠1和∠3是对顶角C .∠3和∠4是同位角D .∠1和∠4是内错角8.如图是一张直角三角形的纸片,两直角边AC =6 cm 、BC =8 cm ,现将△ABC 折叠,使点B 与点A 重合,折痕为DE ,则BE 的长为( )A .4 cmB .5 cmC .6 cmD .10 cm9.若|abc |=-abc ,且abc ≠0,则||||b a c a b c ++=( ) A .1或-3 B .-1或-3 C .±1或±3 D .无法判断10.若|x 2﹣4x+4|与23x y --互为相反数,则x+y 的值为( )A .3B .4C .6D .9二、填空题(本大题共6小题,每小题3分,共18分)1.因式分解:3222x x y xy +=﹣__________. 2.如图,DA ⊥CE 于点A ,CD ∥AB ,∠1=30°,则∠D=________.3.分解因式:32x 2x x -+=_________.4.如图,直线a ∥b ,且∠1=28°,∠2=50°,则∠ABC =_______.5.一只小蚂蚁停在数轴上表示﹣3的点上,后来它沿数轴爬行5个单位长度,则此时小蚂蚁所处的点表示的数为________.6.如图,AB ∥CD,直线EF 分别交AB 、CD 于E 、F,EG 平分∠BEF,若∠1=72°,•则∠2=________.三、解答题(本大题共6小题,共72分)1.解方程组:25342x y x y -=⎧⎨+=⎩2.化简(1)先化简,再求值:()()22632a a a a ++-,其中1a =(2)化简:已知222A a ab b =-+,22+2B a ab b =+,求()14B A -3.如图,已知点A(-2,3),B(4,3),C(-1,-3).(1)求点C 到x 轴的距离;(2)求三角形ABC 的面积;(3)点P 在y 轴上,当三角形ABP 的面积为6时,请直接写出点P 的坐标.4.如图,将两个全等的直角三角形△ABD 、△ACE 拼在一起(图1).△ABD 不动,(1)若将△ACE 绕点A 逆时针旋转,连接DE ,M 是DE 的中点,连接MB 、MC (图2),证明:MB =MC .(2)若将图1中的CE 向上平移,∠CAE 不变,连接DE ,M 是DE 的中点,连接MB、MC(图3),判断并直接写出MB、MC的数量关系.(3)在(2)中,若∠CAE的大小改变(图4),其他条件不变,则(2)中的MB、MC的数量关系还成立吗?说明理由.5.“安全教育平台”是中国教育学会为方便学长和学生参与安全知识活动、接受安全提醒的一种应用软件.某校为了了解家长和学生参与“防溺水教育”的情况,在本校学生中随机抽取部分学生作调查,把收集的数据分为以下4类情形:A.仅学生自己参与;B.家长和学生一起参与;C.仅家长自己参与; D.家长和学生都未参与.请根据图中提供的信息,解答下列问题:(1)在这次抽样调查中,共调查了________名学生;(2)补全条形统计图,并在扇形统计图中计算C类所对应扇形的圆心角的度数;(3)根据抽样调查结果,估计该校2000名学生中“家长和学生都未参与”的人数.6.某中学为丰富学生的校园生活,准备从体育用品商店一次性购买若干个足球和篮球(每个足球的价格相同,每个篮球的价格相同),若购买3个足球和2个篮球共需310元,购买2个足球和5个篮球共需500元.(1)求购买一个足球、一个篮球各需多少元?(2)根据学校实际情况,需从体育用品商店一次性购买足球和篮球共96个,要求购买足球和篮球的总费用不超过5720元,这所中学最多可以购买多少个篮球?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、B3、B4、A5、C6、D7、A8、B9、A10、A二、填空题(本大题共6小题,每小题3分,共18分)1、()2 x x y-2、60°3、()2 x x1-.4、78°5、2或﹣8.6、54°三、解答题(本大题共6小题,共72分)1、21 xy=⎧⎨=-⎩2、(1)4a,4;(2)ab3、(1)3;(2)18;(3)(0,5)或(0,1).4、(1)略;(2)MB=MC.略;(3)MB=MC还成立,略.5、(1)400;(2)补全条形图见解析;C类所对应扇形的圆心角的度数为54°;(3)该校2000名学生中“家长和学生都未参与”有100人.6、(1)购买一个足球需要50元,购买一个篮球需要80;(2)30个.。

最新苏教版七年级数学上册第一次月考试卷【及答案】

最新苏教版七年级数学上册第一次月考试卷【及答案】 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.计算12+16+112+120+130+……+19900的值为( ) A .1100 B .99100 C .199 D .100992.如图,将▱ABCD 沿对角线AC 折叠,使点B 落在B ′处,若∠1=∠2=44°,则∠B 为( )A .66°B .104°C .114°D .124°3.已知平面内不同的两点A (a +2,4)和B (3,2a +2)到x 轴的距离相等,则a 的值为( )A .﹣3B .﹣5C .1或﹣3D .1或﹣54.式子:①2>0;②4x +y ≤1;③x +3=0;④y -7;⑤m -2.5>3.其中不等式有( )A .1个B .2个C .3个D .4个5.如图,有一块含有30°角的直角三角形板的两个顶点放在直尺的对边上.如果∠2=44°,那么∠1的度数是( )A .14°B .15°C .16°D .17°6.下列运算正确的是( )A .224a a a +=B .3412a a a ⋅=C .3412()a a =D .22()ab ab =7.《九章算术》是我国古代数学名著,卷七“盈不足”中有题译文如下:今有人合伙买羊,每人出5钱,会差45钱;每人出7钱,会差3钱.问合伙人数、羊价各是多少?设合伙人数为x 人,所列方程正确的是( )A .54573x x -=-B .54573x x +=+C .45357x x ++=D .45357x x --= 8.比较2,5,37的大小,正确的是( )A .3257<<B .3275<<C .3725<<D .3752<<9.如图,a ,b ,c 在数轴上的位置如图所示,化简22()a a c c b -++-的结果是( )A .2c ﹣bB .﹣bC .bD .﹣2a ﹣b10.已知三条不同的射线OA 、OB 、OC 有下列条件:①∠AOC=∠BOC ②∠AOB=2∠AOC ③∠AOC+∠COB=∠AOB ④∠BOC=12∠AOB ,其中能确定OC 平分∠AOB 的有( )A .4个B .3个C .2个D .1个 二、填空题(本大题共6小题,每小题3分,共18分)1.因式分解:3222x x y xy +=﹣__________. 2.如图,一条公路修到湖边时,需拐弯绕湖而过,在A ,B ,C 三处经过三次拐弯,此时道路恰好和第一次拐弯之前的道路平行(即AE ∥CD ),若∠A =120°,∠B =150°,则∠C 的度数是________.3.如图,点E 是AD 延长线上一点,如果添加一个条件,使BC ∥AD ,则可添加的条件为__________.(任意添加一个符合题意的条件即可)4.如果方程(m-1)x |m|+2=0是表示关于x 的一元一次方程,那么m 的取值是________.5.分解因式:4ax 2-ay 2=_____________.5.若x 的相反数是3,y =5,则x y +的值为_________.三、解答题(本大题共6小题,共72分)1.解方程(1)25x +-12x -=1-5x (2)210.60.2-+=x x2.如果方程34217123x x -+-=- 的解与关于x 的方程4x -(3a +1)=6x +2a -1的解相同,求代数式a 2+a -1的值.3.如图,直线AB 、CD 相交于点O ,OE 把BOD ∠分成两部分,(1)直接写出图中AOC ∠的对顶角为________,BOE ∠的邻补角为________;(2)若AOC 70∠=︒,且BOE EOD ∠∠:=2:3,求AOE ∠的度数.4.如图,点B ,F ,C ,E 在直线l 上(F ,C 之间不能直接测量),点A ,D 在l 异侧,测得AB=DE ,AC=DF ,BF=EC .(1)求证:△ABC≌△DEF;(2)指出图中所有平行的线段,并说明理由.5.为响应党的“文化自信”号召,某校开展了古诗词诵读大赛活动,现随机抽取部分同学的成绩进行统计,并绘制成如下的两个不完整的统计图,请结合图中提供的信息,解答下列各题:(1)直接写出a的值,a= ,并把频数分布直方图补充完整.(2)求扇形B的圆心角度数.(3)如果全校有2000名学生参加这次活动,90分以上(含90分)为优秀,那么估计获得优秀奖的学生有多少人?6.某中学为打造书香校园,计划购进甲、乙两种规格的书柜放置新购进的图书,调查发现,若购买甲种书柜3个、乙种书柜2个,共需资金1020元;若购买甲种书柜4个,乙种书柜3个,共需资金1440元.(1)甲、乙两种书柜每个的价格分别是多少元?(2)若该校计划购进这两种规格的书柜共20个,其中乙种书柜的数量不少于甲种书柜的数量,学校至多能够提供资金4320元,请设计几种购买方案供这个学校选择.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、C3、A4、C5、C6、C7、B8、C9、A10、D二、填空题(本大题共6小题,每小题3分,共18分)1、()2x x y -2、150°3、∠A +∠ABC =180°或∠C +∠ADC =180°或∠CBD =∠ADB 或∠C =∠CDE4、-15、a (2x+y )(2x-y )6、2或-8三、解答题(本大题共6小题,共72分)1、(1)1x =-;(2) 1.65x =2、x=10;a=-4;11.3、(1)∠BOD ;∠AOE ;(2)152°.4、(1)详略;(2)∠ABC=∠DEF ,∠ACB=∠DFE,略.5、(1)30,补图见解析;(2)扇形B 的圆心角度数为50.4°;(3)估计获得优秀奖的学生有400人.6、(1)设甲种书柜单价为180元,乙种书柜的单价为240元.(2)学校的购买方案有以下三种:方案一:甲种书柜8个,乙种书柜12个方案二:甲种书柜9个,乙种书柜11个,方案三:甲种书柜10个,乙种书柜10个.。

苏科版七年级上册数学年级第一次月考检测试卷.docx

初中数学试卷桑水出品七年数学级第一次月考检测试卷一、选择题(每小题3分,共36分.把答案填入下面的表格中) 题号 1 2 3 4 5 6 7 8 9 10 11 12 答案1、下列说法正确的是( )A 、零是正数不是负数B 、零既不是正数也不是负数C 、零既是正数也是负数D 、不是正数的数一定是负数,不是负数的数一定是正数 2.-(﹣5)的相反数是( ) A .5 B .﹣5 C .D .3.在﹣,﹣|﹣4|,﹣(﹣4),﹣10%,0,- 中,负数的个数有( )A .2个B .3个C .4个D .5个4.比较,﹣,﹣的大小结果正确的是( ) A .>﹣>﹣ B .>﹣>﹣ C .﹣>>﹣D .﹣>﹣5.绝对值不大于5的整数有( )个. A .10 B .11 C .9D .86.下列式子中,正确的是( )A .若|a|=|b|,则a=bB .若a=b ,则|a|=|b|C .若a >b ,则|a|>|b|D .若|a|>|b|,则a >b 7、下列结论正确的有( )①任何数都不等于它的相反数;②符号相反的数互为相反数;③表示互为相反数的两个数的点到原点的距离相等;④若有理数a,b 互为相反数,那么a+b=0;⑤若有理数a,b 互为相反数,则它们一定异号。

A 、2个 B 、3个 C 、4个 D 、5个 8.下列各数中,互为相反数的是()A .﹣(﹣2)与﹣(+2)B .+(﹣5)与﹣|﹣5|C .|﹣3|与|+3|D .|a|与|﹣a| 9.7.已知|x|=3,|y|=7,且 x +y >0,则 x-y 的值等于( ) A .-10 B .4C .﹣4 或4D .-4 或﹣10班级 姓名 考号10.下列说法中,错误的是( )A 、一个数的绝对值一定是正数B 、互为相反数的两个数的绝对值相等C 、绝对值最小的数是0D 、绝对值等于它本身的数是非负数11.如图,数轴上A 、B 两点分别对应有理数a 、b ,则下列结论:①b-a >0;②a ﹣b >0;③a+b >0;④|a|﹣|b|>0中正确的有( )A .1个B .2个C .3个D .4个 12、一个有理数与其绝对值的和( )A 、符号必定为正B 、符号必定为负C 、一定不大于零D 、一定不小于零 二、填空题(每小题4分,共20分)13.在数轴上,点 A 表示的数是 2,那么在同一数轴上与点 A 相距 3 个单位的点表示的数是 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

江苏省南京市2017-2018学年七年级数学上学期第一次月考试题
一、选择题(共6小题;共18分)
1. 据报道,目前我国“天河二号”超级计算机的运算速度位居全球第一,其运算速度达到了每秒
亿次,数字
用科学记数法可简洁表示为
A. B. C.
D.
2.大于-2.6而又不大于3的整数有( )
A .7个
B .6个
C .5个
D .4个
3. 的绝对值是 ( ) A.
B.
C.
D.
的相反数是
B.
C.
D.
5. 如果

0b
a
,那么下列结论成立的是( ). A. , B. , C. , D. ,
6. 如图,数轴上 、 两点分别对应实数 、 ,则下列结论正确的是( ).
A. B.
C.
二、填空题(共10小题;共30分)
7. 对于整数“ 和
”,请你运用有关数学知识,用一句话对这两个整数进行描述:
; 8. 的倒数是 .
9. 若 表示最小的正整数, 表示最大的负整数, 表示绝对值最小的有理数,则

10. 平方后等于 的有理数是 .
11. 利用分配律可以得﹣2×6+3×6=(﹣2+3)×6=﹣6.如果a 表示任意一个有理数,那么利用分配律可以得到﹣2a+3a=( )a= .
12. 把 写成省略括号的和的形式为 :

13. 写出下列运算中每一步所依据的运算律或法则:
第一步 ;第二步 ;第三步 .
14. 2
-4的意义是 .2-3= .
15. 在算式 中的 里,填入运算符号 ,使得算式的值最小(在符号
,-,, 中选择一个).
16.正方形ABCD 在数轴上的位置如图所示,点D 、A 对应的数分别为0和1,若正方形ABCD 绕着顶
点顺时针方向在数轴上连续翻转,翻转1次后,点B 所对应的数为2;则翻转2016次后,数轴上数2016所对应的点是( )
A .点C
B .点D
C .点A
D .点B
三、解答题(共58分)
17.(6分)已知 , 互为相反数且
,, 互为倒数, 的绝对值是最小的正整数,求
的值.(注:

解: , 互为相反数且 ,


又 , 互为倒数, ;

的绝对值是最小的正整数,


原式 . 18.计算:(计14分) (1)(3分)1231--+---2342()() (2)(3分)57---2.875
÷⨯()()()
(3)
)()(12
715116543
60---+÷.
(4)(4分)13)2(11
4
)215(1234
+-÷-+⨯
---
19.(4分)根据图回答:
(1), 两点间的距离是多少? (2),
两点间的距离是多少?
(3)思考两点间的距离与表示这两点的数的差有什么关系?
20. (4)小红与小丽利用温差测量山的高度,小红在山顶测得温度是
,小丽此时在山脚测得
温度是 ,已知该地区高度每增加
,气温大约降低
,这个山峰的高度大约是多少
米?
21. (4分)如果,
,求 - 的值.
22. (4分)请你把,,,,,这五个数按从大到小顺序,再把这五个数
的相反数在数轴上表示出来.
23. (5分)填空,并请你把字母表述的有理数减法法则和除法法则用文字语言表述:
(1)a-b=a+(),文字语言表述为;
(2)a÷b=a×(),文字语言表述为 .
上面的两个法则体现的数学思想是 .
24. (4分)已知a与-a什么关系,请你探讨a n与(-a)n的关系.
25. (7分)如图所示,一根木棒放在数轴上,木棒的左端与数轴上的点重合,右端与点
重合.
(1)若将木棒沿数轴向右水平移动,则当它的左端移动到点时,它的右端在数轴上所对应
的数为;若将木棒沿数轴向左水平移动,则当它的右端移动到点时,它的左端在数轴
上所对应的数为(单位:),由此可得到木棒长为.(2)由题(1)的启发,请你借助“数轴”这个工具帮助小红解决下列问题:问题:一天,小红去问曾当过数学老师现在退休在家的爷爷的年龄,爷爷说:“我若是你现在这么大,你还要年才出生;你若是我现在这么大,我已经岁,是老寿星了,哈哈!”请求出爷爷现在多少岁了?。

相关文档
最新文档