七年级上册数学第一次月考试卷分析

合集下载

七年级数学第一次月考质量分析

七年级数学第一次月考质量分析

七年级第一次质量检测数学质量分析一、考试成绩分析最高分118,最低9分,两极分化严重;数学及格率64.7%,优生率27.4%,中等生缺乏,优生不优。

二、试卷分析本次考试所采用的试卷题量适中,试卷偏难,主要在第24题,七年级学生目前还不会用数形结合法来解决问题,不过还是较全面的反应了学生第一个月的学习情况。

1.考查范围:七年级上册第一章有理数2.考试题型分析:整张试卷主要考查四个方面:第一主要考查学生对数学概念和有关计算的掌握情况;第二主要考查学生对基础知识掌握情况及考查常规题的答题技巧如:13、15、23题得抽卡片;第三主要考查学生数形结合能力如17题、24题;第四,考查有理数的综合运用情况。

3.学生容易失分的题目及原因:第8题;对有理数的概念不清;第10题:超纲但可以用排除法做;第17题丢分主要原因知识遗忘;第22题有的同学不会根据可能出现的情况分类讨论;第24题:在数轴上解决问题方法欠缺。

三、本次考试反映出的问题1、做题策略欠佳。

突出表现在解决问题中,此次的解决问题全是考查有理数,由于学生概念不清、运算能力差、分析问题不够全面、不会运用数学知识有解决实际问题,导致了分数考不高。

2、运算不熟练。

运算是本章学习的重中之重,相当一部分的同学连最基本的运算都不会,数学必需从运算做起,只有会算了,才能去分析其它的问题。

四、措施1、培养学生一些做题的策略。

灵活的处理试题。

平时的练习和单元测试中重视这方面的提示。

2、加强培养学生运算的能力,培养学生学习数学的兴趣。

这次考试反映了一些问题,通过对试卷的分析,总结了一些教训。

以这次考试为一个新的起点,努力在下次测试中会有大的进步!。

2024-2025学年初中数学七年级上册第一次月考模拟卷含答案解析

2024-2025学年初中数学七年级上册第一次月考模拟卷含答案解析

2024-2025学年人教版七年级上册第一次月考数学模拟试卷(范围:第一章~第二章)一、单选题1. 水位上升2米记为2+米,那么水位下降3米记为( )A. 3−米B. 2−米C. 3+米D. 2+米 2. 我国高速公路发展迅速,据报道,到目前为止,全国高速公路总里程约为11800千米,用科学记数法表示为( )A. 51.1810×B. 311.810×C. 211810×D. 41.1810× 3. 如图,数轴上点P 表示的有理数可能是( )A. 1.6−B. 1.4−C. 0.6−D. 0.4− 4. 下列各数中,最小数是( )A. 0B. 153C. ()32−D. 23−5. 在计算11()()23++−时,按照有理数加法法则,需转化成( ) A. 11()23+− B. 11()23++ C. 11()23−− D. 1123 −+6. 下列各组数中,互为相反数是( )A. 2与12B. ()21−与1C. 21−与()21−D. 2与|2|− 7. 小明和同学们共买了4种标注质量为450g 的食品各一袋,他们对这4种食品的实际质量进行了检测,用正数表示超过标注质量的克数,用负数表示不足标注质量的克数,检测结果如下表:食品种类 第一种 第二种 第三种 第四种检测结果 +10 -20 +15 -15则这四种食品中质量最标准的是( )A. 第一种B. 第二种C. 第三种D. 第四种 8. 有理数a ,b 在数轴上的位置如图,那么下列选项正确的是( )的的A. ||||a b −<−B. 0ab >C. 22a b >D. 0a b +>9. 定义一种新运算:*a b ab b =−.例如:1*21220=×−=.则()()4*2*3 −− 的值为( )A. 3−B. 9C. 15D. 2710. 设a 是绝对值最小的数,b 是最小的正整数,c 是最大的负整数,则a 、b 、c 三数之和为( )A. 1−B. 0C. 1D. 2二、填空题 11. 23−的相反数是__________,23−的绝对值是________. 12. 1363−÷×=______. 13. 比较大小:25−______1−(填“>”或“<”). 14. 近似数1.35是由数a 四舍五入得到的,那么数a 的取值范围是________.15. 已知|x |=2,|y |=6,若x +y <0,则x ﹣y =_____.16. 如图,这是一种数值转换机的运算程序,若输入的数为5,则第2021次输出的数是_____.17. 若a ,b 互为相反数,c ,d 互为倒数,m 的绝对值为4,则22022()a b cd m +−+=__. 18. 已知数轴上的点A ,B 表示的数分别为2−,4,P 为数轴上任意一点,表示的数为x ,若点P 到点A ,B 的距离之和为7,则x 的值为 _____.三、解答题19. 已知有理数:-0.5,0,2,122−,( 3.5)−−,2−. (1)把以上各数在下列数轴上用点表示出来:(2)把这些数按照从小到大的顺序排列,并用“<”号连接.20. 计算:(1)()()3996−−−+−;(2)()2023223145−+÷−−−×;(3)115486812 −+×; (4)()()32482233−−−÷×−. 21. 阅读下面的解题过程,再解答问题.因为a ÷b 与b ÷a 互为倒数.所以在计算123724348 −÷−+的值时可采用下列方法: 解:因237134824 −+÷−=()23724348 −+×−=()()()237-24--24+-24348××× =-16+18-21=-19, 所以,原式=119− . 根据上述方法,计算:13511760461512 −÷+−−. 22. 某足球守门员练习折返跑,从初始位置出发,向前跑记作正数,向后跑记作负数,他练习记录如下(单位:m):+5,-3,+10,-8,-6,+13,-10(1)守门员最后否回到了初始位置?(2)守门员离开初始位置达到10m 以上(包括10m)的次数是多少?23. 观察下列三行数:2,-4, 8,-16, 32,-64,… ①0,-6, 6,-18, 30,-66,… ②-1, 2,-4, 8,-16, 32,… ③(1)第①行的第n 个数是_______(直接写出答案,n 为正整数)(2)第②、③行的数与第①行相对应的数分别有什么关系?(3)取每行的第8个数,计算这三个数的和.24. 在庆祝新中国72周年华诞的重要时刻,电影《长津湖》上映可谓恰逢其时、意义重大.电影《长津为的是湖》讲述了中国人民志愿军第9兵团某部穿插七连参加长津湖战役的过程,展现了人民军队炽烈的爱国情怀、对党和人民的无比忠诚,生动诠释了伟大的抗美援朝精神.昆明市9月30日该电影的售票量为1.3万张,10月1日到10月7日售票的变化如下表(正数表示售票量比前一天多,负数表示售票量比前一天少):日期1日2日3日4日5日6日7日售票量的变化单位(万张)+0.6 +0.1 −0.3 −0.2 0.4 −0.2 +0.1(1)这7天中,售票量最多的是10月日,售票量最少的是10月日;(2)若平均每张票价为60元,这7天昆明市《长津湖》的票房共多少万元?2024-2025学年人教版七年级上册第一次月考数学模拟试卷(范围:第一章~第二章)一、单选题1. 水位上升2米记2+米,那么水位下降3米记为( )A. 3−米B. 2−米C. 3+米D. 2+米 【答案】A【解析】【分析】本题考查正负数的意义,根据规定方向为正相反方向为负直接求解即可得到答案;【详解】解:∵上升2米记为2+米,∴下降3米记为3−米,故选:A .2. 我国高速公路发展迅速,据报道,到目前为止,全国高速公路总里程约为11800千米,用科学记数法表示为( )A. 51.1810×B. 311.810×C. 211810×D. 41.1810×【答案】D【解析】【分析】本题考查了科学记数法,根据科学记数法:10n a ×(110a ≤<,n 为正整数),先确定a 的值,再根据小数点移动的数位确定n 的值即可解答,根据科学记数法确定a 和n 的值是解题的关键.【详解】解:411800 1.1810=×,故选:D .3. 如图,数轴上点P 表示的有理数可能是( )A. 1.6−B. 1.4−C. 0.6−D. 0.4− 【答案】A【解析】【分析】根据点A 在数轴上的位置,先确定A 的大致范围,再确定符合条件的数.【详解】解:因为点A 在−2与1−之间,且靠近−2,所以点A 表示的数可能是 1.6−.故选:A .为【点睛】本题考查了数轴上的点表示有理数.题目比较简单.原点左边的点表示负数,原点右边的点表示正数.4. 下列各数中,最小的数是( )A. 0B. 153C. ()32−D. 23−【答案】D【解析】【分析】本题考查了有理数的乘方、有理数的比较大小,先计算出()32−、23−,再根据有理数的大小比较法则:正数大于0,负数小于0,正数大于负数,两个负数进行比较,绝对值大的反而小,进行比较即可得出答案,熟练掌握有理数的大小比较法则是解此题的关键.【详解】解:()328−=−,239−=−, 88−= ,99−=,98>,()32305321∴−<<−<,故选:D .5. 在计算11()()23++−时,按照有理数加法法则,需转化成( ) A. 11()23+− B. 11()23++ C. 11()23−− D. 1123 −+【答案】A【解析】【分析】根据有理数的加法法则计算即可求解. 【详解】解:1123 ++− =1123 +− , 故选:A .【点睛】本题考查了有理数的加法,关键是熟练掌握异号两数相加的计算法则.6. 下列各组数中,互为相反数的是( )A. 2与12B. ()21−与1C. 21−与()21−D. 2与|2|− 【答案】C【解析】【分析】本题主要考查相反数以及绝对值,根据相反数以及绝对值的定义解决此题,熟练掌握相反数以及绝对值的定义是解决本题的关键.【详解】解:A 、2与12互为倒数,故此选项不符合题意;B 、()211−= ,()21∴−与1相等,故此选项不符合题意; C 、211−=− ,()211−=,∴21−与()21−互为相反数,故此选项符合题意; D 、|2|2−=,2∴与|2|−相等,故此选项不符合题意; 故选:C .7. 小明和同学们共买了4种标注质量为450g 的食品各一袋,他们对这4种食品的实际质量进行了检测,用正数表示超过标注质量的克数,用负数表示不足标注质量的克数,检测结果如下表:食品种类 第一种 第二种 第三种 第四种检测结果 +10 -20 +15 -15则这四种食品中质量最标准的是( )A. 第一种B. 第二种C. 第三种D. 第四种【答案】A【解析】【分析】求出各种高于或低于标准质量的绝对值,根据绝对值的大小做出判断.【详解】解:∵|+10|<|-15|=|+15|<|20|,∴第1种最接近标准质量.故选:A .【点睛】本题主要考查正数、负数的意义,理解绝对值的意义是正确判断的前提.8. 有理数a ,b 在数轴上的位置如图,那么下列选项正确的是( )A. ||||a b −<−B. 0ab >C. 22a b >D. 0a b +> 【答案】A【解析】【分析】根据原点左边的数为负数,原点右边的数为正数.从图中可以看出01a <<,1b <−,||||b a >,再选择即可.【详解】解:由数轴可得:01a <<,1b <−,||||b a >,∴||||a b <−,故A 符合题意;0ab <,故B 不符合题意;22a b <,故C 不符合题意;0a b +<,故D 不符合题意;故选:A .【点睛】本题考查了数轴,绝对值和有理数的运算,数轴上右边表示的数总大于左边表示的数. 9. 定义一种新运算:*a b ab b =−.例如:1*21220=×−=.则()()4*2*3 −− 的值为( )A. 3−B. 9C. 15D. 27【答案】C【解析】【分析】先求出()2*3−值,再计算()()4*2*3 −− 即可.【详解】解:∵*a b ab b =−,∴()2*3−=()()233×−−−=63−+=3−,∴()()4*2*3 −−=()()4*3−−=()()()433−×−−−=123+=15.故选:C .【点睛】本题考查了新定义下的有理数运算,熟练掌握运算法则是解题的关键.10. 设a 是绝对值最小的数,b 是最小的正整数,c 是最大的负整数,则a 、b 、c 三数之和为()A. 1−B. 0C. 1D. 2【答案】B 的【分析】绝对值最小的数是0,最小的正整数是1,最大的负整数是1−,依此可得a b c 、、,再相加可得三数之和.【详解】解:由题意可知:011a b c ===−,,,∴()0110a b c ++=++−=.故选:B .【点睛】本题主要考查了有理数的加法,此题的关键是知道绝对值最小的数是0,最小的正整数是1,最大的负整数是1−.二、填空题 11. 23−的相反数是__________,23−的绝对值是________. 【答案】 ①. 23−②. 23 【解析】【分析】根据只有符号不同的两个数互为相反数,可得一个数的相反数,根据负数的绝对值是它的相反数,可得一个负数的绝对值. 【详解】解:2233−=,23的相反数是23−,23−的绝对值是23. 故答案为(1)23−;(2)23. 【点睛】本题考查了相反数、绝对值的定义.a 的相反数是a −,一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0. 12. 1363−÷×=______. 【答案】16− 【解析】【分析】根据有理数的乘除法运算即可. 【详解】解:原式111=236−×=−, 故答案为:16−. 【点睛】本题主要考查有理数的乘除运算,按照乘除为同级运算从左至右求解.13. 比较大小:25−______1−(填“>”或“<”).【解析】【分析】本题考查了有理数的大小比较;根据两个负数比较大小,绝对值大的反而小可得答案. 【详解】解:∵215−<−, ∴215−>−, 故答案为:>.14. 近似数1.35是由数a 四舍五入得到的,那么数a 的取值范围是________.【答案】1.345≤a <1.355【解析】【分析】根据近似数1.35精确到百分位,是从千分位上的数字四舍五入得到的,若干分位上的数字大于或等于5,则百分位上的数字为4;若千分位上的数字小于5,则百分位上的数字为5,即可得出答案.【详解】解:∵近似数1.35是由数a 四舍五入得到的,∴数a 的取值范围是1.345≤a <1.355;故答案为:1.345≤a <1.355.【点睛】本题考查了近似数,用到的知识点是近似数,一个数最后一位所在的数位就是这个数的精确度. 15. 已知|x |=2,|y |=6,若x +y <0,则x ﹣y =_____.【答案】8或4##4或8【解析】【分析】先根据绝对值的含义求解,x y 的值,再根据0,x y +< 分两种情况讨论即可.【详解】解:∵|x |=2,|y |=6,∴x =±2,y =±6,∵x +y <0,∴当x =2,y =﹣6时,x ﹣y =2+6=8;当x =﹣2,y =﹣6时,x ﹣y =﹣2+6=4;故答案为:8或4.【点睛】本题考查的是绝对值的含义,有理数加法的符号的确定,代数式的值,根据绝对值的含义求解,x y 的值,再分类是解本题的关键.16. 如图,这是一种数值转换机的运算程序,若输入的数为5,则第2021次输出的数是_____.【答案】4【解析】【分析】由程序图可得第一次输出的数为8,第二次输出的数为4,第三次输出的数为2,第四次输出的数为1,第五次输出的数为4,由此可得规律,进而问题可求解.【详解】解:由程序图可得第一次输出的数为5+3=8,第二次输出的数为1842×=,第三次输出的数为1422×=,第四次输出的数为1212×=,第五次输出的数为1+3=4,第六次输出的数为1422×=,……;由此可得规律为从第二次开始每三次一循环, ∴()202113673.......1−÷=, ∴第2021次输出的数是4;故答案为4.【点睛】本题主要考查有理数的运算及数字规律问题,解题的关键是根据程序图得到数字的一般规律即可.17. 若a ,b 互为相反数,c ,d 互为倒数,m 的绝对值为4,则22022()a b cd m +−+=__. 【答案】15【解析】【分析】根据题意得到0a b +=,1cd =,216m =,代入代数式计算即可.【详解】解:a ,b 互为相反数,c ,d 互为倒数,m 的绝对值为4,0a b ∴+=,1cd =,216m =,22022()a b cd m ∴+−+20220116=×−+0116=−+15=,故答案为:15.【点睛】此题考查了代数式的求值,熟练掌握相反数、倒数、绝对值等知识是解题的关键.18. 已知数轴上的点A ,B 表示的数分别为2−,4,P 为数轴上任意一点,表示的数为x ,若点P 到点A ,B 的距离之和为7,则x 的值为 _____.【答案】 2.5−或4.5【解析】【分析】根据数轴上两点间的距离公式列出方程,求出方程的解即可得到x 的值.【详解】解:根据题意得:|x +2|+|x -4|=7,当x <-2时,化简得:-x -2-x +4=7,解得:x =-2.5;当-2≤x <4时,化简得:x +2-x +4=7,无解;当x ≥4时,化简得:x +2+x -4=7,解得:x =4.5,综上,x 的值为-2.5或4.5.故答案为:-2.5或4.5.【点睛】此题考查了数轴,弄清数轴上两点间的距离公式是解本题的关键.三、解答题19. 已知有理数:-0.5,0,2,122−,( 3.5)−−,2−. (1)把以上各数在下列数轴上用点表示出来:(2)把这些数按照从小到大的顺序排列,并用“<”号连接.【答案】(1)见解析 (2)()1220.502 3.52−<−<−<<<−− 【解析】【分析】(1)利用数轴上表示有理数的方法表示即可.(2)根据数轴上有理数的特点即可求解.【小问1详解】解:0.5−,0,2,122−,( 3.5)−−,2−在数轴上表示为:【小问2详解】由(1)数轴可得:()1220.502 3.52−<−<−<<<−−. 【点睛】本题考查了用数轴表示有理数及利用数轴比较有理数的大小,熟练掌握数轴上有理数的特点:左边的数比右边小是解题的关键.20. 计算:(1)()()3996−−−+−;(2)()2023223145−+÷−−−×;(3)115486812 −+×; (4)()()32482233−−−÷×−. 【答案】(1)3−(2)27−(3)22(4)11【解析】【分析】(1)根据有理数加减运算法则计算即可求解;(2)根据有理数的运算法则计算即可求解;(3)利用有理数的乘法分配律进行计算即可求解;(4)根据有理数的运算法则计算即可求解;本题考查了有理数的混合运算,掌握有理数的运算法则和运算律是解题的关键.【小问1详解】解:原式3996=−+−36=-,3=−;【小问2详解】解:原式()43145=−+÷−−×()4320=−+−−,720=−−,27=−;的【小问3详解】 解:原式1154848486812=×−×+× 8620=−+,220=+,22=;【小问4详解】解:原式()168398=−−−×× ()1639=−−−×,()1627=−−−,1627=−+,11=.21. 阅读下面的解题过程,再解答问题.因为a ÷b 与b ÷a 互为倒数.所以在计算123724348 −÷−+的值时可采用下列方法: 解:因为237134824 −+÷−=()23724348 −+×−=()()()237-24--24+-24348××× =-16+18-21=-19, 所以,原式=119− . 根据上述方法,计算:13511760461512 −÷+−−. 【答案】116−【解析】 【分析】仿照阅读材料中的方法求出所求即可.【详解】解:111()()41535761260+−−÷− 11()(60)415357126=+−−×− 45504435=−−++16=−, 则13511716046151216 −÷+−−=−. 【点睛】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.22. 某足球守门员练习折返跑,从初始位置出发,向前跑记作正数,向后跑记作负数,他的练习记录如下(单位:m):+5,-3,+10,-8,-6,+13,-10(1)守门员最后是否回到了初始位置?(2)守门员离开初始位置达到10m 以上(包括10m)的次数是多少?【答案】(1)守门员最后没有回到初始位置;(2)2次【解析】【分析】(1)根据题意可把记录的数据进行相加,然后问题可求解;(2)根据题意分别得出每次离初始位置的距离,进而问题可求解.【详解】解:(1)由题意得:(+5)+(-3)+(+10)+(-8)+(-6)+(+13)+(-10)=1(m).答:守门员最后没有回到初始位置.(2)第一次离开初始位置的距离为5m ,第二次离开初始位置的距离为5-3=2m ,第三次离开初始位置的距离为2+10=12m ,第四次离开初始位置的距离为12-8=4m ,第五次离开初始位置的距离为4-6=-2m ,第六次离开初始位置的距离为-2+13=11m ,第七次离开初始位置的距离为11-10=1m ,∴守门员离开初始位置达到10m 以上(包括10m)的次数是2次.【点睛】本题主要考查有理数加减混合运算的应用,熟练掌握有理数的加减运算是解题的关键. 23. 观察下列三行数:2,-4, 8,-16, 32,-64,… ①0,-6, 6,-18, 30,-66,… ②-1, 2,-4, 8,-16, 32,… ③(1)第①行的第n 个数是_______(直接写出答案,n 为正整数)(2)第②、③行的数与第①行相对应的数分别有什么关系?(3)取每行的第8个数,计算这三个数的和.【答案】(1)2n −−()(2)第②行的数是第①行相对应的数减2;第③行的数是第①行相对应的数乘以0.5−()(3)每行的第8个数的和是386−【解析】【分析】(1)第①行的每个数是2−的乘方的相反数,其幂指数为数的个数n ;(2)将第①行各项的数减2即得第②行的数,第③行数等于第①行数相应的数乘以0.5−(),即可求解;(3)分别找出每行第8个数,进而计算这三个数的和即可.【小问1详解】解:首先2,4,8,16 很显然后者是前者2倍.由各数符号是交替出现,故考虑到数值的变化可以用(2)n −−表示.【小问2详解】解:通过比较第①、②、③的数据可知:第②行数等于第①行数相应的数减去2,第③行数等于第①行数相应的数乘以0.5−(); 【小问3详解】解:每行的第8个数的和是()()()()88822220.5 −−+−−−+−−×−()2562582560.5=−−−×−386=−.【点睛】本题主要考查了探索数字变化规律,找规律时,善于发现数字之间的共同点,或者是隐藏关系,培养学生的数感是解题的关键.24. 在庆祝新中国72周年华诞的重要时刻,电影《长津湖》上映可谓恰逢其时、意义重大.电影《长津湖》讲述了中国人民志愿军第9兵团某部穿插七连参加长津湖战役的过程,展现了人民军队炽烈的爱国情怀、对党和人民的无比忠诚,生动诠释了伟大的抗美援朝精神.昆明市9月30日该电影的售票量为1.3万的张,10月1日到10月7日售票的变化如下表(正数表示售票量比前一天多,负数表示售票量比前一天少):日期1日2日3日4日5日6日7日售票量的变化单位(万张)+0.6 +0.1 −03 −0.2 0.4 −0.2 +0.1(1)这7天中,售票量最多的是10月日,售票量最少的是10月日;(2)若平均每张票价为60元,这7天昆明市《长津湖》的票房共多少万元?【答案】(1)2;4 (2)750万元【解析】【分析】(1)把表格中的数据相加,即可得出结论;(2)根据表格得出1日到7日每天的人数,相加后再乘以60即可得到结果.【小问1详解】10月1日的售票量为:1.3+0.6=1.9(万张);10月2日的售票量为:1.9+0.1=2(万张);10月3日的售票量为:2-0.3=1.7(万张);10月4日的售票量为:1.7-0.2=1.5(万张);10月5日的售票量为:1.5+0.4=1.9(万张);10月6日的售票量为:1.9-0.2=1.7(万张);10月7日的售票量为:1.7+0.1=1.8(万张);所以售票量最多的是10月2日,售票量最少的是10月4日;故答案为:2;4;【小问2详解】由题意得,7天的售票量(单位:万张)分别为:1.9,2.0,1.7,1.5,1.9,1.7,1.8则7日票房:60(1.9+2.0+1.7+1.5+1.9+1.7+1.8)10000=7500000××(元)答:这7天昆明《长津湖》票房共750万元【点睛】本题考查了正数和负数以及有理数的混合运算,掌握正数和负数表示相反意义的量是解答本题的关键..。

七年级上第一次月考数学试卷含解析

七年级上第一次月考数学试卷含解析

七年级上第一次月考数学试卷含解析数学试卷一、选择题(本大题共10小题,每小题3分,共30分.)1.下列式子简化不正确的是()A.+(﹣5)=﹣5 B.﹣(﹣0.5)=0.5 C.﹣(+1)=1D.﹣|+3|=﹣32.圆柱的侧面展开图()A.是平行四边形B.一定是正方形C.可能是菱形D.必是矩形3.m<﹣1,则数m,,﹣m,﹣中最小的数是()A.m B.C.﹣m D.﹣4.如图,这是一个正方体的展开图,我们把它重新围成正方体后,在A,B,C中分别填上什么数字,就可以使相对面上的数正好都互为相反数()A.1,0,﹣2 B.﹣2,1,0 C.0,﹣2,1 D.2,﹣1,05.钱塘江水库水位上升5cm记作+5cm,则水位下降3cm记作,()A.﹣2 B.2cm C.﹣3cm D.3cm6.由5个相同的小正方体搭成的物体的俯视图如图所示,则这个物体的搭法有()A.4种 B.3种 C.2种 D.1种7.a、b在数轴上的位置如图,则所表示的数是()A.a是正数,b是负数B.a是负数,b是正数C.a、b都是正数D.a、b都是负数8.下列说法正确的是()A.﹣a是负数B.符号相反的数互为相反数C.有理数a的倒数是D.一个数的绝对值越大,表示它的点在数轴上离原点越远9.一个几何体的三种视图如图所示,则这个几何体是()A.长方体B.圆锥C.圆台D.圆柱10.代数式|x﹣1|﹣|x+4|﹣5的最大值为()A.0 B.﹣10 C.﹣5 D.3二、填空题(本题共6小题,每小题3分,共18分).11.若m是一个数,且||m|+2m|=3,则m等于.12.已知两个有理数﹣12.43和﹣12.45.那么,其中的大数减小数所得的差是.13.自然数一定是正整数.(判断对错)14. |x﹣3|的最小值是,此时x的值为.15.比+6小﹣3的数是.16.如下左图是一个三棱柱,用一个平面去截这个三棱柱,把形状可能的截面的序号填入.三、计算题(18分,每小题18分,解答题写过程)17.(18分)计算:5+(﹣11)﹣(﹣9)﹣(+22).四、解答题(本大题共8小题,共28分).18.(6分)用小正方体搭一个几何体,使它的主视图和俯视图如图所示:(1)搭这样的几何体最少需要个小正方体,最多需要个小正方体;(2)请你在俯视图的小正方体中用数字表示当用最多的小正方体搭起的几何体时该位置小正方体的个数;(3)画出其中一种搭成的几何体的左视图.19.(5分)如图是一长方体纸盒的展开图,每个面内都标注了字母.(1)如果面A在长方体的上面,那么哪个面会在下面?(2)如果面F在长方体的后面,从左面看是面B,那么A、C、D、E都在什么位置?20.(4分)根据立体图从上面看到的形状图(如图所示),画出它从正面和左面看到的形状图(图中数字代表该位置的小正方体的个数).21.(6分)指出数轴上A,B,C,D各点分别表示的有理数,并用“<”将它们连接起来.22.(5分)一天上午,出租车司机小王在东西走向的路上运营,如果规定向东为正,向西为负,出租车的行车里程(单位:km)如下:+15,﹣3,+12,﹣11,﹣13,+3,﹣12,﹣18.请间小王将最后一位乘客送到目的地时,共行驶了多少千米?23.(4分)一项工程,甲单独做5天可以完成全工程;如果乙,丙两队合作12天可以完成全工程;如果三队合作,多少天可以完成全工程?24.(4分)若|a|=4,|b|=2,且a<b,求a+b的值.25.(6分)已知a,b,c在数轴上的位置如图所示,且|a|=|c|.(1)比较a,﹣a,b,﹣b,c,﹣c的大小关系.(2)化简|a+b|﹣|a﹣b|+|b+(﹣c)|+|a+c|.七年级(上)第一次月考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分.)1.(3分)下列式子简化不正确的是()A.+(﹣5)=﹣5 B.﹣(﹣0.5)=0.5 C.﹣(+1)=1D.﹣|+3|=﹣3【分析】根据多重符号的化简:与“+”个数无关,有奇数个“﹣”号结果为负,有偶数个“﹣”号,结果为正进行化简可得答案.【解答】解:A、+(﹣5)=﹣5,计算正确,故此选项不合题意;B、﹣(﹣0.5)=0.5,计算正确,故此选项不合题意;C、﹣(+1)=﹣1,原计算错误,故此选项符合题意;D、﹣|+3|=﹣3,计算正确,故此选项不合题意;故选:C.【点评】此题主要考查了相反数,关键是掌握多重符号的化简方法.2.(3分)圆柱的侧面展开图()A.是平行四边形B.一定是正方形C.可能是菱形D.必是矩形【分析】根据立体图形的展开图是平面图形及圆柱的侧面特点,即可得出.【解答】解:圆柱的侧面展开图形可能是平行四边形,可能是正方形,可能是菱形,可能是矩形.故选C.【点评】本题考查了几何体的展开图,同一个立体图形按不同的方式展开,得到的平面展开图是不一样的,熟记常见几何体的侧面展开图.3.(3分)m<﹣1,则数m,,﹣m,﹣中最小的数是()A.m B.C.﹣m D.﹣【分析】根据m<﹣1可以代入特殊值判断即可.【解答】解:因为m<﹣1,可设m=﹣2,可得:m=﹣2,=﹣0.5,﹣m=2,﹣=0.5,所以可得:最小的数是m,故选A【点评】此题考查有理数大小的比较,关键是根据特殊值代入去判断大小.4.(3分)如图,这是一个正方体的展开图,我们把它重新围成正方体后,在A,B,C中分别填上什么数字,就可以使相对面上的数正好都互为相反数()A.1,0,﹣2 B.﹣2,1,0 C.0,﹣2,1 D.2,﹣1,0【分析】根据相反数的定义,即:只有符号不同的两个数互为相反数,0的相反数是0可知,A与2互为相反数,即A是﹣2;同理,B是1;C是0.【解答】解:根据正方体中相对面的性质和相反数的概念,可得:在A,B,C中分别填上﹣2,1,0就可以使相对面上的数正好都互为相反数.故选B.【点评】主要考查相反数,倒数的概念及性质.相反数的定义:只有符号不同的两个数互为相反数,0的相反数是0.5.(3分)钱塘江水库水位上升5cm记作+5cm,则水位下降3cm记作,()A.﹣2 B.2cm C.﹣3cm D.3cm【分析】先审清题意,明确“正”和“负”所表示的意义;再根据题意作答.【解答】解:根据题意,水位下降3m记作﹣3m.故选C.【点评】此题主要考查了正负数的意义,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.6.(3分)由5个相同的小正方体搭成的物体的俯视图如图所示,则这个物体的搭法有()A.4种 B.3种 C.2种 D.1种【分析】根据俯视图先画出四个小正方体的形状,再根据只有放在第1个或第4个上面才不影响俯视图,从而得出答案.【解答】解:因为将四个小正方体拼成如图所示的情况,第5个小立方体只有放在第1个或第4个上面才不影响俯视图,所以共有两种搭法.故选C.【点评】此题考查了学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.7.(3分)a、b在数轴上的位置如图,则所表示的数是()A.a是正数,b是负数B.a是负数,b是正数C.a、b都是正数D.a、b都是负数【分析】根据数轴的特点进行解答即可.【解答】解:∵由图可知,a在原点的左侧,b在原点的右侧,∴a为负数,b为正数.故选B.【点评】本题考查的是数轴,熟知数轴的特点是解答此题的关键.8.(3分)下列说法正确的是()A.﹣a是负数B.符号相反的数互为相反数C.有理数a的倒数是D.一个数的绝对值越大,表示它的点在数轴上离原点越远【分析】根据相反数、倒数以及绝对值的定义和性质进行判断选择即可.【解答】解:A、若a≤0,则﹣a为非负数,故本选项错误;B、符号相反且绝对值相等的数是相反数,故本选项错误;C、若a=0,则a没有倒数,故本选项错误;D、一个数的绝对值即表示它的点在数轴上离原点的距离,所以,一个数的绝对值越大,表示它的点在数轴上离原点越远,故本选项正确;综上,D选项正确,故应选D选项.【点评】本题考查了相反数、倒数以及绝对值的定义和性质.其中应注意0的绝对值等于0的相反数等于0本身,且0没有倒数.9.(3分)一个几何体的三种视图如图所示,则这个几何体是()A.长方体B.圆锥C.圆台D.圆柱【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.【解答】解:由于主视图和俯视图为长方形可得此几何体为柱体,由左视图为圆可得为圆柱体.故选D.【点评】本题考查了由三视图来判断几何体,还考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力.10.(3分)代数式|x﹣1|﹣|x+4|﹣5的最大值为()A.0 B.﹣10 C.﹣5 D.3【分析】根据不等式的性质分析判断.【解答】解:当x≥1时,原式可化为x﹣1﹣x﹣4﹣5=﹣10;当﹣4≤x<1时,原式可化为1﹣x﹣x﹣4﹣5=﹣2x﹣8,不论x取何值原式>﹣10;当x<﹣4时,原式可化为1﹣x+x+4﹣5=0.故选A.【点评】此题很简单,只要把x的取值分为三种情况讨论即可.二、填空题(本题共6小题,每小题3分,共18分).11.(3分)若m是一个数,且||m|+2m|=3,则m等于1或﹣3.【分析】分情况讨论当m>0或m<0时||m|+2m|=3.从而得出m的值.【解答】解:当m>0时,|m|=m,∴||m|+2m|=|m+2m|=3m=3∴m=1当m<0时,|m|=﹣m,∴||m|+2m|=|﹣m+2m|=|m|=3∴m=﹣3所以m等于1或﹣3.【点评】本题考查了绝对值的性质,分情况讨论m的符号是解题的关键.12.(3分)已知两个有理数﹣12.43和﹣12.45.那么,其中的大数减小数所得的差是0.02.【分析】大数是﹣12.43,小数是﹣12.45,由此可得出答案.【解答】解:﹣12.43与﹣12.45中,大数为﹣12.43,小数为﹣12.45,所以大数减小数所得差为﹣12.43﹣(﹣12.45)=﹣12.43+12.45=0.02.故填0.02.【点评】本题考查有理数的大小比较,难度不大,注意细心运算即可.13.(3分)自然数一定是正整数.×(判断对错)【分析】根据有理数的分类,0是自然数,但是0不是正整数,据此判断即可.【解答】解:因为0是自然数,但是0不是正整数,所以自然数不一定是正整数.故答案为:×.【点评】此题主要考查了有理数的分类,要熟练掌握,解答此题的关键是要明确:0是自然数,但是0不是正整数.14.(3分)|x﹣3|的最小值是0,此时x的值为3.【分析】根据任何数的绝对值一定是非负数即可求解.【解答】解:∵|x﹣3|≥0∴|x﹣3|的最小值是0,此时x=3.故答案是:0,3.【点评】本题考查了任何数的绝对值是非负数.15.(3分)比+6小﹣3的数是9.【分析】关键是理解题中“小”的意思,列出算式+6﹣(﹣3),结果就是比+6小﹣3的数.【解答】解:∵+6﹣(﹣3)=9,∴比+6小﹣3的数是9.故答案为:9.【点评】本题主要考查有理数的减法法则:减去一个数等于加上这个数的相反数.这是需要熟记的内容.16.(3分)如下左图是一个三棱柱,用一个平面去截这个三棱柱,把形状可能的截面的序号填入①②③.【分析】用平面取截三棱柱,当横截时,截面为①三角形,竖着截时截面为②长方形或③梯形,但是惟独不可能是菱形.【解答】解:用平面取截三棱柱,当横截时,截面为①三角形;竖着截时截面为②长方形或③梯形;但是惟独不可能是菱形.因此选择①②③.【点评】截面的形状既与被截的几何体有关,还与截面的角度和方向有关.三、计算题(18分,每小题18分,解答题写过程)17.(18分)计算:5+(﹣11)﹣(﹣9)﹣(+22).【分析】原式利用减法法则变形,计算即可得到结果.【解答】解:原式=5﹣11+9﹣22=14﹣33=﹣19.【点评】此题考查了有理数的加减混合运算,熟练掌握运算法则是解本题的关键.四、解答题(本大题共8小题,共28分).18.(6分)用小正方体搭一个几何体,使它的主视图和俯视图如图所示:(1)搭这样的几何体最少需要个小正方体,最多需要个小正方体;(2)请你在俯视图的小正方体中用数字表示当用最多的小正方体搭起的几何体时该位置小正方体的个数;(3)画出其中一种搭成的几何体的左视图.【分析】(1)易得这个几何体共有3层,由俯视图可得第一层正方体的个数,由主视图可得第二层和第三层最少或最多的正方体的个数,相加即可;(2)每一列的正方体均选择主视图中个数最多的正方体的个数;(3)任选一种符合题意要求的左视图画图即可.【解答】解:(1)搭这样的几何体最少需要7+2+1=10个小正方体,最多需要7+6+3=16个小正方体;(2)个数分别为第一列都为3,第二列都为2,第三列是1;(3)(7分)如图:(有多种左视图,只要画出其中一个就行)【点评】考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,主视图疯狂盖,左视图拆违章”就更容易得到答案.19.(5分)如图是一长方体纸盒的展开图,每个面内都标注了字母.(1)如果面A在长方体的上面,那么哪个面会在下面?(2)如果面F在长方体的后面,从左面看是面B,那么A、C、D、E都在什么位置?【分析】(1)找出A的对面即可;(2)确定出F、B、A的对面,然后根据相对位置判断即可.【解答】解:(1)A得对面是C,所以面C会在下面;(2)F的对面是E,所以面E在前面,B的对面是D,所以面D在右面,面A在上面,面C在下面.【点评】本题主要考查的是几何体的展开图,找出已知面的对面是解题的关键.20.(4分)根据立体图从上面看到的形状图(如图所示),画出它从正面和左面看到的形状图(图中数字代表该位置的小正方体的个数).【分析】由已知条件可知,从正面看有2列,每列小正方数形数目分别为3,4;从左面看有2列,每列小正方形数目分别为2,4.据此可画出图形.【解答】解:如图所示:【点评】此题考查几何体的三视图画法.由几何体的俯视图及小正方形内的数字,可知主视图的列数与俯视数的列数相同,且每列小正方形数目为俯视图中该列小正方形数字中的最大数字.左视图的列数与俯视图的行数相同,且每列小正方形数目为俯视图中相应行中正方形数字中的最大数字.21.(6分)指出数轴上A,B,C,D各点分别表示的有理数,并用“<”将它们连接起来.【分析】根据数轴上各点的位置写出各数,再根据数轴的特点直接用“<”将它们连接起来即可.【解答】解:由数轴上各点的位置可知A、B、C、D四点分别表示为:0,1.5,﹣2,3.根据数轴的特点可用“<”号连接为﹣2<0<1.5<3.【点评】本题考查的是数轴上各数的特点及有理数大小比较,比较简单.22.(5分)一天上午,出租车司机小王在东西走向的路上运营,如果规定向东为正,向西为负,出租车的行车里程(单位:km)如下:+15,﹣3,+12,﹣11,﹣13,+3,﹣12,﹣18.请间小王将最后一位乘客送到目的地时,共行驶了多少千米?【分析】根据绝对值的意义,可得每次行驶的路程,根据有理数的加法,可得答案.【解答】解:由题意,得|+15|+|﹣3|+|+12|+|﹣11|+|﹣13|+|+3|+|﹣12|+|﹣18|=87(千米),答:小王将最后一位乘客送到目的地时,共行驶了87千米.【点评】本题考查了正数和负数,利用了有理数的加法运算,注意路程是每次行驶的绝对值.23.(4分)一项工程,甲单独做5天可以完成全工程;如果乙,丙两队合作12天可以完成全工程;如果三队合作,多少天可以完成全工程?【分析】把这项工程的工作总量看作单位“1”,甲的工作效率为,乙、丙两队的工作效率和为,进一步求得三个队的工作效率和,利用工作总量÷工作效率=工作时间列式解答即可.【解答】解:1÷(+)=1÷=(天)答:如果三队合作,天可以完成全工程.【点评】此题考查有理数的混合运算的实际运用,掌握工作效率、工作总量、工作时间三者之间的关系是解决问题的关键.24.(4分)若|a|=4,|b|=2,且a<b,求a+b的值.【分析】根据绝对值的性质得出a、b的值,再分别求解可得.【解答】解:∵|a|=4,|b|=2,∴a=4或﹣4,b=2或﹣2,∵a<b,∴a=﹣4,b=2或﹣2,当a=﹣4,b=2时,a+b=﹣4+2=﹣2;当a=﹣4,b=﹣2时,a+b=﹣4﹣2=﹣6.【点评】本题主要考查有理数的加法和绝对值,解题的关键是熟练掌握绝对值的性质.25.(6分)已知a,b,c在数轴上的位置如图所示,且|a|=|c|.(1)比较a,﹣a,b,﹣b,c,﹣c的大小关系.(2)化简|a+b|﹣|a﹣b|+|b+(﹣c)|+|a+c|.【分析】根据互为相反数的两数的几何意义:在数轴上,表示互为相反数的两个点,位于原点的两侧,并且与原点的距离相等.在数轴上找出﹣a,﹣b,﹣c的对应点,依据a,b,c,﹣a,﹣b,﹣c在数轴上的位置比较大小.在此基础上化简给出的式子.【解答】解:(1)解法一:根据表示互为相反数的两个点在数轴上的关系,分别找出﹣a,﹣b,﹣c对应的点如图所示,由图上的位置关系可知﹣b>a=﹣c>﹣a=c>b.解法二:由图知,a>0,b<0,c<0且|a|=|c|=|b|,∴﹣b>a=﹣c>﹣a=c>b.(2)∵a>0,b<0,c<0,且|a|=|c|<|b|,∴a+b<0,a﹣b>0,b﹣c<0,a+c=0,∴|a+b|﹣|a﹣b|+|b+(﹣c)|+|a+c|=﹣(a+b)﹣(a﹣b)﹣(b﹣c)+0=﹣a﹣b﹣a+b﹣b+c=﹣2a﹣b+c.【点评】以上分别用两种不同的方法即几何方法和代数方法进行求解.通过比较,可以发现借助数轴用几何方法化简含有绝对值的式子,比较有关数的大小有直观、简捷,举重若轻的优势.。

北师大版 2024年秋季七年级上册第一次月考数学试卷(全解全析)

北师大版 2024年秋季七年级上册第一次月考数学试卷(全解全析)

2024-2025学年七年级数学上学期第一次月考卷02(考试时间:120分钟;满分:120分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号等填写在答题卡和试卷指定位置上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

4.测试范围:第一章---第二章。

5.难度系数:0.69。

第Ⅰ卷一、选择题(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.《九章算术》中注“今两算得失相反,要令正负以名之”,意思是:有两数若其意义相反,则分别叫做正数和负数.若气温为零上10℃记作+10℃,则﹣8℃表示气温为()A.零上8℃B.零下8℃C.零上2℃D.零下2℃【解答】解:若气温为零上10℃记作+10℃,则﹣8℃表示气温为零下8℃.故选:B.2.将下列平面图形绕轴旋转一周,可得到图中所示的立体图形的是()A.B.C.D.【解答】解:A、绕轴旋转一周可得到圆柱,故此选项不合题意;B、绕轴旋转一周,可得到球体,故此选项不合题意;C、绕轴旋转一周,可得到一个中间空心的几何体,故此选项不合题意;D、绕轴旋转一周,可得到图中所示的立体图形,故此选项符合题意;故选:D.3.中国信息通信研究院测算,2020~2025年,中国5G商用带动的信息消费规模将超过8万亿元,直接带动经济总产出达10.6万亿元.其中数据10.6万亿用科学记数法表示为()A.10.6×104B.1.06×1013C.10.6×1013D.1.06×108【解答】解:10.6万亿=106000 0000 0000=1.06×1013.故选:B.4.用一个平面去截下列几何体,截面不可能是圆形的是()A. B.C. D.【解答】解:长方体用一个平面去截,可得出三角形、四边形、五边形、六边形的截面,不可能出现圆形的截面,因此选项A符合题意;圆锥体用平行于底面的一个平面去截,可得到圆形、因此选项B不符合题意,球体用一个平面去截可以得到圆形的截面,因此选项C不符合题意;圆锥体用平行于底面的平面去截,可得到圆形的截面,因此选项D不符合题意;故选:A.5.将一把刻度尺按如图所示的方式放在数轴上(数轴的单位长度是1cm),刻度尺上的“1cm”和“6cm”分别对应数轴上“﹣1.2cm”和“xcm”,则x的值为()A.3.8B.2.8C.4.8D.6【解答】解:根据数轴可知:x﹣(﹣1.2)=6﹣1,解得:x=3.8,故选:A.6.乐乐在数学学习中遇到了神奇的“数值转换机”,按如图所示的程序运算,若输入一个有理数x,则可相应的输出一个结果y.若输入x的值为﹣1,则输出的结果y为()A.6B.7C.10D.12【解答】解:把x=﹣1代入运算程序得:(﹣1)×(﹣3)﹣8=3﹣8=﹣5<0,把x=﹣5代入运算程序得:(﹣5)×(﹣3)﹣8=15﹣8=7>0,故输出的结果y为7.故选:B.7.如图是一个正方体的表面展开图,则在原正方体中,相对两个面上的数字之和的最小值是()A.5B.6C.7D.8【解答】解:根据题意,1与4相对,2与6相对,3与5相对,∴1+4=5,2+6=8,3+5=8,∴相对两个面上的数字之和的最小值是5.故选:A.8.若a是最大的负整数,b是绝对值最小的有理数,c是倒数等于它本身的自然数,则a2024+2023b﹣c2023的值为()A.2024B.2022C.2023D.0【解答】解:∵a是最大的负整数,b是绝对值最小的有理数,c是倒数等于它本身的自然数,∴a=﹣1,b=0,c=1,∴a2024+2023b﹣c2023=(﹣1)2024+2023×0﹣12023=1+0﹣1=0.故选:D.9.实数a,b满足a<0,a2>b2,下列结论:①a<b,②b>0,③1aa<1bb,④|a|>|b|.其中所有正确结论的序号是()A.①③B.①④C.②③D.②④【解答】解:∵a<0,a2>b2,∴|a|>|b|,∴a<b,故①符合题意,④符合题意;当a=﹣2,b=﹣1时,a2=4,b2=1,故②不符合题意;当a=﹣2,b=﹣1时,1aa=−12,1bb=−1,1aa>1bb,故③不符合题意;故选:B.10.若|m|=3,n2=4,且|m﹣n|=n﹣m,则m+n的值为()A.﹣1B.﹣1或5C.1或﹣5D.﹣1或﹣5【解答】解:∵|m|=3,n2=4,∴m=±3,n=±2,∵|m﹣n|=n﹣m,∴n﹣m≥0,即n≥m,∴n=2,m=﹣3或n=﹣2,m=﹣3,∴m+n=﹣1或m+n=﹣5,故选:D.第Ⅱ卷二、填空题(本大题共53分,共15分)11.若2m+1与﹣2互为相反数,则m的值为.【解答】解:∵2m+1与﹣2互为相反数,∴2m+1﹣2=0,∴m=12.故答案为:12.12.如图是由6个棱长均为1的正方体组成的几何体,该几何体的表面积为.【解答】解:主视图上有5个正方形,左视图和俯视图上有4个正方形,表面积为(5+4+4)x2=26.故答案为:26.13.高明区皂幕山某一天早晨的气温为16℃,中午上升了8℃,夜间又下降了10℃,则这天夜间皂幕山的气温是℃.【解答】解:16+8﹣10=14℃.故答案为:14.14.彰武县市场监督管理局规定我县出租车收费标准为:起步价2.50公里5.00元(即2.50公里内收费5.00元),超过2.50公里部分每超过0.60公里加收1.00元(不足0.60公里按0.60公里计算).周末小明和妈妈乘坐出租车去高山台森林公园游玩,已知小明家到高山台森林公园的里程是5.50公里,那么应付车费元.【解答】解:根据题意,得5+(5.50﹣2.50)÷0.6×1=10(元).故答案为:10.15.定义一个新运算ff(aa,bb)=�aa+bb(aa<bb)aa−bb(aa>bb),已知a2=4,b=1,则f(a,b)=.【解答】解:∵a2=4,∴a=±2,当a=2,b=1时,f(a,b)=f(2,1)=2﹣1=1;当a=﹣2,b=1时,f(a,b)=f(﹣2,1)=﹣2+1=﹣1;由上可得,f(a,b)的值为1或﹣1,故答案为:1或﹣1.三、解答题(本大题共9小题,共75分,解答应写出文字说明、证明过程或演算步骤)16.(每小题4分,共8分)计算:(1)(﹣1)2÷12+(7﹣3)×34−|﹣2|;(2)﹣14﹣0.5÷14×[1+(﹣2)2].【解答】解:(1)(﹣1)2÷12+(7﹣3)×34−|﹣2|=1×2+4×34−2=2+3﹣2=5﹣2=3;……………………4分(2)﹣14﹣0.5÷14×[1+(﹣2)2]=﹣1﹣0.5×4×(1+4)=﹣1﹣0.5×4×5=﹣1﹣10=﹣11.……………………8分17.(8分)把下列各数填在相应的大括号里(将各数用逗号分开):+8.3,﹣4,﹣0.8,﹣(﹣10),0,﹣13%,−343,﹣|﹣24|,π,﹣14.整数:{ …};非负数:{ …};分数:{ …};负有理数:{ …};【解答】解:﹣(﹣10)=10,﹣|﹣24|=﹣24,﹣14=﹣1,整数:{﹣4,﹣(﹣10),0,﹣|﹣24|,﹣14…};……………………2分非负数:{+8.3,﹣(﹣10),0,π…};……………………4分分数:{+8.3,﹣0.8,﹣13%,−343⋯};……………………6分负有理数:{﹣4,﹣0.8,﹣13%,−343,﹣|﹣24|,﹣14…}.……………………8分18.(7分)如图,直线上的相邻两点的距离为1个单位,如果点A、B表示的数是互为相反数,请回答下列问题:(1)那么点C表示的数是多少?(2)把如图的直线补充成一条数轴,并在数轴上表示:314,﹣3,﹣(﹣1.5),﹣|﹣1|.(3)将(2)中各数按由小到大的顺序用“<”连接起来.【解答】解:(1)∵点A、B表示的数是互为相反数,∴AB中点是原点,∴点C表示的数是﹣4;……………………1分(2)……………………4分(3)﹣3<﹣|﹣1|<﹣(﹣1.5)<314.……………………7分19.(8分)小车司机李师傅某天下午的营运全是在东西走向的常青公路上进行的,如果规定向东为正,向西为负,他这天下午行车里程(单位:千米)如下:+18,﹣7,+7,﹣3,+11,﹣4,﹣5,+11,+6,﹣7,+9(1)李师傅这天最后到达目的地时,距离下午出车时的出发地多远?(2)李师傅这天下午共行车多少千米?(3)若每千米耗油0.6升,则这天下午李师傅用了多少升油?【解答】解:(1)18﹣7+7﹣3+11﹣4﹣5+11+6﹣7+9=36(千米),所以李师傅这天最后到达目的地时,距离下午出车时的出发地36千米远;……………………2分(2)18+7+7+3+11+4+5+11+6+7+9=88(千米),所以李师傅这天下午共行车88千米;……………………5分(3)88×0.6=52.8(升),所以这天下午李师傅用了52.8升油.……………………8分20.(8分)如图,是由6个大小相同的小立方体块搭建的几何体,其中每个小正方体的棱长为1厘米.(1)直接写出这个几何体的表面积(包括底部):;(2)请按要求在方格内分别画出从这个几何体的三个不同方向看到的形状图.【解答】解:(1)(5+4+4)×2=26(cm2),故答案为:26cm2;……………………2分(2)根据三视图的画法,画出相应的图形如下:……………………8分21.(8分)根据下列条件求值:(1)若a、b互为相反数,c、d互为倒数,m的绝对值为6,求aa+bb mm+cccc−mm的值.(2)已知a2b>0,ab<0,a2=9,|b|=1,求a+b的值.【解答】解:(1)∵a、b互为相反数,c、d互为倒数,m的绝对值为6,∴a+b=0,cd=1,m=6或﹣6,当m=6时,原式=1﹣6=﹣5;当m=﹣6时,原式=1+6=7.综上所述:原式的值是﹣5或7.……………………4分(2)∵a2b>0,ab<0,∴b>0,a<0,∵a2=9,|b|=1,∴a=﹣3,b=1,∴a+b=﹣3+1=﹣2.……………………8分22.(8分)某自行车厂为了赶进度,一周计划生产1400辆自行车,平均每天生产200辆,由于各种原因实际每天生产量与计划量相比有出入,下表是某周的生产情况(超产为正,减产为负):星期一二三四五六日增减+4﹣2﹣4+13﹣11+15﹣9(1)根据记录可知第二天生产多少辆?(2)产量最多的一天比产量最少的一天多生产多少辆?(3)赶进度期间该厂实行计件工资加浮动工资制度.即:每生产一辆车的工资为60元,超过计划完成任务每辆车则在原来60元工资上再奖励15元;比计划每少生产一辆则在应得的总工资上扣发15元(工资按日统计,每周汇总一次),求该厂工人这一周的工资总额是多少?【解答】解:(1)200-2=198(辆),答:第二天生产198辆;……………………2分(2)15﹣(﹣11)=15+11=26(辆),答:产量最多的一天比产量最少的一天多生产26辆;……………………5分(3)60×[200×7+4+(﹣2)+(﹣4)+13+(﹣11)+15+(﹣9)]+15×[4+(﹣2)+(﹣4)+13+(﹣11)+15+(﹣9)]=60×1406+15×6=84450(元),答:该厂工人这一周的工资总额是84450元.……………………8分 23.(9分)已知13=1=14×12×22,13+23=9=14×22×32,13+23+33=36=14×32×42,…,按照这个规律完成下列问题:(1)13+23+33+43+53= =14× 2× 2. (2)猜想:13+23+33+…+n 3= .(3)利用(2)中的结论计算:(写出计算过程)113+123+133+143+153+163+…+393+403. 【解答】解:(1)13+23+33+43+53=225=14×52×62,……………………3分 (2)猜想:13+23+33+…+n 3=14×n 2×(n +1)2. ……………………5分(3)利用(2)中的结论计算:113+123+133+143+153+163+…+393+403.解:原式=13+23+33+…+393+403﹣(13+23+33+…+103) =14×402×412−14×102×112 =672400﹣3025=669375. ……………………9分24.(11分)如图,在数轴上点A 表示的数是8,若动点P 从原点O 出发,以2个单位/秒的速度向左运动,同时另一动点Q 从点A 出发,以4个单位/秒的速度也向左运动,到达原点后立即以原来的速度返回,向右运动,设运动的时间为t 秒.(1)当0.5=t 时,求点Q 到原点O 的距离; (2)当 2.5t =时,求点Q 到原点O 的距离;(3)当点Q 到点A 的距离为4时,求点P 到点Q 的距离.【答案】(1)解:当0.5=t 时,440.52t =×=,826−=, 当0.5=t 时,点Q 到原点O 的距离为6.………………………(2分)(2)解:当 2.5t =时,点Q 运动的距离为44 2.510t =×=, ∵点A 到原点的距离为8,点Q 从点A 出发,到达原点后再返回, ∴点Q 到原点O 的距离为2;………………………(4分) (3)解:点Q 到点的A 距离为4时,分三种情况讨论:①点Q 向左运动4个单位长度,此时运动时间:441t =÷=(秒),P 点表示的数是2−,Q 点表示的数是4;此时P 点到Q 点之间的距离是6.………………………(6分) ②点Q 向左运动8个单位长度到原点,再向右运动4个单位长度,则点Q 运动的距离为:8412+=,运动时间:1243t =÷=(秒) P 点表示的数是6−,Q 点表示的数是4;此时P 点到Q 点之间的距离是10.………………………(8分) ③点Q 向左运动8个单位长度到原点,再向右运动12个单位长度,则点Q 运动的距离为:81220+=,运动时间:2045t ÷(秒) P 点表示的数是10−,Q 点表示的数是12;此时P 点到Q 点之间的距离是22.综上,点P 到点Q 的距离为6或10或22.………………………(11分)。

2023-2024学年陕西省西安市重点大学附中七年级(上)第一次月考数学试卷(含解析)

2023-2024学年陕西省西安市重点大学附中七年级(上)第一次月考数学试卷(含解析)

2023-2024学年陕西省西安市重点大学附中七年级(上)第一次月考数学试卷一、选择题(本大题共10小题,共30.0分。

在每小题列出的选项中,选出符合题目的一项)1.−23的相反数是( )A. 23B. −32C. 32D. −232.某药品说明书上标有该药品保存的适宜温度是(20±2)℃,下列温度适合保存该药品的是( )A. 15℃B. 16℃C. 17℃D. 21℃3.下列几何体中,从正面看和从左面看形状相同的几何体有( )A. 1个B. 2个C. 3个D. 4个4.下面的说法正确的是( )A. 有理数的绝对值一定比0大B. 有理数的相反数一定比0小C. 如果两个数的绝对值相等,那么这两个数相等D. 互为相反数的两个数的绝对值相等5.将一个正方体的表面沿某些棱剪开,表面展开图不可能是( )A. B. C. D.6.下列计算正确的是( )A. (−1)+(−3)=4B. (−1)−(−3)=−2C. (−1)×(−3)=3D. (−1)÷(−3)=−37.已知|x−5|+|y+4|=0,则xy的值为( )A. 20B. −20C. −9D. 98.某棱柱共有14个顶点,用一个平面去截该棱柱,截面不可能是( )A. 十一边形B. 五边形C. 三角形D. 九边形9.已知有理数a ,b 在数轴上对应的位置如图所示,下列式子计算结果为正数的是( )A. a +bB. a−bC. abD. −a−b10.已知|x |=3,|y |=7,且|x +y |=x +y ,则y−x 的值为( )A. 10B. −4C. 10或4D. −10或−4二、填空题(本大题共6小题,共18.0分)11.比较大小:−23______−34.12.在−0.5,3.75,−201,|−43|,−0.8⋅3,这些数中,负分数有______ 个.13.在数轴上点A 表示的数为−2,点B 在点A 的右侧,且与点A 相距3个单位长度,则点B 表示的数为______ .14.已知正方体的表面展开图如图所示,若相对面上标有的两个数互为相反数,则x +y−z 的值为______ .15.若a 是绝对值最小的数,b 是12的倒数,c 是最大的负整数,则a−b−c 的值是______ .16.如图,桌面上摆放了三个完全相同的正方体,六个面分别标有数字1、2、3、4、5、6,且两处重合面标有的数字相同,则暴露在外面的(不含与桌面重合)数字之和为______ .三、解答题(本大题共7小题,共52.0分。

七年级数学第一次月考成绩分析 -

七年级数学第一次月考成绩分析 -

七年级数学第一次月考成绩分析第一次月考已经结束,针对数学这一科,做如下的试卷分析。

本次考查的内容是开学一个月以来所学的第一章的知识,满分100分,共四大题,34个小题,知识覆盖面全,题量适宜,从学生所得成绩上来看8班参考39人,有24人及格,最高分98,最低分17,优秀人数6人。

下面针对学生在答题过程中丢分现象作如下分析:第一大题是填空题。

每空3 分共30分,大部分学生在第4小题、第5小题、第6小题、第9小题上失分严重,主要原因是对于考查有理数的分类、绝对值的意义和根据数轴比较大小等问题掌握的不好,导致严重失分,再有就是学生们对于绝对值距离的意义理解不清,产生了一个解的后果。

第二大题是选择题。

每空1分,共17分,失分严重的是2、3、6等题,主要原因还是概念不清,尤其是6题,学生只考虑正数一个条件,或者对于“不大于”不理解,,盲目写出答案,还有的学生不好好读题导致失分。

第三大题是计算题,共23分,这些计算在学生放十一长假时教师已经布置过的,开学之后又重新做了一遍,结果还是有大部分学生失分严重,反复做还是有不会的同学,全班有四分之三的学生在此计算上丢了不该丢的分。

具体原因就是有理数的加减,特别是对负数的加减模糊不清。

第四大题是解答题,最后两题出错多,有很多学生不会写步骤,有些同学理解不到位。

成绩摆在面前,确实有些不尽人意,从我个人角度来反思如下:1、课堂上,我们采用的是分组教学法进行教学,通过一个月下来,感觉做的不实,在学生进行课上预习时,效果不好,有一大部分学生不会预习,只是走马观花,一目十行,学习目标只当摆设,小组讨论流于形式,课堂上一片假繁荣,从现在开始,我要有针对性的培养学生的预习,让他们学会抓重点,学的实,小组讨论要有层次,而不是表面现象,对于在二次尝试时,尽可能的让学生教学生,体现兵教兵,而不是放不开手,导致牵着学生走。

2、课下,及时批改作业,发现问题及时解决,不同的学生要有不同的要求,不能千篇一律,让有能力的学生得已发展,能力差的学生有所提高。

2023-2024学年安徽省六安市七年级上册数学第一次月考试卷(含解析)

2023-2024学年安徽省六安市七年级上册数学第一次月考试卷(含解析)

2023-2024学年安徽省六安市七年级(上)第一次月考数学试卷一、选择题(本大题共10小题,共40.0分。

在每小题列出的选项中,选出符合题目的一项)1.中国古代著作《九章算术》在世界数学史上首次正式引入负数.如果盈利90元记作+90元,那么亏本60元记作( )A. −60元B. −70元C. +60元D. +70元2.华为最新款手机芯片“麒麟990”是一种微型处理器,每秒可进行100亿次运算.数据100亿用科学记数法表示为( )A. 0.1×1011B. 1×1011C. 1×1010D. 10×1093.下列计算正确的是( )A. 2ab−ab =abB. 2ab +ab =2a 2b 2C. 4a 3b 2−2a =2a 2bD. −2ab 2−a 2b =−3a 2b 24.用“☆”定义一种新运算:对于任意有理数x 和y ,x ☆y =a 2x +ay +1(a 为常数),如:2☆3=a 2⋅2+a ⋅3+1=2a 2+3a +1.若1☆2=3,则3☆6的值为( )A. 7B. 8C. 9D. 135.在代数式x 2+5,−1,x 2−3x +2,π,5x ,x 2+5x +1中,整式有( )A. 3个 B. 4个 C. 5个 D. 6个6.有理数a ,b 在数轴上对应的位置如图,则( )A. a +b <0B. a +b >0C. a−b =0D.a−b >07.若x =2是关于x 的一元一次方程mx−n =3的解,则2−6m +3n 的值是( )A. 11B. −11C. −7D. 78.观察下面“品”字形中各数之间的规律,根据观察到的规律得出a 的值为( )A. 23B. 75C. 77D. 1399.数轴上有O ,A ,B ,C 四点,各点位置与各点所表示的数如图所示,若数轴上有一点D ,D 点所表示的数为d ,且|d−5|=|d−b |,则关于D 点的位置,下列叙述正确的是( )A. 在点A的左边B. 介于点A与点B之间C. 介于点B与点0之间D. 介于点O与点C之间10.小明经销一种服装,进货价为每件a元,经测算先将进货价提高200%进行标价,元旦前夕又按标价的4折销售,这件服装的实际价格( )A. 比进货价便宜了0.52a元B. 比进货价高了0.2a元C. 比进货价高了0.8a元D. 与进货价相同二、填空题(本大题共4小题,共20.0分)11.单项式−3πx2y的系数是______.412.多项式1x|m|−(m−2)x−7是关于x的二次三项式.则m的值是______ .213.已知代数式2x2+ax−y+6−2bx2+3x−5y−1的值与字母x的取值无关,则a b=______.14.下列说法:①比−1小2的数是−3;②若a,b互为相反数,则a=−1;③若a+b<0,ab>0,则|a+bb|=−a−b;④若多项式ax3+bx+1的值为5,则多项式−ax3−bx+1的值为−3,其中正确的为______ (填序号).三、计算题(本大题共2小题,共14.0分)15.一只小虫从某点P出发,在一条直线上来回爬行,假定把向右爬行的路程记为正数,向左爬行的路程记为负数,则爬行各段路程(单位:厘米)依次为:+5,−3,+10,−8,−6,+12,−10.(1)通过计算说明小虫是否回到起点P.(2)如果小虫爬行的速度为0.5厘米/秒,那么小虫共爬行了多长时间.16.某窗户如图,其上方由2个半径相同的四分之一圆组成。

七年级数学第一次月考考后反思

七年级数学第一次月考考后反思

七年级数学第一次月考考后反思一、试题分析本次测试共有三个大题, 分为选择、填空、解答, 计有22个小题。

1.基本题的分值占75%, 以基本题为主。

突出了对学生基本数学素养的评价;突出对数学思想方法的考查。

2、以学生的发展为本, 考查学生对基础知识的理解, 体现义务教育的基础性和发展性。

3、形式活泼多样, 知识点覆盖面广。

在考查内容上对本章各个层面数学知识均有所涉及, 突出对数学思维能力的考查, 如第3、5、18、21、23等题;让各个层次的学生考出自己的水平;适宜不同层次的考生能充分发挥其水平。

二、试卷分析1. 试卷基本情况试卷基本统计量说明: 72分及其以上为及格, 96分及其以上为优秀.2.答题分析从4班学生答题情况看, 基本题的得分情况较好.(1)选择题中出现的问题主要有:第3题中立方体展开图理解不够, 第5题中对于线段、直线、射线的判断存在有错误, 第8题中数线段的的条数有误。

(2)填空题中出现的错误主要有: 第9题棱锥与棱柱的区分有误区。

第12题对于射线的判断存在错误。

第13题中立方体的展开图理解的不到位。

第15.16题对于线段的度量的做题方法掌握的不好(3)解答题中出现的错误主要有: 第17题立方体展开图沿虚线的里外对折。

第19题的画图对于解题步骤的完整性。

三、对今后数学教学的一些建议1.抓好基础, 搞好数学核心内容的教学注重对支撑初中数学知识体系的基础知识、基本技能、基本方法的教学, 是学生发展的前提, 只有具备扎实的数学基础, 才能为学生能力提高创造条件。

因此, 教师的平时教学要依照课程标准要求, 加强对基础知识的教学, 尤其是要搞好数学核心内容(包括基本概念、定理、公式、法则等等)的教学, 不仅要注重这些基础知识的本身的教学, 而且要揭示这些知识的来龙去脉和内在联系, 让学生体会数学知识的发生、发展过程, 把握蕴涵其中的数学思想方法。

2.关心数学“学困生”从试卷分析中, 发现“低分段”的考生比例偏高, 这些考生对容易基本题也不会做, 说明这些学生在初中义务教育阶段没有掌握基本数学知识, 从而成为提升初中数学教学质量的一大“颈瓶”, 这不得不引起我们认真反思。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

七年级数学第一次月考试卷分析
小薄中学
七年级组
七年级数学第一次月考试卷分析
一、试题特点
试卷包括填空题、选择题、解答题三个大题,共120分,以基础知识为主。

对于整套试题来说,容易题约占70%、中档题约占20%、难题约占10%,主要考查了七年级上册第一章有理数,这次数学试卷检测的范围应该说内容全面,难易也适度,注重基础知识、基本技能的测检,比较能如实反映出学生的实际数学知识的掌握情况。

无论是试题的类型,还是试题的表达方式,都可以看出出卷老师的别具匠心的独到的眼光。

试卷能从检测学生的学习能力入手,细致、灵活地来抽测每节的数学知识。

打破了学生的习惯思维,能测试学生思维的多角度性和灵活性。

二、学生问题分析
根据对试卷成绩的分析,学生在答卷过程中存在以下几主面的问题
1、基本概念的考查上灵活、严谨、深刻,主要试题有(1—7、11)题,通过这些试题测试,可反映出学生对基本概念理解的准确程度及领悟能力。

2、基本计算能力有待提高。

计算能力的强弱对数学答题来说,有着举足轻重的地位。

计算能力强就等于成功了一半,如解答题的第23题的(4)、(10),24题的(2),学生在计算的过程中都出现不少错误.
3、数学思维能力差这些问题主要表现在填空题的第10题,第15题,第12题和解答题的26题.
4、审题能力及解题的综合能力不强。

如16题。

审题在答题中比较关键,如果对题目审得清楚,从某种程度上可以说此题已做对一半,数学不仅是一门科学,也是一种语言,在解题过程中,不仅要要求学生学会如何解决问题,还必须要让学生学会阅读和理解材料,会用口头和书面形式把思维的过程与结果向别人表达,也就是要有清晰的解题过程。

数学联系生活的能力稍欠。

三、从学生试题解答中,反映出教学中应注意的问题。

1、分层教学过程中,要把握为教学尺度,教学过程要有针对性。

从试卷的选择题、填空题的情况看学生优劣不等,这说明学生在基础知识的掌握上已经两极分化,对普通生而言,必须强化基础知识的教学,不要使学生在基本知识的形成上出现较大差距,要根据学生的情况,有针对性地进行教学。

2、重视初中生运算能力的培养。

从学生答题中可以看到计算题的失分率较高,许多重点生比普通学生的
计算题得分率还低,而试题也没有要求较高的运算能力,这说明学生的运算能力很差。

而学生的运算能力是数学中的重要能力,因此有必要在教学时重视对学生运算方向的训练,传授一些基本的算法、算理,强调运算的准确性。

3、要引导学生注重考试经验的积累。

从学生试卷的解答过程中看到:学生在处理试卷时,答题经验不足。

主要表现是:审题不认真、计算过程不严谨、结果不准确,对各类型试题的解答方法掌握不得当、解题格式不规范、结果形成不规范、盲目追求试卷长度、解题质量不高等问题。

建议教学过程中,教师要结合学生答题过程的得失,让学生总结经验,吸取教训,有效的指导学生正确处理试卷中各类题型,尽可能减少损失。

四、今后的教学注意事项:
通过这次考试学生的答题情况来看,我认为在以后的教学中应从以下几个方面进行改进:
1、立足教材,教材是我们教学之本,在教学中,我们一定要扎扎实实地给学生渗透教材的重难点内容。

不能忽视自认为是简单的或是无关紧要的知识。

2、教学中要重在突显学生的学习过程,培养学生的分析能力。

在平时的教学中,作为教师应尽可能地为学生提供学习材料,创造自主学习的机会。

尤其是在应用题的教学中,要让学生充分展示思维,让他们自己分析题目设计解题过程。

3、多做多练,切实培养学生的计算能力。

有时他们是凭自己的直觉做题,不讲道理,不想原因,这点从试卷上很清楚地反映出来了。

4、关注生活,培养实践能力加强教学内容和学生生活的联系,让数学从生活中来,到生活中去,从而培养学生解决实际生活中问题的能力。

5、关注过程,引导探究创新,数学教学不仅要使学生获得基础知识和基本技能,而且要着力引导学生进行自主探索,培养自觉发现新知识、新规律的能力。

6、多一些鼓励,少一些呵斥;多一份耐心,少一些将就!
总之结合这次考试的得与失,做好认真的分析与总结工作,相信我们在下次考试中会取得进步!。

相关文档
最新文档