北京海淀区2013-2014九年级第一学期期中数学试题

合集下载

北京市海淀区2023-2024学年九年级上学期期中模拟数学试题

北京市海淀区2023-2024学年九年级上学期期中模拟数学试题

北京市海淀区2023-2024学年九年级上学期期中模拟数学试题一、单选题1.“鸡”不仅代表着吉祥,还代表着守时、准信,深受人们喜爱.以下四个图形中能够通过图旋转得到的是( )A .B .C .D .2.关于x 的一元二次方程22310x x +-=的二次项系数,一次项系数,常数项分别是( ) A .2,3,1-B .2,3-,1C .2,3-,1-D .2-,3,13.将抛物线()228y x =--向下平移3个单位,再向右平移3个单位后的解析式为( ) A .()255y x =-- B .()2511y x +-=C .()2511y x --=D .()2511y x =-+4.如图,定点B ,C ,D 在O e 上,连接BO DO CD BC ,,,, 若134C ∠=︒,则BOD ∠的度数为( )A .46︒B .67°C .92︒D .96︒5.二次函数2y ax bx c =++自变量和函数量的部分对应值如下表所示,则关于x 的不等式250ax bx c ++-≤的解集为( )A .2x ≤-B . 0x ≥C .2x ≤-或0x ≥D .20x -≤≤6.如图,在ABC V 中,6AB AC ==,120A ∠=︒,过点A 作AD BC ⊥,延长AD 至点N ,使得AD DN =,在平面上有一动点M ,使90AMN ∠=︒,连接BM ,则BM 的最小值为( )A .3 BC .3D .37.如图,二次函数2y ax bx c =++的图象与y 轴交于()0,c ,对称轴为1x =-,对于此二次函数,有以下四个结论:①2240ab a c ->; ②2a 2b 2c 0-+>;③若此抛物线经过点(),C t n ,则2t -+一定是方程20ax bx c n ++-=的一个根 ;④320b c +<,中所有正确结论的序号是( )A .①④B .①③C .②④D .②③8.风寒效应是一种因刮风所引起的使体感温度较实际气温低的现象,科学家提出用风寒温度描述刮风时的体感温度,并通过大量实验找出了风寒温度和风速的关系.下表中列出了当气温为5℃时,风寒温度T (℃)和风速v (km /h )的几组对应值,那么当气温为5℃时,风寒温度T 与风速v 的函数关系最可能是( )A .正比例函数关系B .一次函数关系C .二次函数关系D .无法确定二、填空题9.在平面直角坐标系中,点()1,6A 关于原点对称的点的坐标是 10.若关于x 的方程2221x mx +-=有一个根为1,则m 的值为11.若点()12,B y -,()20.5,C y ,()31.3,D y 在抛物线()22y x x =+的图象上,则1y ,2y ,3y 的大小关系为(用“>”或“=”进行连接)12.紫砂壶是我国特有的手工制造陶土工艺品,图2是正确使用该工具时的示意图.如图3,O e 为某紫砂壶的壶口,已知A ,B 两点在O e 上,直线l 过点O ,且l AB ⊥于点D ,交Oe 于点C .若12AB =,2CD =,则这个紫砂壶的壶口半径r 的长为13.抛物线226y x x =--,当14x -<<时,函数y 的取值范围是 14.在ABC V 中,90BAC ∠=︒,AB AC =,将ABP V 绕点A 逆时针旋转后能与ACP '△重合,当B ,P ,P '在同一条直线上,连接PC ,若3AP =,5BP =,则PC =.15.已知某抛物线上部分点的横坐标x ,纵坐标的对应值如下表:那么该抛物线的顶点坐标是;当1x k -<≤时,总有40y -≤<,则k 的取值范围是三、解答题16.数学课上,褚老师进行了一个数学游戏,具体规则如下:已知抛物线2y ax bx c =++,给定了I 和II 两个条件框,甲同学要从条件框I 中任选一个条件,乙同学从条件框II 中任选两个条件,若选定的三个条件能使这个抛物线唯一确定,则游戏胜利;若无法唯一确定或此抛物线不存在,则游戏失败. 【条件框I 】【条件框II 】(1)甲同学在条件I 中选择条件③,若游戏失败,写出一个乙同学选择的方案; (2)无论甲同学选择了条件框I 中的哪个条件,游戏都胜利,写出乙同学可能选择的方案.(填写序号即可)17.方程:2115550x xx -+=-.18.如图,在等边ABC V 中,点D 是AB 边上一点,连接CD ,将线段CD 绕点C 按顺时针方向旋转60°后得到CE ,连接AE .求证:AE BD =.19.已知:a 是方程2310x x ++=的一个根,求代数式()()()2()21122a a a a +++-++的值. 20.ABC V 中,90ABC ∠=︒,30A ∠=︒,将ABC V 绕点C 顺时针旋转90︒得到EDC △,其中,点B 对应点D ,点A 对应点E ,连接BD(1)依题意补全图形;直接写出BD 与EC 的数量关系(2)过点D 作DP AB ⊥,交AC 于点T ,若2TC =,求AT 的长21.已知:关于x 的一元二次方程()2102x k k x -+-+=(1)求证:该方程总有两个实数根(2)若方程的有一个根大于3,求k 的取值范围22.在平面直角坐标系xOy 中,抛物线()2y a x h k =-+的对称轴为直线3x = (1)若此抛物线过点()2,3,()0,11,求抛物线的解析式(2)当1a =时,对任意x 值,都有()22a x h k x -+>+,结合图象,直接写出k 的取值范围. 23.列一元二次方程解决实际问题:如图,某校计划在宽为20m ,长为32m 的矩形地面上修筑同样宽的道路(图中阴影部分),余下的部分种上草坪.若要使草坪的面积为2540m ,求道路宽的长度.24.在平面直角坐标系xOy 中,抛物线223y mx mx m =--+(0m >)顶点为Q .(1)求抛物线顶点Q 的坐标.(2)在平面内有三点()()3356A B ,,,,点C 是由点B 向下平移4个单位得到的; ①直接写出点C 的坐标;②若抛物线223y mx mx m =--+(0m >)与三角形ABC 有2个交点,结合图象,直接写出m 的取值范围.25.排球是一项风靡全球的运动,也是北京体育中考选考球类的一项.如图,排球运动场的场地长18m ,球网高度2.24m ,球网在场地中央,距离球场左、右边界均为9m .小刚在场地左侧边界练习发球,排球的飞行路线可以看作是对称轴垂直于水平面的抛物线的一部分.在球飞行时,将球与场地左边界的水平距离记为x (米),与地面的高度记为y (米) 以下是小刚的某一次练习的部分数据:(1)求此抛物线的解析式()()20y a x h k a =-+< (2)在此基础上,小刚继续练习:第一次练习:只将出手高度增加1m ,排球飞行轨迹的大致形状与(1)中完全一样 第二次练习:改变排球的飞行轨迹,使其飞行轨迹近似满足此抛物线:()20.047 2.5y x =--+ ①直接写出第一次练习的抛物线解析式;②我们将满足以下两个条件的发球叫做“有效发球”: 条件I :发球后,排球能过球网;条件II :发球后,排球的第一落点在右半区,且在右边界以里. 任意选择一次练习,判断此次练习是否为一次“有效发球”,并说明理由.26.在平面直角坐标系xOy 中,抛物线()20y ax bx c a =++>的对称轴是x t =,不重合的两点()11,y ,()252,t y -在此抛物线上 (1)若12y y =,求t 的值(2)若12y c y <<, 求t 的取值范围27.在ABC V 中,AC BC =,90ACB ∠=︒,点D 在BC 边上(不与点B ,C 重合),将线段AD 绕点A 顺时针旋转90︒,得到线段AE ,连接DE .(1)根据题意补全图形,并证明:EAC ADC ∠=∠;(2)过点C 作AB 的平行线,交DE 于点F ,用等式表示线段EF 与DF 之间的数量关系,并证明.28.在平面直角坐标系xOy 中,对于线段MN ,点Q 和图形T 进行以下定义:若线段MN 绕点Q 旋转180度后,新线段AB (A 对应M ,B 对应N )在图形T 里(包括图形T 边界),我们就称点Q 是图形T 和线段MN 的凸显点,若点Q 在图形T 里(包括边界),且满足凸显点定义 则称点Q 是图形T 和线段MN 的凸显差距点(1)已知()42,,()62,是线段p 的两个端点,()3,0C -,()3,3D -,()1,3E ,()10F ,,我们将四边形CDEF 称为图形1T .则下列点是图形1T 和线段p 的凸显点的是(填写序号)①()111Q ,; ②()222Q , ; ③()320Q ,; ④()41.51.5Q , (2)若()0M t ,,()1,1N t -,图形2T 以点()2,2P 为中心作边长为6的正方形,且各边均与坐标轴平行,①若 (),2Q Q x ,当12t <≤时,存在点Q 使得Q 为图形2T 和线段MN 的凸显差距点,求此时点Q 横坐标Q x 的取值范围.②以点P 为中心作边长为3的正方形,且各边均与坐标轴平行,我们将其与图形2T 的非重叠部分记为图形3T .直线l 过点()0,2-,线段MN 关于直线l 对称后的线段记作线段m ,无论直线l 如何旋转,总会有点Q 是图形3T 和线段m 的凸显差距点,直接写出t 的取值范围.。

初三数学上期中试题

初三数学上期中试题

2012-2013(1)期中考试 9年级数学试题一、选择题(每小题3分,共36分。

请将答案写在答题栏内,否则,不得分) 1.下列关于x 的方程中,是一元二次方程的有( ) A .221xx +B .02=++c bx ax C .()()121=+-x x D .052322=--y xy x 2.下列计算正确的是( )(A )2·3= 6 (B) 2+3= 6 (C) 8=3 2 (D) 4÷2=2 3.下列图形中,既是轴对称图形又是中心对称图形的是( )4有意义,则x 的取值范围为( ) (A )x ≥2 (B )x ≠3 (C )x ≥2或x ≠3 (D )x ≥2且x ≠3 5.在一幅长80cm ,宽50cm 的矩形风景画的四周镶一条金色纸边,制成一幅矩形挂图,如果要使整个挂图的面积是5400cm 2,设金色纸边的宽为x cm ,那么x 满足的方程是( )A .x 2+130x -1400=0B .x 2+65x -350=0C .x 2-130x -1400=0D .x 2-65x -350=06.如图,CD 切⊙O 于B ,CO 的延长线交⊙O 于A ,若∠C=36°, 则∠ABD 的度数是( )(A )72°(B )63° (C )54° (D )36°7.已知两圆的半径分别是5cm 和4cm ,圆心距为7cm ,那么这两圆的位置关系是( )A .相交 B .内切 C .外切 D .外离 8.如图,⊙O的半径为5,弦AB的长为8, M是弦AB上的动点,则线段OM长的最小值为( ) A.2 B.3 C.4 D.59.若关于x 的一元二次方程0122=-+x kx 有实数根,则k 的取值范围是( )(A)k >-1 (B)k ≥-1(C)k >-1且k ≠0(D)k ≥-1且k ≠0 10.正六边形的外接圆的半径与内切圆的半径之比为( )A .1: B .:2 C .2: D .:111.时钟上的分针匀速旋转一周需要60min 则经过10min ,分针旋转了 ( )3333OABM86题班级 考号 姓名________________◆◆◆◆◆◆◆◆◆◆◆装◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆订◆◆◆◆◆◆◆◆◆◆◆◆◆线◆◆◆◆◆◆◆◆◆A 、100B 、200C 、300D 、600 12、图中的五个半圆,邻近的两半圆相切,两只小虫同时出发, 以相同的速度从A 点到B 点,甲虫沿1ADA 、 21EA A 、32FA A 、GB A 3,乙虫沿1ACB 路线爬行,则下列结论正确的是( ).(A )甲先到B 点(B )乙先到B 点 (C )甲、乙同时到B (D )无法确定(选择题答题栏)1011二、填空题(每小题4分,共24分)13..已知在⊙O 中,半径r=13,弦AB ∥CD ,且AB=24,CD=10,则AB 与CD 的距离为__________. 14.实数a 在数轴上的位置如图6所示,化简:=-+-2)2(|1|a a 。

2013届海淀区高三第一学期期中练习数学试题(文科)

2013届海淀区高三第一学期期中练习数学试题(文科)

海淀区高三年级第一学期期中练习数 学(文科) 2012. 11本试卷共4页,150分。

考试时长120分钟。

考生务必将答案答在答题卡上,在试卷上作答无效。

考试结束后,将本试卷和答题卡一并交回。

一、选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.已知全集U =R ,集合{|10}A x x =-≤,则U A =ð A .(,1)-∞B .(1,)+∞C .(,1]-∞D .[1,)+∞2.下列函数中,在定义域内是减函数的是A .()f x x =B .()f x =C .1()2xf x =D .()ln f x x =3.在平面直角坐标系中,已知(0,0)O ,(0,1)A ,(1B ,则OA OB ⋅uu r uu u r的值为A .1B 1C D 14.函数211()(2)2x f x x x +=≤≤的值域为 A .[2,)+∞ B .5[,)2+∞C .5[2,]2D .(0,2]5.设0.5a =π,3log 2b =,cos 2c =,则 A .c a b <<B .a c b <<C .b c a <<D .c b a <<6.已知函数()f x 是定义在实数集R 上的偶函数,则下列结论一定成立的是 A .x ∀∈R ,()()f x f x >- B .0x ∃∈R ,00()()f x f x >- C .x ∀∈R ,()()0f x f x -≥ D .0x ∃∈R ,00()()0f x f x -<7.已知函数1,0,()1,0,x f x x -<⎧=⎨≥⎩则不等式(1)1xf x -≤的解集为A .[1,1]-B .[1,2]-C .(,1]-∞D .[1,)-+∞8.已知集合{(,)|()}M x y y f x ==,若对于任意11(,)x y M ∈,存在22(,)x y M ∈, 使得12120x x y y +=成立,则称集合M 是“好集合”.给出下列3个集合:①1{(,)|}M x y y x== ②{(,)|cos }M x y y x == ③{(,)|e 2}xM x y y ==-其中所有“好集合”的序号是 A .①②B .②③C .③D .①②③二、填空题:本大题共6小题,每小题5分,共30分.9. 已知数列{}n a 中,11a =,12n n a a +=,则5a = . 10.2(sin15cos15)︒+︒= .11.已知函数1()f x x=,则曲线()y f x =在点(1,(1))f 处得切线方程为 . 12.在ABC ∆中,点M 为边AB 的中点,若OP uu u r ∥OM uuu r ,且(0)OP xOA yOB x =+≠u u u r u u r u u u r ,则yx= .13.已知函数()y g x =的图象由()sin 2f x x =的图象向右平移(0)ϕϕ<<π个单位得到,这两个函数的部分图象 如图所示,则ϕ= .14.数列{}n a 中,如果存在k a ,使得“1k k a a ->且1k k a a +>”成立(其中2k ≥,k *∈N ),则称k a 为{}n a 的一个峰值. (Ⅰ)若|7|n a n =--,则{}n a 的峰值为 ;(Ⅱ)若2,24,2n n tn n a tn n ⎧-≤=⎨-+>⎩且{}n a 存在峰值,则实数t 的取值范围是 .三、解答题:本大题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程. 15.(本小题满分13分)在Rt ABC ∆中,3AC =,4BC =,点D 是斜边AB 上的一点,且AC AD =. (Ⅰ)求CD 的长; (Ⅱ)求sin BDC ∠的值.16.(本小题满分13分)已知等差数列{}n a 的前n 项和为n S ,且25a =-,520S =-. (Ⅰ)求数列{}n a 的通项公式;(Ⅱ)求使不等式n n S a >成立的n 的最小值.17.(本小题满分13分)已知函数2()2sin cos(2)2f x x x π=-+. (Ⅰ)求()8f π的值;(Ⅱ)求函数()f x 的最小正周期及单调递增区间.18.(本小题满分13分)如图所示,已知边长为8米的正方形钢板有一个角被锈蚀,其中4AE =米,6CD =米.为了合理利用这块钢板,将在五边形ABCDE 内截取一个矩形块BNPM ,使点P 在边DE 上.(Ⅰ)设MP x =米,PN y =米,将y 表示成x 的函数,求该函数的解析式及定义域;(Ⅱ)求矩形BNPM 面积的最大值. 19.(本小题满分14分)已知函数31()13f x x ax =-+. (Ⅰ)若1x =时,()f x 取得极值,求a 的值; (Ⅱ)求()f x 在[0,1]上的最小值;(Ⅲ)若对任意m ∈R ,直线y x m =-+都不是曲线()y f x =的切线,求a 的取值范围.20.(本小题满分14分)已知数集12{,,A a a =…,}n a 12(1a a =<<…,4)n a n <≥具有性质P :对任意的(2)k k n ≤≤,,(1)i j i j n ∃≤≤≤,使得k i j a a a =+成立.(Ⅰ)分别判断数集{1,2,4,6}与{1,3,4,7}是否具有性质P ,并说明理由; (Ⅱ)求证:41232a a a a ≤++; (Ⅲ)若72n a =,求n 的最小值.NBMDF CA海淀区高三年级第一学期期中练习数 学 (文)参考答案及评分标准 2012.11说明: 合理答案均可酌情给分,但不得超过原题分数. 一、选择题(本大题共8小题,每小题5分,共40分)二、填空题(本大题共6小题,每小题5分, 有两空的小题,第一空3分,第二空2分,共30分)三、解答题(本大题共6小题,共80分) 15.(本小题满分13分)解:(I )因为在直角ABC ∆中,3,4AC BC ==,所以5,AB = ………………1分所以3cos 5A = ………………3分 在ACD ∆中,根据余弦定理2222cos CD AC AD AC AD A =+-⋅ ………………6分所以2223332335CD =+-⋅⋅⋅ 所以CD = …………8分 (II )在BCD ∆中,3sin 5B =………………9分 根据正弦定理sin sin BC CDBDC B=∠∠ ………………12分把4BC =,CD =代入,得到sin BDC ∠=………………13分 16.(本小题满分13分)解:(I )设{}n a 的公差为d ,依题意,有 21515,51020a a d S a d =+=-=+=- ………2分联立得11551020a d a d +=-⎧⎨+=-⎩解得161a d =-⎧⎨=⎩………5分所以6(1)17n a n n =-+-⋅=- ………………7分 (II )因为7n a n =-,所以1(13)22n n a a n n S n +-==………………9分 令(13)72n n n ->-,即215140n n -+> ………………11分 解得1n <或14n > 又*N n ∈,所以14n > 所以n 的最小值为15 ………13分17. (本小题满分13分)解:(Ⅰ)因为2π()2sin cos(2)2f x x x =-+22sin sin 2x x =+………2分 1cos2sin 2x x =-+ ……4分πs i n (2)14x -+ …………6分 所以πππ()sin()11844f =-+= ………………7分(Ⅱ)因为π())14f x x =-+ 所以2ππ2T == …………9分 又sin y x =的单调递增区间为ππ2π,2π+22k k -()() Z k ∈,……………10分 所以令πππ2π22π242k x k -<-<+, ………………11分解得π3πππ88k x k -<<+………………12分 所以函数()f x 的单调增区间为π3π(π,π)88k k -+() Z k ∈,…………13分 18.(本小题满分13分)解:(I )作PQ AF ⊥于Q ,所以8,4PQ y EQ x =-=- ………2分 在EDF ∆中,EQ EF PQ FD= 所以4482x y -=- …………4分 所以1102y x =-+,定义域为{|48}x x ≤≤ …………6分 (II) 设矩形BNPM 的面积为S ,则21()(10)(10)5022x S x xy x x ==-=--+ ………9分 所以()S x 是关于x 的二次函数,且其开口向下,对称轴为10x =所以当[4,8]x ∈,()S x 单调递增 ……………11分 所以当8x =米时,矩形BNPM 面积取得最大值48平方米 ………………13分 19. (本小题满分14分)解:(I )因为2()f x x a =-' ………………2分当1x =时,()f x 取得极值,所以(1)10f a =-=', 1a = ………………3分 又当(1,1)x ∈-时, ()0,f x <'(1,)x ∈+∞时,()0,f x >' 所以()f x 在1x =处取得极小值,即1a =符合题意 ………………4分(II) 当0a ≤时,()0f x >'对(0,1)x ∈成立, 所以()f x 在(0,1)上单调递增,()f x 在0x =处取最小值(0)1f = ………………6分当0a >时,令2()0f x x a =-=',12x x == ………………7分当01a <<1<x ∈时, ()0,f x <'()f x 单调递减 x ∈时,()0,f x >' ()f x 单调递增所以()f x 在x =1f =- ………………9分当1a ≥1(0,1)x ∈时, ()0,f x <'()f x 单调递减 所以()f x 在1x =处取得最小值4(1)3f a =- ……11分 综上所述,当0a ≤时,()f x 在0x =处取最小值(0)1f =当01a <<时,()f x 在x =1f = 当1a ≥时,()f x 在1x =处取得最小值4(1)3f a =-. (III)因为R m ∀∈,直线y x m =-+都不是曲线()y f x =的切线,所以2()1f x x a =-≠-'对R x ∈成立,…12分 只要2()f x x a =-'的最小值大于1-即可,而2()f x x a =-'的最小值为(0)f a =- 所以1a ->-,即1a < ………………14分 20.(本小题满分14分)解:(Ⅰ)因为2=1+1,4=2+2,6=2+4,所以{1,2,4,6}具有性质P ………………2分因为不存在,{1,3,4,7}i j a a ∈,使得3i j a a =+ 所以{1,3,4,7}不具有性质P ………4分 (Ⅱ)因为集合12={,,,}n A a a a ⋅⋅⋅具有性质P ,所以对4a 而言,存在12,{,,,}i j n a a a a a ∈⋅⋅⋅,使得 4i j a a a =+ 又因为12341<<<<, 4n a a a a a n =⋅⋅⋅≥所以3,i j a a a ≤,所以432i j a a a a =+≤ ………6分同理可得322a a ≤,212a a ≤将上述不等式相加得234123++2(++)a a a a a a ≤ 所以41232++a a a a ≤…9分。

2014年北京市中考数学试卷(含答案和解析)

2014年北京市中考数学试卷(含答案和解析)

算 2014 年该小区成年国民阅读图书的总数量约为
_________ 本.
?
21.( 5 分)( 2014?北京)如图, AB 是 eO 的直径, C 是 AB 的中点, eO 的切线 BD 交 AC 的延长线于点 D ,E 是 OB 的中点, CE 的延长线交切线 BD 于点 F,AF 交 eO 于点 H,连接 BH . ( 1)求证: AC=CD ; ( 2)若 OB=2,求 BH 的长.
AB , FE ,FD 之间的数量关系,并证明.
25.( 8 分)( 2014?北京) 对某一个函数给出如下定义: 若存在实数 M > 0,对于任意的函数值 y,都满足﹣ M <y≤M ,
则称这个函数是有界函数,在所有满足条件的
M 中,其最小值称为这个函数的边界值.例如,如图中的函数是有
界函数,其边界值是 1.
=所求情况数与总情况数之比.
4.( 4 分)(2014 ?北京)如图是几何体的三视图,该几何体是(

A .圆 锥
B.圆柱
C. 正 三棱柱
D .正 三棱锥
考点 : 由三视图判断几何体. 分析: 如图:该几何体的俯视图与左视图均为矩形,主视图为三角形,易得出该几何体的形状. 解答: 解:该几何体的左视图为矩形,俯视图亦为矩形,主视图是一个三角形,
五、解答题(本题共 22 分,第 23 题 7 分,第 24 题 7 分,第 25 题 8 分)
23.( 7 分)( 2014?北京)在平面直角坐标系 ( 1)求抛物线的表达式及对称轴;
2
xOy 中,抛物线 y=2x +mx+n 经过点 A (0,﹣ 2), B (3, 4).
( 2)设点 B 关于原点的对称点为 C,点 D 是抛物线对称轴上一动点,记抛物线在 A , B 之间的部分为图象 G(包

2014届全国名校数学试题解析汇编专题(11)圆(解析版)

2014届全国名校数学试题解析汇编专题(11)圆(解析版)

一.选择题1. 【浙江省温州市苍南县龙港镇第二中学第一学期初中九年级期中试题】已知⊙1O 的半径为3cm ,⊙2O 的半径8cm .且1O 2O =5cm ,则两圆的位置关系正确的是( )A .外切B .内切C .相交D .外离2.【海宁市初中第三教研片2013-2014学年第一学期期中调研测试九年级数学试题】已知⊙O 的半径r =3,PO =10,则点P 与⊙O 的位置关系是( )A 、点P 在⊙O 内;B 、点P 在⊙O 上;C 、点P 在⊙O 外;D 、不能确定3.【海宁市初中第三教研片2013-2014学年第一学期期中调研测试九年级数学试题】如图O 是圆心,半径OC ⊥弦AB 于点D ,AB =8,OB=5,则OD 等于 ( )A 、2B 、3C 、4D 、54.【海宁市初中第三教研片2013-2014学年第一学期期中调研测试九年级数学试题】下列三个命题:①圆既是轴对称图形,又是中心对称图形;②垂直于弦的直径平分这条弦;③相等圆心角所对的弧相等.其中是真命题的是()A、②③B、①②C、①③D、①②③5.【湛师附中、东方实验学校2013-2014学年度上学期第一次月考九年级数学试题】如图4,⊙O的半径为5cm,弦AB的长为8cm,则圆心O到AB的距离为 cm.6.【湛师附中、东方实验学校2013-2014学年度上学期第一次月考九年级数学试题】如图,点C在以AB为直径的半圆上,∠BAC=20°,则∠BOC等于()A.20° B.30° C.40° D.50°7.【湛师附中、东方实验学校2013-2014学年度上学期第一次月考九年级数学试题】已知两圆的半径分别为5和3,圆心距为7,则两圆的位置关系是()A.内含 B.内切 C.相交 D.外切8.【杭州市翠苑中学2013-2014学年上学期10月质量检测九年级数学试卷】已知圆锥的母线为10,底面圆的直径为12,则此圆锥的侧面积是()A.24π B.30π C.48π D.60π9、【杭州市翠苑中学2013-2014学年上学期10月质量检测九年级数学试卷】如图,△ABC 内接于⊙O,∠C=30°,AB=2,则⊙O的半径为()A B. C.2 D.4考点:圆周角定理.10、【题文】下列三个命题:①圆既是轴对称图形,又是中心对称图形;②垂直于弦的直径平分这条弦;③平分弦的直径垂直于这条弦;④相等的圆心角所对的弧相等。

2013-2014学年九年级数学第一学期期中练习试卷 (新人教版 第75套)

2013-2014学年九年级数学第一学期期中练习试卷 (新人教版 第75套)

ODCBA浙江省杭州地区2013-2014学年第一学期期中练习九年级数学试卷一. 仔细选一选:1.如图,点A 、B 、C 为⊙O 上的三点,70AOB ∠=°,则ACB ∠的度数为( )A.110°B.140°C.145°D.220°2. 以下命题:(1)同圆中等弧对等弦;(2)圆心角相等,它们所对的弧长也相等;(3)三点确定一个圆;(4)平分弦的直径必垂直于这条弦;(5)三角形的外心到三角形各顶点的距离都相等;(6)相等的圆周角所对的弧相等.其中正确的命题的个数是………( ) A. 2个 B. 3个 C. 4个 D. 5个 3.当22x -<<时,下列函数:①2y x =;②122y x =-+;③7y x=-;④268y x x =++,函数值y 随自变量x 增大而增大的有( )。

A. 1个B. 2 个C. 3个D. 4个4.如图,P (x ,y )是以坐标原点为圆心,5为半径的圆周上的点,若x 、y 都是整数,则这样的点共有( )。

A. 4个B. 8个C. 12个D. 16个5.如图,直线1x =是二次函数2y ax bx c =++的图象的对称轴,则有( )。

A.0a b c ++> B.b a c >+ C.0abc < D.2c b >第4题 第5题 第6题6.如图,AB 是⊙O 的直径,弦CD AB ⊥于点E ,G 是弧AC 上任意一点,延长AG ,与DG 的延长线相交于点F ,连结AD ,GD ,CG ,则图中与AGD ∠相等的角有( )。

A. 5个B. 4个C. 3个D. 2个 7.如图,⊙O 的半径OB 和弦AC 相交于点D ,∠AOB=90°,则下列 结论错误..的是( ) A .∠C=45° B .∠OAB=45° C .OB ∶AB=1∶2 D .∠ABC=4∠CAB8.已知123(1,),(2,),(4,)y y y ---是抛物线228y x x m =--+上的点,则( ) A .123y y y << B .321y y y << C .213y y y << D .231y y y <<9.在同一直角坐标系中,函数y =mx +m 和函数y =-mx 2+2x +2(m 是常数,且m ≠0)的图象可能..是( ).10.若反比例函数y 1=xk的图象和一次函数 y 2 = ax + b如图所示,则当y 1﹤y2时,相应的x 的取值范围是( A .-5﹤x ﹤-1 B .x ﹤-5或x ﹥-1 C .-5﹤x ﹤-1或x ﹥0 D .x ﹤-5或-1﹤x ﹤011.如图,边长为1的菱形ABCD 绕点A 旋转,当B 、C 两点恰好落在扇形AEF 的EF ︵上时,BC ︵的长度等于 ( )A .6πB .4πC .3πD .2π12.如图所示,P 是菱形ABCD 的对角线AC 上一动点,过P 垂直于AC的直线交菱形ABCD 的边于M 、N 两点,设AC=2,BD=1,AP=x ,△AMN 的面积为y ,则y 关于x 的函数图象的大致形状是( )A.B. C.A B C D二. 认真填一填:13.将抛物线3x y 2+=先左平移动2个单位,再向下平移7个单位后得到一个新的抛物线,那么新的抛物线的解析式是 .14.若抛物线a x x y -+=32与坐标轴有且只有两个交点,则a 的值是 . 15、 对于反比例函数6y x=-,当3y ≥-时,x 的取值范围为 ;当x >-3时, y 的取值范围为 。

2013-2014学年度第一学期期末考试初三数学试题卷

2013-2014学年度第一学期期末考试初三数学试题卷(全卷共五个大题,满分150分,考试时间120分钟)参考公式:抛物线的2(0)y ax bx c a =++≠顶点坐标为24(,)24b ac b a a--,对称轴公式为2b x a=-。

一、选择题:(本大题10个小题,每小题4分,共40分)在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案,其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框涂黑(或将正确答案的代号填入答题卷中对应的表格内). 1.在3,-1,0这四个数中,最小的数是( ) A. 3 B. -1 C. 02.下列图形是轴对称图形的是( )3.计算23(2)x 的结果是( )A .66x B. 58x C. 56x D. 68x4.如图,ABC ∆为O 的内接三角形,50ACB ∠=︒,则ABO ∠的度数等于( ) A.40° B.50° C.60° D.25° 5110,60E ︒∠=︒,则∠A. 30°B. 40°C. 50°D. 60° 6.下列调查适合全面调查(即:普查)的是( ) A.了解全国每天丢弃的塑料袋的数量 B.了解某种品牌的彩电的使用寿命 C.调查“神州9号”飞船各零部件的质量 D.了解浙江卫视“中国好声音”栏目的收视率7.若x = 2是关于x 的一元二次方程280x ax -+=的一个解,则a 的值是( ) A .2 B. 5 C. -6 D. 68.地铁1号线是贯穿渝中区和沙坪坝区的重要交通通道,1号线的开通极大的方便了市民的出行,小王下班后从渝中区较场口乘坐地铁回沙坪坝,他从公司出发,先匀速步行至较场口地铁站,等了一会儿,小王搭乘地铁1号线到达沙坪坝站,下面能反映在此过程中小王到沙坪坝的距离y 与时间x 的函数关系的大致图象是( )9.如图,以下各图都是由同样大小的图形①按一定规律组成,其中第①个图形中共有1个完整菱形,第②个图形中共有5个完整菱形,第③个图形中共有13个完整菱形,……,则第⑦个图形中完整菱形的个数为( )A.83B.84C.85D.8610.二次函数2(0)y ax bx c a =++≠的图象如图所示, 则下列结论中,正确的是( ) A.0abc >B.24ac b > C.20a b -=D.420a b c ++>二、填空题:(本大题6个小题,每小题4分,共24分)请将每小题的答案直接填在答题卡(卷)中对应的横线上.11.据统计,重庆市2011年全市地方财政收入超过29000000万元,将数29000000用科学记数法表示为 . 12.已知ABC ∆∽DEF ∆,ABC ∆的周长为2,DEF ∆的周长为4,则ABC ∆与DEF ∆的面积之比为 . 13.在体育中招考试的跳绳项目考试中,我校两个小组共8位同学的成绩分别如下:(单位:个/分钟)154、187、173、205、197、177、185、188,则这组数据的中位数是 . 14.已知扇形的圆心角为120°,半径为9cm ,则扇形的面积为 cm 2.(结果保留π) 15.在一个不透明的盒子里装有5个分别写有数字-2,-1,0,1,2的小球,它们除数字不同外其余全部相同. 现从盒子里随机取出一个小球,将该小球上的数字作为a 的值,将该数字加3作为b 的值,则(a ,b )使得关于x 的不等式组3(2)0,0x a x x b --≥⎧⎨-+>⎩恰好有3个整数解的概率是 .16.甲、乙两车在一个环形跑道内进行耐力测试,两车从同一地点同时起步后,乙车速超过甲车速,在第8分钟时甲车提速,在第12分钟时甲车追上乙车并且开始超过乙,在第17分钟时,甲车再次追上乙车. 已知在测试中甲、乙两车均是匀速行驶,那么如果甲车不提速,乙车首次超过甲车是在第 分钟.三、解答题:(本大题4个小题,每小题6分,共24分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答书写在答题卡(卷)中对应的位置上. 17.计算:120131(5)()(1)|4|2π--++---18.如图,AD = BC ,,12A B ∠=∠∠=∠,求证:PA = PB.19.解方程:42233x x x-+=--.20.如图,在ABC ∆中,60,C AD BC ∠=︒⊥,垂足为D,若2AD BD CD ==,求ABC ∆的周长(结果保留根号).四、解答题:(本大题4个小题,每小题10分,共40分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答书写在答题卡(卷)中对应的位置上.21.先化简22144(1)11x x x x -+-÷--,再从不等式组203(1)21x x x +>⎧⎨-≤-⎩的解集中选取一个合适的整数解作为x 的值代入求值.22.如图,一次函数y ax b =+的图象与反比例函数ky=交于A ,B 两点,与y 交于C ,与x 轴交于点D ,已知OA =(1)求反比例函数和一次函数的解析式;(2)求AOB ∆的面积. 23.重庆市物价局发出通知,从2011年2月18日起降低部分抗生素药品和神经系统类药品最高零售价格,共涉及162个品种,某药房对售出的抗生素药品A 、B 、C 、D 、E 的销量进行统计,绘制成如下统计图:(1)补全折线统计图;(2)计算2月份售出各类抗生素销量的极差为 ;(3)2月份王老师到药房买了抗生素类药D 、E 各一盒,若D 中有两盒是降价药,E 中有一盒是降价药,请用画树状图或列表法求出他买到两盒都是降价药的概率。

北京市海淀区首都师范大学附属中学2024-2025学年九年级上学期11月期中数学试题(无答案)

首都师大附中2024—2025学年第一学期期中练习初三数学命题人:张彩萍刘宇航审核人:周素裹第Ⅰ卷(共16分)一、选择题(共16分,每题2分)第1-8题均有四个选项,符合题意的选项只有一个.1.下列图形中,是中心对称图形的是( )A .B .C .D .2.用配方法解方程,下列变形正确的是( )A .B .C .D .3.如图,OA 交于点B ,AD 切于点D ,点C 在上.若,则为()A .20°B .25°C .30°D .35°4.平移抛物线使其顶点在原点,可以平移的方法是()A .向左1个单位B .向右1个单位C .向上1个单位D .向下1个单位5.如图,在正方形ABCD 中,将边BC 绕点B 逆时针旋转至BE ,于F ,若,,则线段BE 的长为( )A .4B .C .6D .6.如图,AB 是的直径,弦AC ,AD 分别是的内接正六边形和内接正方形的一边.若,下2230x x +-=()212x +=-()214x +=()214x +=-()212x +=O O O 40A ∠=︒C ∠()21y x =-BF CE ⊥90CED ∠=︒2DE=O O 1AC =列结论中错误的是()A .的直径为2B .连接OD ,则C .D .连接CD ,则7.二次函数自变量和函数值的部分对应值如下表所示.当时,y 的取值范围是,则m 的取值范围是( )x...-3-11...y (8)n 8…A .B .C .D .8.已知内接于,.点A 从圆周上某一点开始沿圆周运动,设点A 运动的路线长为l ,的面积为S ,S 随l 变化的图象如图所示,其中.①点A 在运动的过程中,始终有;②点M;③存在4个点A 的位置,使得.上述结论中,所有正确结论的序号是()A .②B .①③C .②③D .①②③第Ⅱ卷(共84分)二、填空题(共16分,每题2分)9.点关于原点的对称点的坐标是______.10.若关于x 的一元二次方程有两个不相等的实数根,则k 的取值范围为______.11.如图,将绕点A 逆时针旋转30°得到,点B 的对应点D 落在边BC 上,的度数为______.O OD AB⊥ 3BD CD =2AC CD=2y ax bx c =++3x m -≤≤8n y ≤≤3m ≥-31m -≤≤1m ≥-11m -≤≤ABC △O 2BC =ABC △21l l -=45BAC ∠=︒1+12S =()6,5-2x k =ABC △ADE △ADE ∠第11题图12.抛物线的顶点为,其部分图象如图所示,若,则x 的取值范围是______.第12题图13.如图,PA ,PB 分别切于点A ,B .若的半径为1.,则的长度为______.第13题图14.小华利用网络平台帮助家乡小红销售农产品.8月份销售额为1000元,10月份销售额为1210元,求销售额平均每月的增长率.设销售额平均每月的增长率为x ,根据题意,可列方程为______.15.已知的半径为3,线段,若与线段AB 有两个交点,则点O 到直线AB 的距离d 的取值范围是______.16.对于函数(其中h 为常数,)和其图象上的一点.(1)若时,,则的取值范围是______;(2)若时,,则的取值范围是______.三、解答题(共68分,第17-20题,每题5分,21题6分,第22-23题,每题5分,第24-26题,每题6分,第27-28题,每题7分)解答写出文字说明、演算步骤或证明过程.17.解方程:.18.已知m 是方程的根,求代数式的值.23y ax bx =++()2,A m 3y <O O 60P ∠=︒AB O 2AB =O 22y x hx =+0h <()00,x y 0x x >0y y >0x 02x x >0y y >0x 210x x +-=2310x x -+=()2143m m m --+19.如图,和都是等边三角形,B ,C ,D 共线.求证:.20.已知:如图1,P 为上一点.求作:直线PQ ,使得PQ 与相切.作法:如图2,①连接OP ;②以点P 为圆心,OP 长为半径作弧,与的一个交点为A ,作射线OA ;③以点A 为圆心,OP 长为半径作圆,交射线OA 于点Q (不与点O 重合);④作直线PQ .直线PQ 就是所求作的直线.(1)使用直尺和圆规,依作法补全图形(保留作图痕迹):(2)完成下面的证明.证明:连接PA .由作法可知,∴点P 在以OQ 为直径的上.∴______①______(______②______)(填推理的依据).∴.又∵OP 是的半径,∴PQ 是的切线(______③______)(填推理的依据).21.关于x 的一元二次方程.(1)求证:方程总有两个实数根:(2)若方程有一根为负数,求m 的取值范围.22.如图,已知AB 为半圆O 的直径.弦BC ,AD 相交于点E .连接AC ,点C 是的中点.若,.ABC △ADE △60ECD ∠=︒O O O AP AO AQ ==A OPQ ∠=OP PQ ⊥O O ()2210x m x m -+++=AD 6OA =30CBA ∠=︒(1)求CE 的长:(2)M 为的中点,点P 在直径AB 上,直接写出的最小值为______.23.已知二次函数的图象经过(0,3),(3,0).(1)求这个二次函数的表达式;(2)一次函数,当时,总有,直接写出k 的取值范围.24.如图,在中,,AB 为的直径.AC 与相交于点D .过点D 作于点E ,CB 延长线交于点F .(1)求证:DE 为的切线;(2)若,,求AD 的长.25.为了探究某飞机某次着陆后滑行的距离y (单位:m )与滑行时间x (单位:s )之间的关系,测得几组数据如下表:滑行时间x /s024681012滑行距离y /m 0112208288352400432(1)根据上述数据,在平面直角坐标系xOy 中描出表格中对应的点,并判断此次滑行的距离y 与滑行时间x 满足的是______函数关系(填“一次”或“二次”);(2)求y 与x 的函数关系式;BDDP MP +212y ax x c =++21y kx =+2x >12y y <ABC △AB BC =O O DE BC ⊥O O 3BE =4BF =(3)飞机着陆后滑行______s 能停下来,此时滑行的距离是______m .26.在平面直角坐标系xOy 中,已知抛物线,点,,是抛物线上不同的三点.(1)若,直接写出a 的值:(2)若对于任意的,都有,求a 的取值范围.27.已知在中,,CD ,BE 分别为AB ,AC 边上的高.(1)如图1,CD ,BE 交于点P ,若,求证:;(2)在线段CD 上取一点P ,使得,连接BP ,EP .①在图2中补全图形;②用等式表示PB 与PE 之间的数量关系,并证明.28.在平面直角坐标系xOy 中,的半径为1,MN 为的弦.对于平面内的一点P ,若点P 关于MN 的中点对称的点恰好在内,则称点P 为弦MN 的“内称点”.已知点,,.(1)以下各点中,是弦AB 的“内称点”的是______;①②③④(2)已知点D ,E 在上运动,且,若内的每一个点都能成为某一时刻弦DE 的“内称点”,求a 的取值范围;(3)点P 在上运动,若直线与x ,y 轴的交点所连线段上的每一个点都可以成为某一时刻弦CF 的“内称点”,则b 的取值范围为______.()()20y a x a c a =-+≠()12,A y ()23,B a y ()3,C t y 12y y =21t -<<-321y y y >>ABC △45ACB ∠=︒2CP DB =AD BD =2CP DB =O O O ()0,1A ()1,0B ()1,0C -130,2P ⎛⎫ ⎪⎝⎭211,22P ⎛⎫ ⎪⎝⎭()31,1P 41P ⎛++ ⎝O DE a =O O y x b =+。

2013--2014(A4版)海淀区六年级第一学期期末试卷真题


13.如下图所示,小明和表妹身高的最简整数比是(
14.某单位建造楼房时,楼房每平方米的综合成本与楼层数之间的关系如下图所示。楼房建造( 时,综合成本最低;当楼房建造 8 层时,其每平方米的综合成本是( )元。
)层
15.小明将一张长方形纸对折,对折后从中剪下一张最大的半圆形纸片(如下图所示) ,将纸片展开得到的 圆的直径是( )厘米。
A.
B.
C.
D.
图1
5.图 1 是一个由草绳编织成的圆形茶杯垫。沿虚线剪开,展开后是一个近似的三角形(如图 2 所示) ,这 时三角形的面积相当于圆的面积,这个三角形的高相当于圆形茶杯垫的( ) 。
高 图1 A.半径的一半 B.半径 C.直径 图2 D.周长 )场。
6.五年级 6 个班进行足球比赛,如果每两个班之间都赛一场,一共比赛( A. 3 B. 5 C.15 D.21
(3)为了吸引更多的顾客参与活动,商场决定将一等奖的中奖率调整到 15%~20%之间,请你帮忙设计 一下,一等奖获奖区域圆的半径可以选多少厘米?(设计一种满足条件的方案即可)
22.某旅游景区日均旅游人数情况如下图所示,请根据图中信息解答问题。
23. 张医生要从北京赴三亚参加医学研讨会,出发前他从网上查到了三个航班(如下图所示) ,并选择了 其中一个,他发现机票价格接近原价的八折,他选择的是几点起飞的航班。 (请写出判断方法)
24. 《道路交通安全法实施条例》规定:在一个记分周期(12 个月)内扣分达到 12 分,将扣留其机动车驾驶证。如果超速 50%以上扣 12 分;超速 20%以上未达 50% 扣 6 分;超速未达 20%扣 3 分。 张叔叔以 50 千米/时的车速在一条公路上行驶,前方出现限速 40 千米的标志,如果张叔叔保持这个 速度继续行驶,他将受到扣几分的处罚?(请写出判断方法)

2013—2014学年度第一学期期末考试九年级数学试题(含答案)

2013-2014学年度第一学期期末考试九年级数学试题注意事项:本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共120分,考试时间120分钟.第Ⅰ卷(选择题 共45分)一、选择题(本大题共15小题,每小题3分,共45分,在每小题给出的四个选项中,只有一项符合题目要求,请将正确答案填在后面的表格中...) 1.一元二次方程0)1(=-x x 的解是 A.0=xB.1=xC.0=x 或1=xD.0=x 或1-=x2.下面四个几何体中,俯视图为四边形的是3.抛物线()212y x =-+的对称轴为A .直线1x =B .直线1x =-C .直线2x =D .直线2x =- 4.如图,在8×4的矩形网格中,小正方形的边长都是1,若△ABC 的三个顶点在图中相应的格点上,则tan ∠ACB 的值为A .1B .13C .12D .25.如图,在□ABCD 中,添加下列条件不能判定□ABCD 是菱形的是 A. AB =BCB. AC ⊥BDC. BD 平分∠ABCD. AC =BD6.用配方法将2611y x x =-+化成2()y a x h k =-+的形式为 A .2(3)2y x =++ B .2(3)2y x =-- C .2(6)2y x =-- D .2(3)2y x =-+7.若3是关于方程x 2-5x +c =的一个根,则这个方程的另一个根是A .-2B .2C .-5D .58.由若干个相同的小立方体搭成的几何体的三视图如图所示, 则搭成这个几何体的小立方体的个数是A .3B .4C .5D .6A B C D主视图 左视图 俯视图DAB CDO B 1 C 1D 19.某校安排三辆车,组织九年级学生团员去敬老院参加学雷锋活动,其中小亮与小菲都可以从这三辆车中任选一辆搭乘,则小亮与小菲同车的概率为A .13B .19C .12D .2310.如图,一个小球由地面沿着坡度i =1∶2的坡面向上前进了10 m ,此时小球距离地面的高度为A .5 mB .52mC .54mD .310m 11.某商店购进一种商品,单价为30元.试销中发现这种商品每天的销售量P (件)与每件的销售价x (元)满足关系:1002P x =-.若商店在试销期间每天销售这种商品获得200元的利润,根据题意,下面所列方程正确的是A .(30)(1002)200x x --=B .(1002)200x x -=C .(30)(1002)200x x --=D .(30)(2100)200x x --= 12.若点(-3,y 1)、(-2,y 2)、(1,y 3)在反比例函数xy 2=的图象上,则下列结论正确的是A .y 1> y 2> y 3B .y 2> y 1> y 3C .y 3> y 1> y 2D .y 3> y 2> y 1 13.如图所示,在平面直角坐标系中,菱形MNPO 的顶点P 坐标是(3,4),则顶点M 、N 的坐标分别是A .M (5,0),N (8,4)B .M (4,0),N (8,4)C .M (5,0),N (7,4)D .M (4,0),N (7,4)14.如图,边长为1的正方形ABCD 绕点A 逆时针旋转45º得到正方形AB 1C 1D 1,边B 1C 1与CD 交于点O ,则四边形AB 1OD 的 周长是A . 2B .2 2C .1+ 2D .315.如图,点A ,B 的坐标分别为(1, 4)和(4, 4),抛物线n m x a y +-=2)(的顶点在线段AB 上运动,与x 轴交于C 、D 两点(C 在D 的左侧),点C 的横坐标最小值为3-,则点D 的横坐标最大值为A .3B.5 C .8 D .9第10题图一、选择题答题表:第Ⅱ卷(非选择题,共75分)二、填空题(本大题共6小题,每小题3分,共18分,把答案填写在题中横线上)16.反比例函数y =kx的图象经过点P(-4,3),则k 的值为 .17.有一箱规格相同的红、黄两种颜色的小塑料球共1000个.为了估计这两种颜色的球各有多少个,小明将箱子里面的球搅匀后从中随机摸出一个球记下颜色,再把它放回箱子中,多次重复上述过程后.发现摸到红球的频率约为0.6,据此可以估计红.球.的个数约为 . 18.如图,热气球的探测器显示,从热气球看一栋高楼的顶部B的仰角为45°,看这栋高楼底部C 的俯角为60°,热气球与高楼的水平 距离AD 为50m ,则这栋楼的高度为___________.19.如果关于x 的方程220x x m -+=(m 为常数)有两个相等实数根,那么m =_________.20.如同,矩形纸片ABCD 中,AB =2cm ,点E 在BC 上,且AE=EC .若将纸片沿AE 折叠,点B 恰好与AC 上的点'B 重合,则AC = cm.21.如图,已知二次函数c bx x y ++=2的图象经过点(-1,0),(1,-2),当y 随x 的增大而增大时,x 的取值范围是 .(第21题)cA E BCFD7小题,共57分,解答应写出文字说明和运算步骤)22.(本小题7分)完成下列各题:(1)解方程:1042=+x x(2)计算:26tan 30cos45︒︒-︒. 23.(本小题7分)完成下列各题: (1)在□ABCD 中,E 、F 分别是AB 、CD 的中点,连接AF 、CE .求证:四边形AECF 是平行四边形(2)已知:如图,在Rt △ABC 中,∠C =90°,∠ABC =60°,AC ,D 为CB 延长线上一点,且BD =2AB .求AD 的长.24.(本小题8分)我市某楼盘准备以每平方米6000元的均价对外销售,由于国务院有关房地产的新政策出台后,购房者持币观望,房地产开发商为了加快资金周转,对价格经过两次下调后,决定以每平方米4860元的均价开盘销售.(1)求平均每次价格下调的百分率.(2)某人准备以开盘价均价购买一套100平方米的住房,开发商给予以下两种优惠方案以供选择:①打9.8折销售;②不打折,一次性送装修费每平方米80元,试问哪种方案更优惠?25.(本小题8分)端午节吃粽子是中华民族的传统习俗,一超市为了吸引消费者,增加销售量,特此设计了一个游戏,其规则是:分别转动如图所示的两个可以自由转动的转盘各一次,每次指针落在每一字母区域的机会均等(若指针恰好落在分界线上则重转),当两个转盘的指针所指字母都相同时,消费者就可以获得一次八折优惠价购买粽子的机会.(1)用树状图或列表的方法表示出游戏可能出现的所有结果;(2)若一名消费者只能参加一次游戏,则他能获得八折优惠价购买粽子的概率是多少?转盘1转盘226.(本小题9分)对于抛物线243y x x=-+.(1)它与x轴交点的坐标为,与y轴交点的坐标为,顶点坐标为;(2)在坐标系中利用描点法画出此抛物线;(3)利用以上信息解答下列问题:若关于x的一元二次方程2430x x t-+-=(t为实数)在1-<x<72的范围内有解,则t的取值范围是.27.(本小题9分)如图,在直角坐标系中,O 为坐标原点. 已知反比例函数ky x=(k>0)的图象经过点A (2,m ),过点A 作AB ⊥x 轴于点B ,且△AOB 的面积为12.(1)求k 和m 的值;(2)点C (x ,y )在反比例函数ky x=的图象上,求当 1≤x ≤3时函数值y 的取值范围; (3)过原点O 的直线l 与反比例函数ky x=的图象交于P 、 Q 两点,试根据图象直接写出线段PQ 长度的最小值.BOA28.(本小题9分)已知直角坐标系中菱形ABCD 的位置如图,C ,D 两点的坐标分别为(4,0),(0,3).现有两动点P ,Q 分别从A ,C 同时出发,点P 沿线段AD 向终点D 运动,点Q 沿折线CBA 向终点A 运动,设运动时间为t 秒. (1)填空:菱形ABCD 的边长是 ;面积是 ;高BE 的长是 ; (2)若点P 的速度为每秒1个单位,点Q 的速度为每秒2个单位.当点Q 在线段BA 上时,求△APQ 的面积S 关于t九年级数学试题参考答案一、选择题:(每小题3分)C D A B D D B A A B A C A B C 二、填空题:(每小题3分)16. -12 17. 600 18. 50+ 19. 1 20. 4 21. x >21三、解答题:22.(1)解:244104x x ++=+2(2)14x +=…………………………..1分2x +=分2x =-∴12x =-+22x =-分(2)解:26tan 30cos45︒︒-︒26=⨯分32=-12= ………………………………………………7分23.(1)证明:∵四边形ABCD 是平行四边形∴AB=CD ,AB ∥CD ……………………………………1分 ∵E 、F 分别是AB 、CD 的中点∴AE =CF ,且AE ∥CF ………………………………..2分 ∴四边形AECF 是平行四边形…………………………..3分(2)解:在Rt △ABC 中,∠C =90°,∠ABC =60°,AC , ∴ 2sin 60ACAB ==︒,BC =1.……………………5分 ∵ D 为CB 延长线上一点,BD =2AB ,∴ BD =4,CD =5. …………………………………6分∴AD =.……………………7分24.解:(1)设平均每次下调的百分率x ,则6000(1-x )2=4860……………………………………3分 解得:x 1=0.1 x 2=1.9(舍去)……………………….…..4分∴平均每次下调的百分率10%..........................................................5分(2)方案①可优惠:4860×100×(1-0.98)=9720元………6分 方案②可优惠:100×80=8000元……………………………….7分∴方案①更优惠………………………………………………8分25.解: (1)解法一:--------------4分 --------------6分 解法二:分(2)∵共有6种结果,两个转盘的指针所指字母都相同时的结果只有一种,∴P (字母相同)=16-----------------------------8分 26.解:(1)它与x 轴交点的坐标为(1,0),(3,0),与y 轴交点的坐标为(0,3),顶点坐标为(2,1)-; ………………………………………3分(2)列表:分图象如图所示. 分 (3)t 的取值范围是18t -≤<.……………………9分……数学试题 第 11 页 (共 8 页)27.解:(1)∵A (2,m ) , ∴OB =2 ,AB =m∴S △AOB =21•OB •AB =21×2×m =21 ∴m =21.............................................................................................................2分 ∴点A 的坐标为(2,21),把A (2,21)代入y=x k ,得21=2k ∴k =1 …………………………………………………………………………4分(2)∵当x =1时,y =1;当x =3时,y =31………………………………….6分 又∵反比例函数y =x1在x >0时,y 随x 的增大而减小 ∴当1≤x ≤3时,y 的取值范围为31≤y ≤1………………………………..7分 (3)由图象可得,线段PQ 长度的最小值为22……………………….9分28.解:(1)5 , 24, 524…………………………………3分 (2)①由题意,得AP =t ,AQ =10-2t. …………………………………………4分如图1,过点Q 作QG ⊥AD ,垂足为G ,由QG ∥BE 得△AQG ∽△ABE ……………………………5分 ∴BA QA BE QG =, ∴QG =2548548t -, …………………………6分 ∴t t QG AP S 5242524212+-=⋅=(25≤t ≤5). ……7分 ∵6)25(25242+--=t S (25≤t ≤5). ∴当t =25时,S 最大值为6.…………………9分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

海淀区九年级第一学期期中测评数 学 试 卷(分数:120分 时间:120分钟) 2013.11班级 姓名 学号 成绩 试题答案一律填涂或书写在答题卡上,在试卷上做答无效. 一、选择题(本题共32分,每小题4分)下面各题均有四个选项,其中只有一个..是符合题意的. 1.一元二次方程2230x x --=的二次项系数、一次项系数、常数项分别是A. 1,2,3--B. 1,-2,3C. 1,2,3D. 1,2,3- 2.在角、等边三角形、平行四边形、圆中,既是中心对称图形又是轴对称图形的是 A .角 B .等边三角形 C .平行四边形 D .圆 3.函数2y x =-中,自变量x 的取值范围是A .2≠xB .2≤xC .2>xD .2≥x 4.如图,点A 、B 、C 在O ⊙上,若110AOB ∠= ,则ACB ∠的大小是 A .35 B .45C .55D .1105.用配方法解方程09102=++x x ,配方正确的是A .16)5(2=+x B .34)5(2=+x C .16)5(2=-x D .25)5(2=+x6.如图所示的图案绕旋转中心旋转一定角度后能够与自身重合,那么这个旋转角可能是 A . 60 B .72 C .90D .1207.若230a b ++-=,则a b +的值为A .-1B .1C .5D .6OCBA8.如图,⊙O 的半径为5,点P 到圆心O 的距离为10,如果过点P 作弦,那么长度为整数值的弦的条数为A .3B .4C .5D .6 二、填空题(本题共16分,每小题4分)9.如图,将ABC △绕点C 顺时针旋转至''A B C △的位置,若 15ACB ∠= ,120B ∠= ,则'A ∠的大小为________.10.已知一元二次方程有一个根是0,那么这个方程可以是(填上你认为正确的一个方程即可).11.如图,AB 是⊙O 的直径,点C 、D 为⊙O 上的两点,若40=∠ABD ,则BCD ∠的大小为 .12.下面是一个按某种规律排列的数阵:1 第1行23 2 第2行 5 6 7 223 第3行 10 11 23 13 14 15 4第4行根据数阵排列的规律,则第5行从左向右数第5个数为 ,第n (3≥n ,且n 是整数)行从左向右数第5个数是 (用含n 的代数式表示). 三、解答题(本题共30分,每小题5分)13.计算:36324⨯+÷.14.用公式法解一元二次方程:241x x +=.15.如图,ABC △与AED △均是等边三角形,连接BE 、CD .请在图中找出一条与CD 长度相等的线段,并证明你的结论. 结论:CD = . 证明:16.当15-=x 时,求代数式522-+x x 的值.17.如图,两个圆都以点O 为圆心,大圆的弦AB 交小圆于C 、D 两点.OD CB A POEDCBA求证:AC =BD .证明:18.列方程(组)解应用题:如图,有一块长20米,宽12米的矩形草坪,计划沿水平和竖直方向各修一条宽度相同的小路,剩余的草坪面积是原来的34,求小路的宽度. 解:四、解答题(每小题5分,共20分)19.已知关于x 的一元二次方程210x mx m -++=的一个根为2.(1) 求m 的值及另一根;(2)若该方程的两个根分别是等腰三角形的两条边的长,求此等腰三角形的周长.20.如图, DE 为半圆的直径,O 为圆心, DE =10,延长DE 到A ,使得EA =1,直线AC 与半圆交于B 、C 两点,且 30=∠DAC . (1)求弦BC 的长; (2)求AOC △的面积.21.已知关于x 的方程0)1(222=++-k x k x 有两个不相等的实数根.(1)求k 的取值范围;(2)求证:1-=x 不可能是此方程的实数根.DCBAOECADBO22.阅读下面的材料:小明在研究中心对称问题时发现:如图1,当点1A 为旋转中心时,点P 绕着点1A 旋转180°得到1P 点,点1P 再绕着点1A 旋转180°得到2P 点,这时点P 与点2P 重合.如图2,当点1A 、2A 为旋转中心时,点P 绕着点1A 旋转180°得到1P 点,点1P 绕着点2A 旋转180°得到2P 点,点2P 绕着点1A 旋转180°得到3P 点,点3P 绕着点2A 旋转180°得到4P 点,小明发现P 、4P 两点关于点2P 中心对称.(1)请在图2中画出点3P 、4P , 小明在证明P 、4P 两点关于点2P 中心对称时,除了说明P 、2P 、4P 三点共线之外,还需证明 ;(2)如图3,在平面直角坐标系xOy 中,当)3,0(1A 、)0,2(2 A 、)0,2(3A 为旋转中心时,点)4,0(P 绕着点1A 旋转180°得到1P 点;点1P 绕着点2A 旋转180°得到2P 点;点2P 绕着点3A 旋转180°得到3P 点;点3P 绕着点1A 旋转180°得到点4P 点. 继续如此操作若干次得到点56P P 、、,则点2P 的坐标为 ,点2017P 的坐为 .图 2图1五、解答题(本题共22分,第23题7分,第24题8分,第25题7分) 23.已知关于x 的一元二次方程02)12(2=++-x m mx . (1)求证:此方程总有两个实数根;(2)若此方程的两个实数根都是整数,求m 的整数值; (3)若此方程的两个实数根分别为1x 、2x ,求代数式5)(2))(12()(2122213231+++++-+x x x x m x x m 的值.图324.已知在ABC △中,90=∠ACB ,26==CB CA ,AB CD ⊥于D ,点E 在直线CD 上,CD DE 21=,点F 在线段AB 上,M 是DB 的中点,直线AE 与直线CF 交于N 点.(1)如图1,若点E 在线段CD 上,请分别写出线段AE 和CM 之间的位置关系和数量关系:___________,___________; (2)在(1)的条件下,当点F 在线段AD 上,且2AF FD =时,求证:45=∠CNE ; (3)当点E 在线段CD 的延长线上时,在线段AB 上是否存在点F ,使得45=∠CNE .若存在,请直接写出AF 的长度;若不存在,请说明理由.DCBANM FED CBA 图1备用图25.在平面直角坐标系xOy 中,点A 、B 分别在x 轴、y 轴的正半轴上,且10=AB ,点M 为线段AB 的中点.(1)如图1,线段OM 的长度为________________;(2)如图2,以AB 为斜边作等腰直角三角形ACB ,当点C 在第一象限时,求直线OC所对应的函数的解析式;(3)如图3,设点D 、E 分别在x 轴、y 轴的负半轴上,且10=DE ,以DE 为边在第三象限内作正方形DGFE ,请求出线段MG 长度的最大值,并直接写出此时直线MG 所对应的函数的解析式.GFEDxy O ABM图1图2CxyOABM BAOyx图3海淀区九年级第一学期期中练习2013.11数学试卷答案及评分参考阅卷须知:1. 为便于阅卷,本试卷答案中有关解答题的推导步骤写的较为详细,阅卷时,只要考生将主要过程正确写出即可.2. 若考生的解法与给出的解法不同,正确者可参照评分参考相应给分.3. 评分参考中所注分数,表示考生正确做到此步应得的累加分数. 一、选择题(本题共32分,每小题4分) 题 号 1 2 3 4 5 6 7 8 答 案ADDCABBC二、填空题(本题共16分,每小题4分)9.45°; 10.20x x -=(二次项系数不为0,且常数项为0均正确); 11.50°; 12.21,622+-n n (每空2分). 三、解答题(本题共30分,每小题5分) 13.(本小题满分5分)解:36324⨯+÷818=+ ………………………………………………………………………2分2322+= …………………………………………………………………4分 25=.……………………………………………………………………………5分14.(本小题满分5分)解:原方程可化为2+410x x -=,……………………………………………………1分141a ,b ,c ===-,2441(1)=20>0,∆=-⨯⨯- …………………………………………………………2分方程有两个不相等的实数根,244202522b b ac x a -±--±===-±, ……………………………………4分即122525x ,x =-+=--.……………………………………………………5分15.(本小题满分5分)结论: CD BE =. ……………………………………………………………………1分 证明: △ABC 与△AED 是等边三角形,∴AE AD =,AB AC =,60CAB DAE ∠=∠=.…2分∴CAB DAB DAE DAB ∠-∠=∠-∠,即CAD BAE ∠=∠. ………………………………3分 在△CAD 和△BAE 中,DCBAAC AB,CAD BAE,AD AE,=⎧⎪∠=∠⎨⎪=⎩∴△CAD ≌△BAE .…………………………………………………………4分 ∴CD =BE . …………………………………………………………………5分16.(本小题满分5分)解: 15-=x ,∴15x +=.∴5)1(2=+x . ………………………………………………………………1分 ∴2215x x ++=.………………………………………………………………2分 ∴224x x +=.…………………………………………………………………3分 ∴225451x x +-=-=-. ……………………………………………………5分17.(本小题满分5分)证明:过点O 作AB OM ⊥于M ,…………………………1分由垂径定理可得DM CM BM AM ==,. ……………3分∴DM BM CM AM -=-. …………………………4分 即BD AC =.…………………………………………5分18.(本小题满分5分)解:设小路的宽度是x 米. ………………………………………………………1分由题意可列方程,3(20)(12)20124x x --=⨯⨯. ……………………………2分化简得, 232600x x -+=.解得, 12302x ,x ==. ………………………………………………………3分 由题意可知3020x =>不合题意舍去,2x =符合题意. …………………4分 答:小路的宽度是2米. ……………………………………………………5分四、解答题(本题共20分,每小题5分) 19.(本小题满分5分)解:(1)∵关于x 的一元二次方程210x mx m -++=的一个根为2,∴22210m m -++=. ……………………………………………………1分 ∴5m =.……………………………………………………………………2分∴一元二次方程为2560x x -+=.解得1223x ,x ==.…………………………………………………………3分∴5m =,方程另一根为3.(2)当长度为2的线段为等腰三角形底边时,则腰长为3,此时三角形的周长为2+3+3=8; ………………………………………………………………4分当长度为3的线段为等腰三角形底边时,则腰长为2,此时三角形的周长为2+2+3=7. ………………………………………………………………5分MO DCBA20.(本小题满分5分)解:(1)过点O 作OM ⊥BC 于M .由垂径定理可得:BM=CM . …1分 ∵30DAC ∠= , ∴12OM OA =.∵直径DE =10, EA =1, ∴=5OD OC OE ==. ∴516OA OE EA =+=+=. ∴3OM =. …………………2分在Rt △COM 中,222225316CM OC OM =-=-=. ∴4CM =. ∴4BM =.∴+8BC BM CM ==. ……………………………………………………3分 (2) 在Rt △AOM 中,222226327AM OA OM =-=-=.∴33AM =. ……………………………………………………………………4分 ∴+334AC AM CM ==+. ∵OM ⊥AC , ∴119(334)336222AOC S AC OM =⋅=⨯+⨯=+ . ……………………………5分21.(本小题满分5分)解:(1) ∵关于x 的方程0)1(222=++-kx k x 有两个不相等的实数根,∴224(1)4=8+4>0k k k ∆=+-. ………………………………………………2分 ∴1>2k -. …………………………………………………………………3分 (2) ∵当1-=x 时,左边=222(1)x k x k -++22(1)2(1)(1)k k =--+⨯-+223k k =++…………………………………………4分 2(+1)20k =+>.而右边=0,∴左边≠右边.∴1-=x 不可能是此方程的实数根.……………………………………5分22. (本小题满分5分)(1)正确画出34P P 、点(图略). ………………………………………………1分224=P P P P .……………………………………………………………………2分(2)(-4,-2). …………………………………………………………………3分(0, 2).……………………………………………………………………5分MECADBO五、解答题(本题共22分,第23题7分,第24题8分,第25题7分) 23. (本小题满分7分)解:(1)由题意可知0m ≠.2(21)42m m ∆=+-⨯⨯22=441(21)0m m m -+=-≥. ……………………………………………2分∴此方程总有两个实数根.(2)方程的两个实数根为2(21)(21)2m m x m+±-=,∴1212x ,x m==. …………………………………………………………4分 ∵方程的两个实数根都是整数,且m 为整数,∴1m =±. …………………………………………………………………5分(3)∵原方程的两个实数根分别为1x 、2x ,∴211(21)20mx m x -++=222(21)20mx m x -++=. ……………………………………………………6分∴5)(2))(12()(2122213231+++++-+x x x x m x x m=1323211222[(21)2]+[(21)2]+5mx m x x mx m x x -++-++=12211222[(21)2]+[(21)2]+5x mx m x x mx m x -++-++=12005x x ⨯+⨯+=5. …………………………………………………………………………7分24. (本小题满分8分)(1)AE ⊥CM ,AE =CM .……………………………………………………2分(2)如图,过点A 作AG ⊥AB ,且AG =BM,,连接CG 、FG ,延长AE 交CM 于H .∵ 90=∠ACB ,26==CB CA ,∴∠CAB =∠CBA =45°,AB=2212CA CB +=. ∴∠GAC =∠MBC =45°. ∵AB CD ⊥,∴CD=AD=BD =162AB =. ∵ M 是DB 的中点, ∴3BM DM ==. ∴3AG =. ∵2AF FD =,FHNGM EDCBA∴4 2.AF DF ==,∴+2+3=5.FM FD DM == ∵AG ⊥AF , ∴2222+3+4=5.FG AG AF ==∴.FG FM =……………………………………………………………………3分 在△CAG 和△CBM 中,CA CB CAG CBM AG BM =⎧⎪∠=∠⎨⎪=⎩,,, ∴△CAG ≌△CBM . ∴CG =CM ,ACG BCM ∠=∠.∴++90MCG ACM ACG ACM BCM ∠=∠∠=∠∠= .………………………4分 在△FCG 和△FCM 中,CG CM FG FM CF CF =⎧⎪=⎨⎪=⎩,,, ∴△FCG ≌△FCM .∴FCG FCM ∠=∠. ………………………………………………………5分 ∴45FCH ∠= . 由(1)知AE ⊥CM , ∴90CHN ∠=∴ 45=∠CNE . ………………………………………………………………6分 (3)存在.AF =8.…………………………………………………………………………8分25. (本小题满分7分)(1)5;…………………………………………………………………………………1分(2)如图1, 过点C 分别作CP ⊥x 轴于P ,CQ ⊥y 轴于Q .∴∠CQB =∠CPA =90°,∵∠QOP =90°, ∴∠QCP =90°. ∵∠BCA =90°, ∴∠BCQ =∠ACP . ∵BC=AC ,∴△BCQ ≌△ACP .∴CQ=CP .………………………………3分 ∵点C 在第一象限,∴不妨设C 点的坐标为(a ,a )(其中0a ≠). 设直线OC 所对应的函数解析式为kx y =,∴a ka =,解得k =1,QCxy O A B P 图1∴直线OC 所对应的函数解析式为x y =. …………………………………4分 (3)取DE 的中点N ,连结ON 、NG 、OM .∵∠AOB=90°,∴OM =152AB =.同理ON =5.∵正方形DGFE ,N 为DE 中点,DE=10, ∴NG =2222=+10555DN DG =+=.在点M 与G 之间总有MG ≤MO +ON +NG (如图2),由于∠DNG 的大小为定值,只要12DON DNG ∠=∠,且M 、N 关于点O 中心对称时,M 、O 、N 、G 四点共线,此时等号成立(如图3). ………………………5分 ∴线段MG 取最大值10+55. ………………6分此时直线MG 的解析式x y 251+-=. ……………………………………7分NM BAO yxDEG图3Fy OBDGNEAMx图2。

相关文档
最新文档