九年级下期中考试数学试题及答案

合集下载

人教版九年级数学下册期中考试题及答案【完整版】

人教版九年级数学下册期中考试题及答案【完整版】

人教版九年级数学下册期中考试题及答案【完整版】班级: 姓名:一、选择题(本大题共10小题, 每题3分, 共30分)1. 的相反数是()A. B. C. D.2.将直线向右平移2个单位, 再向上平移3个单位后, 所得的直线的表达式为()A. B. C. D.3. 抛物线y=3(x﹣2)2+5的顶点坐标是()A. (﹣2, 5)B. (﹣2, ﹣5)C. (2, 5)D. (2, ﹣5)4.我国明代珠算家程大位的名著《直指算法统宗》里有一道著名算题: ”一百馒头一百僧, 大僧三个更无争, 小僧三人分一个, 大小和尚各几丁?”意思是: 有100个和尚分100个馒头, 如果大和尚1人分3个, 小和尚3人分1个, 正好分完, 试问大、小和尚各多少人?设大和尚有x人, 依题意列方程得()A. =100 B. =100C. D.5.体育测试中, 小进和小俊进行800米跑测试, 小进的速度是小俊的1.25倍, 小进比小俊少用了40秒, 设小俊的速度是米/秒, 则所列方程正确的是()A. B.C. D.6.已知直线y1=kx+1(k<0)与直线y2=mx(m>0)的交点坐标为(, m), 则不等式组mx﹣2<kx+1<mx的解集为()A. x>B. <x<C. x<D. 0<x<7.在以下绿色食品、回收、节能、节水四个标志中, 是轴对称图形的是()A. B. C. D.8.如图, 下列条件不能判定△ADB∽△ABC的是()A. ∠ABD=∠ACBB. ∠ADB=∠ABCC. AB2=AD•ACD.9.扬帆中学有一块长, 宽的矩形空地, 计划在这块空地上划出四分之一的区域种花, 小禹同学设计方案如图所示, 求花带的宽度.设花带的宽度为, 则可列方程为()A. B.C. D.10.如图, 二次函数的图象经过点, , 下列说法正确的是()A. B.C. D. 图象的对称轴是直线二、填空题(本大题共6小题, 每小题3分, 共18分)1. 计算( -)×+2 的结果是_____________.2. 分解因式: _______.3. 已知、为两个连续的整数, 且, 则=________.4. 如图, 矩形ABCD面积为40, 点P在边CD上, PE⊥AC, PF⊥BD, 足分别为E,F. 若AC=10, 则PE+PF=__________.5. 如图, 某高速公路建设中需要测量某条江的宽度AB, 飞机上的测量人员在C 处测得A, B两点的俯角分别为和若飞机离地面的高度CH为1200米, 且点H, A, B在同一水平直线上, 则这条江的宽度AB为______米结果保留根号.6. 如图, 在平面直角坐标系中, 已知点A(1, 0), B(1﹣a, 0), C(1+a, 0)(a>0), 点P在以D(4, 4)为圆心, 1为半径的圆上运动, 且始终满足∠BPC=90°, 则a的最大值是__________.三、解答题(本大题共6小题, 共72分)1. 解方程:2. 关于x的方程x2﹣2(k﹣1)x+k2=0有两个实数根x1.x2.(1)求k的取值范围;(2)若x1+x2=1﹣x1x2, 求k的值.3. 如图, 矩形ABCD中, AB=6, BC=4, 过对角线BD中点O的直线分别交AB,CD边于点E, F.(1)求证: 四边形BEDF是平行四边形;(2)当四边形BEDF是菱形时, 求EF的长.4. 如图, 在平面直角坐标系中, 的三个顶点坐标分别为、、, 平分交于点, 点、分别是线段、上的动点, 求的最小值.5. 抚顺某中学为了解八年级学生的体能状况, 从八年级学生中随机抽取部分学生进行体能测试, 测试结果分为A, B, C, D四个等级. 请根据两幅统计图中的信息回答下列问题:(1)本次抽样调查共抽取了多少名学生?(2)求测试结果为C等级的学生数, 并补全条形图;(3)若该中学八年级共有700名学生, 请你估计该中学八年级学生中体能测试结果为D等级的学生有多少名?(4)若从体能为A等级的2名男生2名女生中随机的抽取2名学生, 做为该校培养运动员的重点对象, 请用列表法或画树状图的方法求所抽取的两人恰好都是男生的概率.6. 文美书店决定用不多于20000元购进甲乙两种图书共1200本进行销售.甲、乙两种图书的进价分别为每本20元、14元, 甲种图书每本的售价是乙种图书每本售价的1.4倍, 若用1680元在文美书店可购买甲种图书的本数比用1400元购买乙种图书的本数少10本.(1)甲乙两种图书的售价分别为每本多少元?(2)书店为了让利读者, 决定甲种图书售价每本降低3元, 乙种图书售价每本降低2元, 问书店应如何进货才能获得最大利润?(购进的两种图书全部销售完.)参考答案一、选择题(本大题共10小题, 每题3分, 共30分)1.B2.A3.C4.B5.C6.B7、D8、D9、D10、D二、填空题(本大题共6小题, 每小题3分, 共18分)1.2.3.114.45.6.6三、解答题(本大题共6小题, 共72分)1、x=3.2.(1);(2)3、(1)略;(2).4.5.(1)50;(2)16;(3)56(4)见解析6、(1)甲种图书售价每本28元, 乙种图书售价每本20元;(2)甲种图书进货533本, 乙种图书进货667本时利润最大.。

2024-2025学年江苏盐城盐都区九年级五校联考11月期中数学试题及答案

2024-2025学年江苏盐城盐都区九年级五校联考11月期中数学试题及答案

2024年秋学期九年级数学期中考试试卷一、选择题(每题3分,计24分)1.下列方程,属于一元二次方程的是()A.x2﹣xy=1 B.x2﹣2x+3=0 C.D.2(x+1)=x2.一元二次方程x2﹣3=2x的二次项系数、一次项系数、常数项分别是()A.1,﹣2,﹣3 B.1,﹣2,3 C.1,2,3 D.1,2,﹣33.若m、n是关于x的方程2x2﹣4x+1=0的两个根,则的值为()A.4 B.﹣4 C.D.4.电影《志愿军》不仅讲述了中国人民志愿军抗美援朝的故事,更是通过鲜活生动的人物塑造,让观众体会到历史事件背后的人性和情感,一上映就获得全国人民的追捧.某地第一天票房约3亿元,若以后每天票房按相同的增长率增长,三天后票房收入累计达18亿元,若把增长率记作x,则方程可以列为()A.3(1+x)=18 B.3(1+x)2=18 C.3+3(1+x)2=18 D.3+3(1+x)+3(1+x)2=185.下列说法正确的是()A.三点确定一个圆B.平分弦的直径垂直于弦C.相等的圆心角所对的弦相等D.三角形的外心到三角形三个顶点的距离相等.6.如图,AB是⊙O的直径,弦CD交AB于点E,∠ACD=60°,∠ADC=40°,则∠AED的度数为()A.110°B.115°C.120°D.105°7.如图,圆O的半径是4,BC是弦,∠B=30°且A是弧BC的中点,则弦AB的长为()A.B.C.4 D.68.如图,⊙M的半径为4,圆心M的坐标为(6,8),点P是⊙M上的任意一点,P A⊥PB,且P A、PB与x轴分别交于A、B两点,若点A、点B关于原点O对称,则AB的最大值为()A .13B .14C .12D .28二、填空题(每题3分,计30分)9.写一个一元二次方程,使它有两个相等的实数根: (写出一个即可).10.关于x 的方程x 2+kx +1=0有两个相等的实数根,则k 值为 .11.若m 是方程2x 2﹣3x ﹣1=0的一个根,则4m 2﹣6m +2022的值为 .12.如图,AB 为⊙O 的直径,弦CD ⊥AB 于点E ,已知CD =8,EB =2,则⊙O 的半径为 . 13.任意抛掷一枚均匀的骰子,骰子各个面的点数分别为1,2,3,4,5,6,则朝上的点数是奇数的概率是 .14.为迎接全市的禁毒知识竞赛,某校进行了相关知识测试,经过层层预赛,小洋和小亮进入了最后的决赛,如图,是他们6次的测试成绩,若要从中选一名测试成绩稳定的同学去参加竞赛,则应选 .(填“小洋”或“小亮”).第12题 第14题15. 如图,在正六边形ABCDEF 中,AH FG ∥,BI AH ⊥,垂足为点I .若20EFG ∠=°,则ABI ∠=.16.如图,60BAC ∠=°,45ABC ∠=°,AB =,D 是线段BC 上的一个动点,以AD 为直径画O 分别交AB 、AC 于E 、F ,连接EF ,则线段EF 长度的最小值为______.17.如图有一个三角形点阵,从上向下有无数多行,其中第一行有1个点,第二行有2个点,…,第n 行有n 个点,容易发现,10是三角点阵中前4行的点数之和.当三角点阵中点数之和是300时,则三角点阵点的行数为 .18.如图,在矩形ABCD 中,12AB =,16BC =,点E F 、分别是边AB BC 、上的动点,且10EF =,点G 是EF 的中点,连接AG CG 、,则四边形AGCD 面积的最小值为 .第15题 第16题 第17题 第18题三、解答题(共9题,计96分)19.解方程:(1)36x 2﹣1=0;(2)x 2+10x +21=0;20.初一某班16名男生在体检时测量了身高.以160cm 为基准,记录男生们的身高,超过160cm 记为正,不足160cm 记为负.前15名男生的相对身高(单位:cm )记录如表,第16名男生身高为171cm . 序号1 2 3 4 5 6 7 8 相对身高7− 4+ 0 16+ 2+ 3− 1+ 5− 序号9 10 11 12 13 14 15 16 相对身高 9− 3+ 4− 7+ 1+ 2− 1+ m(1)表格中m = ;(2)该班最高的男生与最矮的男生身高相差 cm ;(3)计算该班男生的平均身高.21.如图,用长为22米的篱笆,一面利用墙(墙的最大可用长度为14米),围成中间隔有一道篱笆的长方形花圃.为了方便出人,建造时,在BC 上用其它材料做了宽为2米的两扇小门,在EF 上用其它材料做了宽为1米的一扇小门.(1)设花圃的一边AB 长为x 米,请你用含x 的代数式表示另一边AD 的长为___________米;(2)若此时花圃的面积刚好为254m ,求此时花圃的长与宽.22.如图,在四边形ABCD 中,,AC BD 相交于点E ,且AB AC AD ==,经过A ,C ,D 三点的O 交BD 于点F ,连接CF .(1)求证:CF BF =;(2)若CD CB =,求证:CB 是O 的切线.23.已知x 1,x 2是关于x 的一元二次方程x 2﹣2(m +1)x +m 2+10=0的两实数根.(1)求m 的取值范围;(2)已知等腰△ABC 的一边长为7,若x 1,x 2恰好是△ABC 另外两边的边长,求m 的值和△ABC 的周长.24.定义:一元二次方程()200ax bx c a ++=≠,若根的判别式24b ac −是一个完全平方数(式),则此方程叫“完美方程”.(1)判断下列方程一定是“完美方程”的是 ;(直接填序号)①2430x x −−=;②220x mx m ++−=;③()210x b x b +++=;(2)若关于x 的一元二次方程222(1)20x m x m m −−+−=①证明:此方程一定是“完美方程”;②设方程的两个实数根分别为1x ,()212x x x <,是否存在实数k ,使得()12,P x x 始终在函数3y kx k =−+的图像上?若存在,求出k 的值;若不存在,请说明理由.25.某电商销售一款秋季时装,进价40元/件,售价110元/件,每天销售20件.为了庆祝二十大的胜利召开,未来30天,这款时装将开展“喜迎二十大,每天降1元”的促销活动,即从第1天起每天的单价均比前一天降1元.通过市场调研发现,该时装单价每降1元,每天销量增加4件.(1)这30天内该电商第几天的利润最大?最大利润是多少?(2)为了回馈社会,在这30天内,该电商决定每销售一件时装,向希望工程捐a 元(0,a >).要使每天捐款后的利润随天数t (t 为正整数)的增大而增大,求a 的取值范围.26.如图,在△ABC 中,AB =AC ,以AB 为直径作⊙O ,交BC 于点D ,交AC 于点E .(1)求证:点D 是边BC 的中点.(2)记的度数为α,∠C 的度数为β.探究α与β的数量关系.27.如图①,在四边形ABCD 中,9086BAD D AD CD AB m ∠=∠=°===,,,.过A B C ,,三点的O 的圆心位置和半径,随着m 的变化而变化.解决下列问题:【特殊情形】(1)如图②,当0m =时,圆心O 在AD 上,求O 的半径.【一般情形】(2)(Ⅰ)当2m =时,求O 的半径;(Ⅱ)当0m >时,随着m 的增大,点O 的运动路径是; (填写序号)①射线;②弧;③双曲线的一部分;④不规则的曲线【深入研究】(3)如图③,连接AC ,以O 为圆心,作出与CD 边相切的圆,记为小O .当小O 与AC 相交且与BC 相离时,直接写出m 的取值范围.参考答案1-4BAAD 5-8DACD9.x 2+2x +1=0(答案不唯一) 10.±2 11.2023 12.5 13.½ 14.小亮 15.50° 16.18.14219.解:(1)36x 2﹣1=0,36x 2=1,,解得,;(2)x 2+10x +21=0,x 2+10x =﹣21,x 2+10x +25=﹣21+25,即(x +5)2=4,x +5=±2,解得x 1=﹣3,x 2=﹣7;20.(1)解:由题意得,17116011m =−=+,故答案为:11+;(2)解:16(9)16925cm +−−=+=,即该班最高的男生与最矮的男生身高相差25cm ,故答案为:25;(3)解:1(740162315934712111)16016×−++++−+−−+−++−+++ 11616016=×+ 161cm =答:该班男生的平均身高为161cm .21.1)()273x −(2)长为9米,宽为6米22.(1)证明:AB AC = ,ACB ABC ∴∠=,AB AD = ,ADB ABD ∴∠=∠,又ADB ACF ∠=∠ , ACF ABD ∴∠=∠,ACB ACF ABC ABD ∴∠−∠=−∠,即:BCF CBF ∠=∠, CF BF ∴=;(2)证明:连接CO 并延长交O 于G 点,再连接GF ,CG 为O 直径,90GFC ∴∠=°,90G GCF ∴∠+∠=°,CDB G ∠=∠ ,90CDB GCF ∴∠+∠=°,CD CB = ,CDB CBD ∴∠=∠,CF BF = ,BCF CBD ∴∠=∠,BCF CDB ∴∠=∠,90BCF GCF ∴∠+∠=°,90BCG ∴∠=°,CG BC ∴⊥,CB ∴是O 的切线.23.解:(1)根据题意得Δ=4(m +1)﹣4(m 2+10)≥0,解得;(2)当腰长为7时,则x =7是一元二次方程x 2﹣2(m +1)x +m 2+10=0的一个解, 把x =7代入方程得49﹣14(m +1)+m 2+10=0,整理得m 2﹣14m +45=0,解得m 1=9,m 2=5,当m =9时,x 1+x 2=2(m +1)=20,解得x 2=13,则三角形周长为13+7+7=27;当m =5时,x 1+x 2=2(m +1)=12,解得x 2=5,则三角形周长为5+7+7=19;当7为等腰三角形的底边时,则x 1=x 2,所以,方程化为4x 2﹣44x +121=0,解得,三边长为, 其周长为, 综上所述,m 的值是9或5或,这个三角形的周长为27或19或18. 24.(1)解:①2430x x −−=,()()224441328b ac −=−−××−= ,不是完全平方数,2430x x ∴−−=不是“完美方程”; ②220x mx m ++−=, ()()22224424824b ac m m m m m −=−−=−+=−+ ,不是完全平方式,220x mx m ∴++−=不是“完美方程”;③()210x b x b +++=, ()()2222414211b ac b b b b b −+−−+− ,是完全平方式,()210x b x b ∴+++=是“完美方程”; 故答案为:③;(2)解:①证明:222(1)20x m x m m −−+−=()()2222242142484484b ac m m m m m m m −=−−−=−+−+= ,且4是完全平方数, ∴此方程一定是“完美方程”;②存在,理由如下:222(1)20x m x m m −−+−= ,()()20x m x m ∴−−−=, 0x m ∴−=或()20x m −−=, x m ∴=或2x m =−,设方程222(1)20x m x m m −−+−=的两个实数根分别为1x 、()212x x x <,12x m ∴=−,2x m =,()12,P x x 始终在函数3y kx k =−+的图像上,()23m k m k ∴=−−+,313m k m −∴==−, 即存在实数k ,使得PP (xx 1,xx 2)始终在函数3y kx k =−+的图像上,k 的值为1 25.解:(1)设销售利润为w 元,销售时间为x 天,由题意可知,(11040)(420),wx x =−−+ 242601400x x =−++24(32.5)5625,x =−−+∵50,a =−< ∴函数有最大值,∴当30x =时,w 取最大值为24302603014005600w =−×+×+=元, ∴第30天的利润最大,最大利润是5600元;(2)设未来30天每天获得的利润为y ,时间为t 天,根据题意,得(11040)(204)(204),y t t t a =−−+−+化简,得24(2604)140020,y t a t a =−+−+− 每天缴纳电商平台推广费用后的利润随天数t (t 为正整数)的增大而增大, ∴260429.5,2(4)a −−>×− 解得,6,a又∵0,a >即a 的取值范围是:06a <<.26.(1)证明:如图,连接AD ,∵AB 是⊙O 的直径,点D 在圆上,∴∠ADB =90°,即AD ⊥BC ,∵AB =AC ,∴BD =CD ,即点D 是BC 的中点;(2)解:β﹣α=45°; 如图,连接OE ,∵的度数为α,∴∠AOE =α,∵OA =OE ,∴∠OAE =,∵AB =AC ,AD ⊥BC ,∴∠CAD =∠OAE =45°﹣α, ∵∠CAD +∠C =90°,∴45°﹣α+β=90°即β﹣α=45°.27.(1)解:连接OC ,在O 中,设OA O =C r =,则8OD r =−. 在Rt OCD 中,90D ∠=︒,∴222OD CD OC +=,即222(8)6r r −+=.解得254r =. (2)(I )解:过点O 分别作,OF AB OE CD ⊥⊥,连接,OC OB ,∵OF 过圆心,OF AB ⊥, ∴1AF BF ==.∵90A D OFA ∠=∠=∠=°, ∴四边形AFED 是矩形.∴1AF DE ==.∴5CE CD DE =−=.设OE x =,则8OF x =−,在Rt COE 中222OE CE OC +=, 在Rt BOF 中222OF BF OB +=, ∴2222OE CE OF BF +=+,即2225(8)x x +=−21+. 解得52x =,∴2221254OC OE CE =+=,即r OC == (II )过点O 分别作,OF AB OE CD ⊥⊥,连接,OC OB ,如图:由(I )知:1,82BFAF DE m EF AD =====, 16,2CE CD DE m ∴=−=− 设OE x =,则8OF x =−,∵OC OB =,∴2222OE CE OF BF +=+, 即2222116(8)24x m x m +−=−+ , 整理得:1438m x +=, ∵0,m O >到AD 的距离12DEm =, 类比平面直角坐标系内xy 的几何意义, ∴O 的轨迹是一条射线,故答案为:①;(3)过O 作EF CD ⊥,交CD 于E ,交AB 于F ,过O 作OM AC ⊥于M ,作ON BC ⊥于N ,连接O ,C OB ,过B 作BG CD ⊥于G ,如图:由(II )知,1438m OE +=, ()222225420,64OC CE OE m m ∴+−+ 8,6,AD CD ==10,AC ∴= 15,2CM AC ∴== ()22222525420256464OM OC CM m m ∴=−=−+−=()2444,m m −− ,,,BG CD AD CD DG AB ⊥⊥∥ ∴四边形ABGD 是矩形,,8,DG AB m BG AD ∴====6,CG m ∴=−222212100,BC CG BG m m ∴=+=−+()2221112100,24CN BC m m ∴==−+ ()22221992900,64ON OC CN m m ∴=−=+− 小O 与AC 相交且与BC 相离, ,OM OE ON ∴<<222,OM OE ON ∴<< 即()()222251431444992900,64864m m m m m + −−<<+− 解得:1123m <<.。

江苏省连云港市新海实验中学2023-2024学年九年级下学期期中数学试题(含答案)

江苏省连云港市新海实验中学2023-2024学年九年级下学期期中数学试题(含答案)

2023~2024学年度第二学期期中考试九年级数学学科试题(考试时间:120分钟分值:150分)一、选择题(每题3分,共24分)1.-8的倒数是( )A .8B.C .D .-82.下列运算正确的是( )A .B .C .D .3有意义,则x 可以取的最小整数是( )A .1B .2C .3D .44.在一次中考体育模拟测试中,某班41名学生参加测试(满分为40分),成绩统计如表,部分数据被遮盖,下列统计量中,与被遮盖的数据无关的是()成绩(分)32343637383940人数(人)■■2619■7A .中位数、众数B .中位数、方差C .平均数、众数D .平均数、方差5.如图,的直径AB 垂直于弦CD ,垂足为E ,,半径为2,则弦CD 的长为()A .2B .CD .46.如图,将绕点A 逆时针旋转100°得到.若点D 在线段BC 的延长线上,∠BDE 的度数为()A .100°B .90°C .80°D .70°7.在平面直角坐标系中,已知抛物线.若,,为抛物线上三点,且总有,则m 的取值范围是( )1818-()325a a -=-3515a a a ⋅=22321a a -=()22346a ba b -=O e 30A ∠=︒ABC △ADE △()2440y ax ax a =-+>()11,A m y -()2,B m y ()32,C m y +132y y y >>A .B .C .D .8.如图,在平面直角坐标系xOy 中,点,点在双曲线上,,分别过点A ,点B 作x 轴的平行线,与双曲线分别交于点C ,点D ,若的面积为,则的值为()A .BC .D二、填空题(每题3分,共24分)9.因式分解=______.10.一粒大米的质量约为0.000021千克,数据0.000021用科学记数法可表为______.11.《算学启蒙》中记载了这样一道题:良马日行二百四十里,驽马日行一百五十里,驽马先行一十二日,问良马几何追及之?其大意是:快马每天行240里,慢马每天行150里,慢马先行10天,快马几天可追上慢马?若设快马x 天可追上慢马,则列出方程为______.12.如图所示,河堤横断面迎水坡AB 的坡度,堤高BC =6m ,则坡面AB 的长度是______.13.已知圆锥的底面圆半径为3,高为4,则它的侧面展开图面积为______.14.若a ,b 是一元二次方程的两个实数根,则的值______.15.如图,在等边中,,点P 是BC 边上的动点(不包括B 、C ),点P 关于直线AB ,AC 的对称点分别为M ,N ,则线段MN 长的取值范围是______.1m <32m >01m <<312m <<()11,A x y ()22,B x y 2y x=120x x <<4y x =AOB △56AC BD2312244x-1:2i =2550x x --=11a b+ABC △4AB =16.如图,在直角坐标系中,,D 是OA 上一点,B 是y 正半轴上一点,且,,垂足为E ,则OE 的最小值为______.三、解答题(本大题共11小题,共102分)17.(本题618.(本题6分)解不等式组:解不等式组:并写出它的最大整数解.19.(本题6分)先化简,再求值:,其中.20.(本题8分)随着通讯技术迅猛发展,人与人之间的沟通方式更多样、便捷,某校数学兴趣小组设计了“你最喜欢的沟通方式”调查问卷(每人必选且只选一种),在全校范围内随机调查了部分学生,将统计结果绘制了如图两幅不完整的统计图,请结合图中所给的信息解答下列问题:(1)这次统计共抽查了______名学生;(2)将条形统计图补充完整;在扇形统计图中,“QQ ”所对应的扇形的圆心角是______度;(3)若某校有2000名学生,试估计最喜欢用“微信”沟通的人数.21.(本题10分)为深入贯彻习近平总书记关于劳动教育的重要论述,坚持“五育并举”,培养学生勤俭、奋斗、创新、奉献的劳动精神,某校开设了“劳以启智、动以润心”劳动教育课程、小明对其中的A 种植、B 烹饪、C 陶艺、D 木工4门课程都很感兴趣若每门课程被选中的可能性相等.(1)小明从4门课程中随机选择一门学习,恰好选中B 烹饪的概率为______;(2)小明从4门课程中随机选择两门学习,用画树状图或列表的方法,求他恰好选中B 烹饪、C 陶艺的概()6,0A -OB AD =DE AB ⊥01tan 302024︒-⎛⎫⎪⎝⎭4312123x x x x +<⎧⎪+-⎨≥⎪⎩221422211a a a a a a --⋅---+-1a =+率.22.(本题10分)在中,D 是BC 边的中点,E 、F 分别在AD 及其延长线上,,连接BE 、CF .(1)求证:(2)若,试判断四边形BFCE 的形状,并说明理由.23.(本题10分)如图,小华和同伴春游时,发现在某地小山坡的点E 处有一棵小树,他们想利用皮尺、倾角器和平面镜测量小树到山脚下的距离(即DE 的长度),小华站在点B 处,让同伴移动平面镜至点C 处,此时小华在平面镜内可以看到点E .且测得BC =3米,CD =28米.∠CDE =127°.已知小华的眼睛到地面的距离AB =1.5米,请根据以上数据,求DE 的长度.(参考数据:,)24.(本题10分)红灯笼,象征着阖家团圆,红红火火,挂灯笼成为我国的一种传统文化.某商店在春节前购进甲、乙两种红灯笼,用2600元购进甲灯笼与用3500元购进乙灯笼的数量相同,已知乙灯笼每对进价比甲灯笼每对进价多9元.经市场调查发现,甲灯笼每天的销量(单位:对)与销售单价z (单位:元/对)的函数关系为,乙灯笼每天的销量(单位:对)与销售单价x (单位:元/对)的函数关系,其中x ,z 均为整数.商场按照每对甲灯笼和每对乙灯笼的利润相同的标准确定销售单价,销售单价均高于进价.(1)求甲、乙两种灯笼每对的进价:(2)当乙灯笼的销售单价为多少元/对时,这两种灯笼每天销售的总利润的和最大?最大利润是多少元?25.(本题10分)如图,CD 是的直径,点B 在上,点A 为DC 延长线上一点,过点O 作交AB 的延长线于点E ,且(1)求证:AE 是的切线;(2)若线段OE 与的交点F 是OE 的中点,的半径为3,求阴影部分的面积.ABC △CE BF ∥BDF CDE ≌△△12DE BC =3sin 375︒≈3tan 374︒≈1y 13202z y =-+2y 22196x y =-+O e O e OE BC ∥D E ∠=∠O e O e O e26.(本题12分)如图,已知边长为6的正方形纸片ABCD ,点G 、H 分别是边AD 与BC 上的点,连接GH ,将正方形纸片ABCD 沿GH 折叠,使点B 的对应点M 落在边CD 上,AB 的对应线段NM 交AD 于点E .(1)当点E 为AD 中点时①若,则∠MHC 的大小为______;②若,则线段BH 的长度为______;线段GH 的长度为______;(2)记,四边形ABHG 的面积为S ,请写出S 关于x 的函数表达式并求出S 的最小值.27.(本题14分)在平面直角坐标系中,抛物线经过点,,与y 轴交于点C .(1)求该抛物线的函数表达式;(2)点P 是该抛物线上的一个动点,①若中有一个内角是∠OCB 的3倍,求点P 坐标.②若抛物线上的点P 在第二象限且直线PB 与y 轴和直线AC 分别交于点D 和点E ,若,,的面积分别为,,,且满足,求点P 的横坐标.参考答案及评分标准一、选择题(本大题共有8小题,每小题3分,共24分)45MED ∠=︒2CM =CM x =)2y x bx c =++()3,0A -()2,0B PCB △BCD △CDE △CEP △1S 2S 3S 1322S S S +=题号12345678答案CDCABCDA二、填空题(本大题共有8小题,每小题3分,共24分)9.10.11.12.13.14.-115.16.三、解答题(本大题共有11小题,共102分)17.原式==2.18.由①得,由②得,∴原不等式组的解集,最大整数解为19.原式=当,原式20.(1)100;(2)条形图(略);108;(3)800名.答:估计最喜欢用“微信”沟通的人数有800名.21.解:(1)解:小明恰好选中B烹饪的概率为.(2)树状图或列表(略),由树状图(或图表)可知,共有12种等可能的结果,其中符合题意的结果共有12种,∴P (恰好选中项目B 和C 的概率为).22.证明:(1)∵,∴,;又∵D 是BC 的中点,即,∴;(2)四边形BFCE 是菱形,证明如下:∵,∴是等腰三角形;又∵,∴,由(1)知:,则,;∴四边形BFCE 是菱形23.解:过点E 作交BD 的延长线于F ,设米,∵,∴,在中,,则,由题意得:,∵,∴,∴,即,4(1)(1)x x +-52.110-⨯150(10)240x x +=15π6MN ≤<3-221+-2x >5x ≤25x <≤5x =21(2)(2)22(1)1a a a a a a -+-⋅----22111a a a a a +=-=---1a =+=1421126==CE BF ∥ECD FBD ∠=∠DEC DFB ∠=∠BD DC =()BDF EDC AAS ≌△△AB AC =ABC △BD DC =AD BC ⊥BDF EDC ≌△△DE DF =DB DC =EFBD ⊥EF x =127CDE ∠=︒1279037DEF ∠=︒-︒=︒Rt EDF △tan DEF DF EF ∠=tan 34DF EF D x EF =⋅∠≈ACB ECF ∠=∠90ABC EFC ∠=∠=︒ABC EFC ∽△△AB BCEF FC = 1.533284x x =+解得:,∴,∴(米),答:DE 的长度约为28米.24.解:(1)由题意,设甲种灯笼每对的进价为a 元,则乙种灯笼每对的进价为元,∴.∴.∴经检验是原方程的根.∴.答:甲种灯笼每对的单价为26元,乙种灯笼每对的单价为35元.(2)由题意,设两种灯笼每天的销售的总利润的和为w 元,乙灯笼的销售单价为x 元/对,∴.∵每对甲灯笼和每对乙灯笼的利润相同的标准确定销售单价,∴.∴.∴.∵,∴当时,w 最大,最大为.答:乙灯笼的销售单价为60元/对时,每天销售的总利润的和最大,最大利润是3125元.25.(1)证明:连接OB ,∵CD 是的直径,∴,即,∵∴,∴,,∵,∴,∵,∴,∴,∴,∴∵OB 是的半径,∴AE 是的切线;(2)解:连接BF ,∵,F 是OE 的中点,∴,∵的半径为6,,∴,,∴是等边三角形,∴,∴,∴,∴阴影部分的面积为:26.(1)①45°②;(2)连接BM ,过点G 作,,,设,,在中,,得,,得,当,y 取最小值为27.(1)(2)时,或时22.4x =1.8346x DF ==16.8283sin 5DF DEF DE ≈=∠=()9a +()9a +260035009a a =+26a =26a =926935a +=+=()()()()263202352196w z z x x =--++--+2635z x -=-9z x =-()()()()()()3532720235219653585w x x x x x x =--+++--+=---50-<60x =()()5603560853125---=O e BC BD ⊥90CBD ∠=︒OE BC ∥90DGO CBD ∠=∠=︒90BGE DGO ∠=∠=︒90D DOG ∠+∠=︒D E ∠=∠DOE DBE ∠=∠OE OB =D OBD ∠=∠90OBD DBE D DOG ∠+∠=∠+∠=︒90OBE ∠=︒OB AE ⊥O e O e 90OBE ∠=︒BF OF =O e 90DGO ∠=︒3BF OF OB ===18090BGO DGO ∠=︒-∠=︒OBF △60BOF ∠=︒9030OBG BOF ∠=︒-∠=︒1322OG OB ==BG =2603133360222ππ⨯⨯-⨯=103GP BC ⊥GPH BMC ≌△△BP CM x ==BH HM t ==6CH t =-HCM △222(6)t x t -+=23612x t +=AG BP t x ==-1()62y AG BH =+⨯1()62y t x t =-+⨯221127318(3)222y x x x =-+=-+3x =2722y x x =+90PCB ∠=︒⎛- ⎝90PBC ∠=︒(4,--(3)过点P 和点E 分别做x 轴的垂线于点M 、N ,得,,设,,由,,直线AC :∴,,,,化简得,,得或(第二象限,舍),,∴P 的横坐标为-21322s s s +=2DB PE DB PE OB MN DE DE DE ON ON +=+=+=22MNON ON+=22MN ON +=()0ON m m =>22MN m =-BEN BPM ∽△△EN BNPM BM=y x =+,E m ⎛-+ ⎝()232,P m -+-+y yE BNP BM=23m m +=226235m m m m m-+=-2340m m --=()()3410m m -+=143m =21m =-0m >322m -+=-。

湖南省邵阳市邵东市2024届九年级下学期期中考试数学试卷(含答案)

湖南省邵阳市邵东市2024届九年级下学期期中考试数学试卷(含答案)

数学温馨提示:本卷共三道大题,满分120分,考试时间120分钟。

一、选择题(本大题有10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1、已知,若,则的相反数是A.B.C.D.2、如图,,点为上一点,连接.若,,则的大小为A.B.C.D.3、如图是小强用八块相同的小正方体积木搭建的几何体,这个几何体的左视图是A.B.C.D.4、《红楼梦》是我国古典四大名著之一,其总字数大约731000字,其中731000用科学记数法表示应为A.B.C.D.5、图1是一把扇形书法纸扇,图2是其完全打开后的示意图,外侧两竹条和的夹角为,的长为,贴纸部分的宽为,则弧的长为A.B.C.D.6、下列说法正确的是A.随机抛掷一枚硬币,反面一定朝上B.数据3,3,5,5,8的众数是8C.某商场抽奖活动获奖的概率为,说明每买50张奖券中一定有一张中奖D.想了解湖南省城镇居民人均年收入水平,宜采用抽样调查7、如图,将四边形纸片沿折叠,点落在处,若,则的度数是A.B.C.D.8、《算法统宗》是中国古代数学名著,作者是我国明代数学家程大位.在《算法统宗》中有一道“荡秋千”的问题:“平地秋千未起踏板一尺离地.送行二步与人齐,五尺人高曾记.仕女佳人争蹴,终朝笑语欢嬉.良工高士素好奇,算出索长有几?”译文:“有一架秋千,当它静止时,踏板离地1尺,将它往前推送10尺(水平距离)时,秋千的踏板距离地面的高度就与人的身高相等,这个人的身高为5尺,秋千的绳索始终拉得很直(如图所示),试问绳索有多长?”若设绳索长为尺,则根据题意可列方程为A.B.C.D.9、如图,点,,,在上,,垂足为,若,,则A.6B.C.D.310、如图,二次函数的图像与轴正半轴相交于,两点,与轴相交于点,对称轴为直线,且,则下列结论:①;②;③;④关于的方程有一个根为.其中正确的结论有A.1个B.2个C.3个D.4个二、填空题(本大题有8个小题,每小题3分,共24分)11、已知,,那么________.12、如图,在中,,,则________度.13、已知关于的一元二次方程的一个根为,则它的另一个根为________.14、如图,小明在处测得风筝的仰角为,同时在正对着风筝方向距处30米的处,小明测得风筝的仰角为,则风筝此时的高度________米.(结果保留根号)15、下列算式中计算正确的有________(填序号).①,②,③,④.16、不等式组的正整数解是________.17、如图,是坐标原点,平行四边形的顶点的坐标为,顶点在轴的负半轴上,反比例函数的图像经过位于第二象限的顶点,若平行四边形的面积为16,则的值为________.18、如图1,在中,,,点为边的中点,作,射线交边于点,设,,若与的函数图象如图2所示,且其顶点坐标为,则的值为________.三、解答题(本大题有8个小题,第19、20题每小题6分,第21、22题每小题8分,第23、24题每小题9分,第25、26题每小题10分,共66分.解答应写出必要的文字说明、证明过程或演算步骤)19、计算:.20、已知关于的一元二次方程有两个相等的实数根,求代数式的值.21、端午节是我国的传统佳节,民间历来有吃“粽子”的习俗.我市某食品厂为了了解市民对今年销量较好的肉馅粽、豆沙馅粽、红枣馅粽、蛋黄馅粽(以下分别用A、B、C、D表示)这四种不同口味的粽子的喜爱情况,在节前对某居民区市民进行了抽样调查,并将调查情况绘制成如下两幅不完整的统计图:请根据所给信息,解答以下问题:(1)本次参加抽样调查的居民有多少人?(2)请将两幅不完整的统计图补充完整;(3)若有外型完全相同的A、B、C、D粽各一个,煮熟后,小明吃了两个。

九年级(下)期中数学试卷附答案

九年级(下)期中数学试卷附答案

九年级(下)期中数学试卷一、选择题(本大题共6小题,每小题3分,共18分)1.﹣1+2的值是()A.﹣1 B.1 C.﹣3 D.32.下列单项式中,与a2b是同类项的是()A.2a2b B.a2b2 C.ab2D.3ab3.如图,AB∥CD,FE⊥DB,垂足为E,∠1=50°,则∠2的度数是()A.60°B.50°C.40°D.30°4.如图,在方格纸中,随机选择标有序号①②③④⑤中的一个小正方形涂黑,与图中阴影部分构成轴对称图形的概率是()A.B.C.D.5.菱形ABCD的一条对角线长为6,边AB的长为方程y2﹣7y+10=0的一个根,则菱形ABCD的周长为()A.8 B.20 C.8或20 D.106.如图是本地区一种产品30天的销售图象,图①是产品日销售量y(单位:件)与时间t(单位;天)的函数关系,图②是一件产品的销售利润z(单位:元)与时间t(单位:天)的函数关系,已知日销售利润=日销售量×一件产品的销售利润,下列结论错误的是()A.第24天的销售量为200件B.第10天销售一件产品的利润是15元C.第12天与第30天这两天的日销售利润相等D.第30天的日销售利润是750元二、填空题(本大题共6小题,每小题3分,共18分)7.计算:20=.8.如图,在△ABC中,D、E为边AB、AC的中点,已知△ADE的面积为4,那么△ABC的面积是.9.如图,已知AB=CB,要使四边形ABCD成为一个轴对称图形,还需添加一个条件,你添加的条件是.(只需写一个,不添加辅助线)10.关于x的一元二次方程(k﹣1)x2﹣2x+1=0有两个不相等的实数根,则实数k的取值范围是.11.如图,边长为1的正方形ABCD绕点A逆时针旋转45°后得到正方形AB1C1D1,边B1C1与CD交于点O,则四边形AB1OD的面积是.12.平面内有四个点A、O、B、C,其中∠AOB=120°,∠ACB=60°,AO=BO=2,则满足题意的OC长度为整数的值可以是.三、解答题(本大题共5小题,每小题6分,共30分)13.(1)计算:﹣3tan30°+(2)在平行四边形ABCD中,对角线AC于BD交于点O,∠DAC=42°,∠CBD=23°,求∠COD的度数.14.解不等式组:.15.先化简,再求值:(1﹣),其中x=3.16.如图,在正方形ABCD中,点M是BC边上任意一点,请你仅用无刻度直尺、用连线的方法,分别在图(1)、图(2)中按要求作图(保留作图痕迹,不写作法).(1)在图(1)中,在AB边上求作一点N,连接CN,使CN=AM;(2)在图(2)中,在AD边上求作一点Q,连接CQ,使CQ∥AM.17.A、B、C三人玩篮球传球游戏,游戏规则是:第一次传球由A将球随机地传给B、C两人中的某一人,以后的每一次传球都是由上次的传球者随机地传给其他两人中的某一人.(1)画树状图,求两次传球后,球恰在B手中的概率;(2)画树状图,求三次传球后,球恰在A手中的概率.四、解答题(本大题共3小题,每小题8分,共24分)18.雾霾天气严重影响市民的生活质量.在今年寒假期间,某校八年级一班的综合实践小组同学对“雾霾天气的主要成因”随机调查了所在城市部分市民.并对调查结果进行了整理.绘制了如图不完整的统计图表.观察分析并回答下列问题.(1)本次被调查的市民共有多少人?(2)分别补全条形统计图和扇形统计图,并计算图2中区域B所对应的扇形圆心角的度数;(3)若该市有100万人口,请估计持有A、B两组主要成因的市民有多少人?组雾霾天气的主要成因百分比别A工业污染45%B汽车尾气排放mC炉烟气排放15%D其他(滥砍滥伐等)n19.如图是一座人行天桥的示意图,天桥的高度是10米,CB⊥DB,坡面AC的倾斜角为45°.为了方便行人推车过天桥,市政部门决定降低坡度,使新坡面DC 的坡度为i=:3.若新坡角外需留3米宽的人行道,问离原坡角(A点处)10米的建筑物是否需要拆除?(参考数据:≈1.414,≈1.732)20.如图,⊙O的直径AB=4,∠ABC=30°,BC交⊙O于D,D是BC的中点.(1)求BC的长;(2)过点D作DE⊥AC,垂足为E,求证:直线DE是⊙O的切线.五、解答题(本大题共2小题,每小题9分,共18分)21.如图,▱ABCD放置在平面直角坐标系中,已知点A(2,0),B(6,0),D (0,3),反比例函数的图象经过点C.(1)求反比例函数的解析式;(2)将▱ABCD向上平移,使点B恰好落在双曲线上,此时A,B,C,D的对应点分别为A′,B′,C′,D′,且C′D′与双曲线交于点E,求线段AA′的长及点E的坐标.22.小明在课外学习时遇到这样一个问题:定义:如果二次函数y=a1x2+b1x+c1(a1≠0,a1,b1,c1是常数)与y=a2x2+b2x+c2(a2≠0,a2,b2,c2是常数)满足a1+a2=0,b1=b2,c1+c2=0,则称这两个函数互为“旋转函数”.求函数y=﹣x2+3x﹣2的“旋转函数”.小明是这样思考的:由y=﹣x2+3x﹣2函数可知a1=﹣1,b1=3,c1=﹣3,根据a1+a2=0,b1=b2,c1+c2=0求出a2,b2,c2,就能确定这个函数的“旋转函数”.请参考小明的方法解决下面的问题:(1)写出函数y=﹣x2+3x﹣2的“旋转函数”;(2)若函数y=﹣x2+mx﹣2与y=x2﹣2nx+n互为“旋转函数”,求(m+n)2017的值;(3)已知函数y=﹣(x+1)(x﹣4)的图象与x轴交于A,B两点,与y轴交于点C,点A,B,C关于原点的对称点分别是A1,B1,C1,试证明经过点A1,B1,C1的二次函数与函数y=﹣(x+1)(x﹣4)互为“旋转函数”.六、解答题(本大题共1小题,共12分)23.(1)问题如图1,在四边形ABCD中,点P为AB 上一点,当∠DPC=∠A=∠B=90°时,求证:AD•BC=AP•BP.(2)探究如图2,在四边形ABCD中,点P为AB上一点,当∠DPC=∠A=∠B=α时,上述结论是否依然成立?说明理由.(3)应用请利用(1)(2)获得的经验解决问题:如图3,在△ABD中,AB=6,AD=BD=5.点P以每秒1个单位长度的速度,由点A出发,沿边AB向点B运动,且满足∠DPC=∠A.设点P的运动时间为t(秒),当以D为圆心,以DC为半径的圆与AB相切,求t的值.参考答案与试题解析一、选择题(本大题共6小题,每小题3分,共18分)1.﹣1+2的值是()A.﹣1 B.1 C.﹣3 D.3【考点】19:有理数的加法.【分析】依据有理数的加法法则计算即可.【解答】解:﹣1+2=2﹣1=1.故选:B.2.下列单项式中,与a2b是同类项的是()A.2a2b B.a2b2 C.ab2D.3ab【考点】34:同类项.【分析】根据同类项的概念:所含字母相同,并且相同字母的指数也相同,结合选项解答即可.【解答】解:A、2a2b与a2b所含字母相同,且相同字母的指数也相同,是同类项,故本选项正确;B、a2b2与a2b所含字母相同,但相同字母b的指数不相同,不是同类项,故本选项错误;C、ab2与a2b所含字母相同,但相同字母a的指数不相同,不是同类项,本选项错误;D、3ab与a2b所含字母相同,但相同字母a的指数不相同,不是同类项,本选项错误.故选A.3.如图,AB∥CD,FE⊥DB,垂足为E,∠1=50°,则∠2的度数是()A.60°B.50°C.40°D.30°【考点】JA:平行线的性质;J3:垂线.【分析】根据直角三角形的两锐角互余,求出∠D=40°,再根据平行线的性质即可解答.【解答】解:如图所示,∵FE⊥BD,∴∠FED=90°,∴∠1+∠D=90°,∵∠1=50°,∴∠D=40°,∵AB∥CD,∴∠2=∠D=40°.故选C.4.如图,在方格纸中,随机选择标有序号①②③④⑤中的一个小正方形涂黑,与图中阴影部分构成轴对称图形的概率是()A.B.C.D.【考点】X4:概率公式;P3:轴对称图形.【分析】由随机选择标有序号①②③④⑤中的一个小正方形涂黑,共有5种等可能的结果,使与图中阴影部分构成轴对称图形的有3种情况,直接利用概率公式求解即可求得答案.【解答】解:∵在方格纸中,随机选择标有序号①②③④⑤中的一个小正方形涂黑,共有5种等可能的结果,使与图中阴影部分构成轴对称图形的有②④⑤,3种情况,∴使与图中阴影部分构成轴对称图形的概率是:3÷5=.故选C.5.菱形ABCD的一条对角线长为6,边AB的长为方程y2﹣7y+10=0的一个根,则菱形ABCD的周长为()A.8 B.20 C.8或20 D.10【考点】L8:菱形的性质;A8:解一元二次方程﹣因式分解法.【分析】边AB的长是方程y2﹣7y+10=0的一个根,解方程求得y的值,根据菱形ABCD的一条对角线长为6,根据三角形的三边关系可得出菱形的边长,即可求得菱形ABCD的周长.【解答】解:∵解方程y2﹣7y+10=0得:y=2或5∵对角线长为6,2+2<6,不能构成三角形;∴菱形的边长为5.∴菱形ABCD的周长为4×5=20.故选B.6.如图是本地区一种产品30天的销售图象,图①是产品日销售量y(单位:件)与时间t(单位;天)的函数关系,图②是一件产品的销售利润z(单位:元)与时间t(单位:天)的函数关系,已知日销售利润=日销售量×一件产品的销售利润,下列结论错误的是()A.第24天的销售量为200件B.第10天销售一件产品的利润是15元C.第12天与第30天这两天的日销售利润相等D.第30天的日销售利润是750元【考点】FH:一次函数的应用.【分析】根据函数图象分别求出设当0≤t≤20,一件产品的销售利润z(单位:元)与时间t(单位:天)的函数关系为z=﹣x+25,当0≤t≤24时,设产品日销售量y(单位:件)与时间t(单位;天)的函数关系为y=,根据日销售利润=日销售量×一件产品的销售利润,即可进行判断.【解答】解:A、根据图①可得第24天的销售量为200件,故正确;B、设当0≤t≤20,一件产品的销售利润z(单位:元)与时间t(单位:天)的函数关系为z=kx+b,把(0,25),(20,5)代入得:,解得:,∴z=﹣x+25,当x=10时,y=﹣10+25=15,故正确;C、当0≤t≤24时,设产品日销售量y(单位:件)与时间t(单位;天)的函数关系为y=k1t+b1,把(0,100),(24,200)代入得:,解得:,∴y=,当t=12时,y=150,z=﹣12+25=13,∴第12天的日销售利润为;150×13=1950(元),第30天的日销售利润为;150×5=750(元),750≠1950,故C错误;D、第30天的日销售利润为;150×5=750(元),故正确.故选:C二、填空题(本大题共6小题,每小题3分,共18分)7.计算:20=1.【考点】6E:零指数幂.【分析】直接根据非0数的0次幂等于1进行解答.【解答】解:∵2≠0,∴20=1.故答案为:1.8.如图,在△ABC中,D、E为边AB、AC的中点,已知△ADE的面积为4,那么△ABC的面积是16.【考点】S9:相似三角形的判定与性质;KX:三角形中位线定理.【分析】根据三角形的中位线定理求出DE=BC,DE∥BC,求出△ADE∽△ABC,根据相似三角形的性质得出比例式,代入求出即可.【解答】解:∵D、E为边AB、AC的中点,∴DE=BC,DE∥BC,∴△ADE∽△ABC,∴=()2=,∵△ADE的面积为4,∴△ABC的面积是16,故答案为:16.9.如图,已知AB=CB,要使四边形ABCD成为一个轴对称图形,还需添加一个条件,你添加的条件是AD=CD.(只需写一个,不添加辅助线)【考点】P3:轴对称图形.【分析】轴对称图形的定义即可得到结论.【解答】解:AD=CD,理由:在△ABD与△CBD中,,∴△ABD≌△CBD,∴四边形ABCD是一个轴对称图形,故答案为:AD=CD.10.关于x的一元二次方程(k﹣1)x2﹣2x+1=0有两个不相等的实数根,则实数k的取值范围是k<2且k≠1.【考点】AA:根的判别式;A1:一元二次方程的定义.【分析】根据一元二次方程的定义和判别式的意义得到k﹣1≠0且△=(﹣2)2﹣4(k﹣1)>0,然后求出两个不等式的公共部分即可.【解答】解:∵关于x的一元二次方程(k﹣1)x2﹣2x+1=0有两个不相等的实数根,∴k﹣1≠0且△=(﹣2)2﹣4(k﹣1)>0,解得:k<2且k≠1.故答案为:k<2且k≠1.11.如图,边长为1的正方形ABCD绕点A逆时针旋转45°后得到正方形AB1C1D1,边B1C1与CD交于点O,则四边形AB1OD的面积是﹣1.【考点】R2:旋转的性质;LE:正方形的性质.【分析】先根据正方形的边长,求得CB1=OB1=AC﹣AB1=﹣1,进而得到S△OB1C==,即可得出四边形AB1OD的面积.(﹣1)2,再根据S△ADC【解答】解:∵四边形ABCD是正方形,∴AC=,∠OCB1=45°,∴CB1=OB1∵AB1=1,∴CB1=OB1=AC﹣AB1=﹣1,=•OB1•CB1=(﹣1)2,∴S△OB1C=AD•AC=×1×1=,∵S△ADC=S△ADC﹣S△OB1C=﹣(﹣1)2=﹣1,∴S四边形AB1OD故答案为:﹣1.12.平面内有四个点A、O、B、C,其中∠AOB=120°,∠ACB=60°,AO=BO=2,则满足题意的OC长度为整数的值可以是2,3,4.【考点】M2:垂径定理;KM:等边三角形的判定与性质.【分析】分类讨论:如图1,根据圆周角定理可以推出点C在以点O为圆心的圆上;如图2,根据已知条件可知对角∠AOB+∠ACB=180°,则四个点A、O、B、C共圆.分类讨论:如图1,如图2,在不同的四边形中,利用垂径定理、等边△MAO的性质来求OC的长度.【解答】解:如图1,∵∠AOB=120°,∠ACB=60°,∴∠ACB=∠AOB=60°,∴点C在以点O为圆心的圆上,且在优弧AB上.∴OC=AO=BO=2;如图2,∵∠AOB=120°,∠ACB=60°,∴∠AOB+∠ACB=180°,∴四个点A、O、B、C共圆.设这四点都在⊙M上.点C在优弧AB上运动.连接OM、AM、AB、MB.∵∠ACB=60°,∴∠AMB=2∠ACB=120°.∵AO=BO=2,∴∠AMO=∠BMO=60°.又∵MA=MO,∴△AMO是等边三角形,∴MA=AO=2,∴MA<OC≤2MA,即2<OC≤4,∴OC可以取整数3和4.综上所述,OC可以取整数2,3,4.故答案是:2,3,4.三、解答题(本大题共5小题,每小题6分,共30分)13.(1)计算:﹣3tan30°+(2)在平行四边形ABCD中,对角线AC于BD交于点O,∠DAC=42°,∠CBD=23°,求∠COD的度数.【考点】L5:平行四边形的性质;2C:实数的运算;T5:特殊角的三角函数值.【分析】(1)首先代入30°角的正切值、化简二次根式,即可得出答案;(2)由平行四边形的性质得出∠BCA=∠DAC=42°,再由三角形的外角性质得出∠COD=∠CBD+∠BCA,即可得出结果.【解答】解:(1)﹣3tan30°+=﹣3×+2=﹣+2=(2)解:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠BCA=∠DAC=42°,∴∠COD=∠CBD+∠BCA=42°+23°=65°.14.解不等式组:.【考点】CB:解一元一次不等式组.【分析】先求出两个不等式的解集,再求其公共解.【解答】解:,由①得,x>﹣1,由②得,x>﹣3,所以,不等式组的解集为x>﹣1.15.先化简,再求值:(1﹣),其中x=3.【考点】6D:分式的化简求值.【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把x的值代入计算即可求出值.【解答】解:原式=•=•=,当x=3时,原式=2.16.如图,在正方形ABCD中,点M是BC边上任意一点,请你仅用无刻度直尺、用连线的方法,分别在图(1)、图(2)中按要求作图(保留作图痕迹,不写作法).(1)在图(1)中,在AB边上求作一点N,连接CN,使CN=AM;(2)在图(2)中,在AD边上求作一点Q,连接CQ,使CQ∥AM.【考点】N3:作图—复杂作图.【分析】(1)连接BD,BD与AM交于点O,连接CO并延长交于AB,则CO与AB的交点为点N.可先证明△AOD≌△COD,再证明△MOB≌NOB,从而可得NB=MB;(2)连接AC,BD交于点O,连接MO并延长与AE交于点Q,连接QC,则CQ ∥AM.理由如下:由正方形的性质以及对顶角相等可证△BMO≌DQO,所以QO=MO,由于∠QOC=∠MOA,CO=AO,所以△COQ≌AOM,则∠QCO=∠MAO,从而可得CQ∥AM.【解答】解:(1)在BA上截取BN=BM,连结CN,则CN为所作,如图1(2)在DA上截取DQ=BM,连结CQ,则CQ为所作,如图2.17.A、B、C三人玩篮球传球游戏,游戏规则是:第一次传球由A将球随机地传给B、C两人中的某一人,以后的每一次传球都是由上次的传球者随机地传给其他两人中的某一人.(1)画树状图,求两次传球后,球恰在B手中的概率;(2)画树状图,求三次传球后,球恰在A手中的概率.【考点】X6:列表法与树状图法.【分析】(1)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次传球后,球恰在B手中的情况,再利用概率公式即可求得答案;(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与三次传球后,球恰在A手中的情况,再利用概率公式即可求得答案.【解答】解:(1)画树状图得:∵共有4种等可能的结果,两次传球后,球恰在B手中的只有1种情况,∴两次传球后,球恰在B手中的概率为:;(2)画树状图得:∵共有8种等可能的结果,三次传球后,球恰在A手中的有2种情况,∴三次传球后,球恰在A手中的概率为:=.四、解答题(本大题共3小题,每小题8分,共24分)18.雾霾天气严重影响市民的生活质量.在今年寒假期间,某校八年级一班的综合实践小组同学对“雾霾天气的主要成因”随机调查了所在城市部分市民.并对调查结果进行了整理.绘制了如图不完整的统计图表.观察分析并回答下列问题.(1)本次被调查的市民共有多少人?(2)分别补全条形统计图和扇形统计图,并计算图2中区域B所对应的扇形圆心角的度数;(3)若该市有100万人口,请估计持有A、B两组主要成因的市民有多少人?组雾霾天气的主要成因百分比别A工业污染45%B汽车尾气排放mC炉烟气排放15%D其他(滥砍滥伐等)n【考点】VC:条形统计图;V5:用样本估计总体;VB:扇形统计图.【分析】(1)根据条形图和扇形图信息,得到A组人数和所占百分比,求出调查的市民的人数;(2)根据B组人数求出B组百分比,得到D组百分比,根据扇形圆心角的度数=百分比×360°求出扇形圆心角的度数,根据所求信息补全条形统计图和扇形统计图;(3)根据持有A、B两组主要成因的市民百分比之和求出答案.【解答】解:(1)从条形图和扇形图可知,A组人数为90人,占45%,∴本次被调查的市民共有:90÷45%=200人;(2)60÷200=30%,30%×360°=108°,区域B所对应的扇形圆心角的度数为:108°,1﹣45%﹣30%﹣15%=10%,D组人数为:200×10%=20人,(3)100万×(45%+30%)=75万,∴若该市有100万人口,持有A、B两组主要成因的市民有75万人.19.如图是一座人行天桥的示意图,天桥的高度是10米,CB⊥DB,坡面AC的倾斜角为45°.为了方便行人推车过天桥,市政部门决定降低坡度,使新坡面DC 的坡度为i=:3.若新坡角外需留3米宽的人行道,问离原坡角(A点处)10米的建筑物是否需要拆除?(参考数据:≈1.414,≈1.732)【考点】T9:解直角三角形的应用﹣坡度坡角问题.【分析】需要拆除,理由为:根据题意得到三角形ABC为等腰直角三角形,求出AB的长,在直角三角形BCD中,根据新坡面的坡度求出∠BDC的度数为30,利用30度所对的直角边等于斜边的一半求出DC的长,再利用勾股定理求出DB 的长,由DB﹣AB求出AD的长,由AD+3与10比较即可得到结果.【解答】解:需要拆除,理由为:∵CB⊥AB,∠CAB=45°,∴△ABC为等腰直角三角形,∴AB=BC=10米,在Rt△BCD中,新坡面DC的坡度为i=:3,即∠CDB=30°,∴DC=2BC=20米,BD==10米,∴AD=BD﹣AB=(10﹣10)米≈7.32米,∵3+7.32=10.32>10,∴需要拆除.20.如图,⊙O的直径AB=4,∠ABC=30°,BC交⊙O于D,D是BC的中点.(1)求BC的长;(2)过点D作DE⊥AC,垂足为E,求证:直线DE是⊙O的切线.【考点】MD:切线的判定;KO:含30度角的直角三角形;M5:圆周角定理.【分析】(1)根据圆周角定理求得∠ADB=90°,然后解直角三角形即可求得BD,进而求得BC即可;(2)要证明直线DE是⊙O的切线只要证明∠EDO=90°即可.【解答】证明:(1)解:连接AD,∵AB是⊙O的直径,∴∠ADB=90°,又∵∠ABC=30°,AB=4,∴BD=2,∵D是BC的中点,∴BC=2BD=4;(2)证明:连接OD.∵D是BC的中点,O是AB的中点,∴DO是△ABC的中位线,∴OD∥AC,则∠EDO=∠CED又∵DE⊥AC,∴∠CED=90°,∠EDO=∠CED=90°∴DE是⊙O的切线.五、解答题(本大题共2小题,每小题9分,共18分)21.如图,▱ABCD放置在平面直角坐标系中,已知点A(2,0),B(6,0),D (0,3),反比例函数的图象经过点C.(1)求反比例函数的解析式;(2)将▱ABCD向上平移,使点B恰好落在双曲线上,此时A,B,C,D的对应点分别为A′,B′,C′,D′,且C′D′与双曲线交于点E,求线段AA′的长及点E的坐【考点】L5:平行四边形的性质;G6:反比例函数图象上点的坐标特征;G7:待定系数法求反比例函数解析式.【分析】(1)由A与B的坐标求出AB的长,根据四边形ABCD为平行四边形,求出DC的长,进而确定出C坐标,设反比例解析式为y=,把C坐标代入求出k的值,即可确定出反比例解析式;(2)根据平移的性质得到B与B′横坐标相同,代入反比例解析式求出B′纵坐标得到平移的距离,即为AA′的长,求出D′纵坐标,即为E纵坐标,代入反比例解析式求出E横坐标,即可确定出E坐标.【解答】解:(1)∵▱ABCD中,A(2,0),B(6,0),D(0,3),∴AB=CD=4,DC∥AB,∴C(4,3),设反比例解析式为y=,把C坐标代入得:k=12,则反比例解析式为y=;(2)∵B(6,0),∴把x=6代入反比例解析式得:y=2,即B′(6,2),∴平行四边形ABCD向上平移2个单位,即AA′=2,∴D′(0,5),把y=5代入反比例解析式得:x=,即E(,5).22.小明在课外学习时遇到这样一个问题:定义:如果二次函数y=a1x2+b1x+c1(a1≠0,a1,b1,c1是常数)与y=a2x2+b2x+c2(a2≠0,a2,b2,c2是常数)满足a1+a2=0,b1=b2,c1+c2=0,则称这两个函数互为“旋转函数”.求函数y=﹣x2+3x﹣2的“旋转函数”.小明是这样思考的:由y=﹣x2+3x﹣2函数可知a1=﹣1,b1=3,c1=﹣3,根据a1+a2=0,b1=b2,c1+c2=0求出a2,b2,c2,就能确定这个函数的“旋转函数”.请参考小明的方法解决下面的问题:(1)写出函数y=﹣x2+3x﹣2的“旋转函数”;(2)若函数y=﹣x2+mx﹣2与y=x2﹣2nx+n互为“旋转函数”,求(m+n)2017的值;(3)已知函数y=﹣(x+1)(x﹣4)的图象与x轴交于A,B两点,与y轴交于点C,点A,B,C关于原点的对称点分别是A1,B1,C1,试证明经过点A1,B1,C1的二次函数与函数y=﹣(x+1)(x﹣4)互为“旋转函数”.【考点】HF:二次函数综合题.【分析】(1)由函数函数y=﹣x2+3x﹣2的解析式可知a1=﹣1,b1=3,c1=﹣2,然后依据旋转函数的定义得到﹣1+a2=0,b2=3,﹣2+c2=0,然后求得a2,b2,c2的值即可;(2)依据旋转函数的定义列出关于m、n的方程,从而可求得m、n的值,然后代入计算即可;(3)先求得A,B,C三点的坐标,然后再求得A1,B1,C1的坐标,然后可求得经过点A1,B1,C1的二次函数的解析式,最后依据旋转函数的定义进行判断即可.【解答】解:(1)∵a1=﹣1,b1=3,c1=﹣2,∴﹣1+a2=0,b2=3,﹣2+c2=0,∴a2=1,b2=3,c2=2,∴函数y=﹣x2+3x﹣2的“旋转函数”为y=x2+3x+2;(2)解:根据题意得m=﹣2n,﹣2+n=0,解得m=﹣3,n=2,∴(m+n)2017=(﹣3+2)2017=﹣1;(3)证明:当x=0时,y=﹣(x+1)(x﹣4)=2,则C(0,2),当y=0时,﹣(x+1)(x﹣4)=0,解得x1=﹣1,x2=4,则A(﹣1,0),B(4,0),∵点A、B、C关于原点的对称点分别是A1,B1,C1,∴A1(1,0),B1(﹣4,0),C1(0,﹣2),…设经过点A1,B1,C1的二次函数解析式为y=a2(x﹣1)(x+4),把C1(0,﹣2)代入得a2•(﹣1)•4=﹣2,解得a2=,∴经过点A1,B1,C1的二次函数解析式为y=(x﹣1)(x+4)=x2+x﹣2,∵y=﹣(x+1)(x﹣4)=﹣x2+x+2,∴a1+a2=﹣+=0,b1=b2=,c1+c2=2﹣2=0,∴经过点A1,B1,C1的二次函数与函数y=﹣(x+1)(x﹣4)互为“旋转函数.六、解答题(本大题共1小题,共12分)23.(1)问题如图1,在四边形ABCD中,点P为AB 上一点,当∠DPC=∠A=∠B=90°时,求证:AD•BC=AP•BP.(2)探究如图2,在四边形ABCD中,点P为AB上一点,当∠DPC=∠A=∠B=α时,上述结论是否依然成立?说明理由.(3)应用请利用(1)(2)获得的经验解决问题:如图3,在△ABD中,AB=6,AD=BD=5.点P以每秒1个单位长度的速度,由点A出发,沿边AB向点B运动,且满足∠DPC=∠A.设点P的运动时间为t(秒),当以D为圆心,以DC为半径的圆与AB相切,求t的值.【考点】MR:圆的综合题.【分析】(1)由∠DPC=∠A=∠B=90°可得∠ADP=∠BPC,即可证到△ADP∽△BPC,然后运用相似三角形的性质即可解决问题;(2)由∠DPC=∠A=∠B=α可得∠ADP=∠BPC,即可证到△ADP∽△BPC,然后运用相似三角形的性质即可解决问题;(3)过点D作DE⊥AB于点E,根据等腰三角形的性质可得AE=BE=3,根据勾股定理可得DE=4,由题可得DC=DE=4,则有BC=5﹣4=1.易证∠DPC=∠A=∠B.根据AD•BC=AP•BP,就可求出t的值.【解答】(1)证明:如图1,∵∠DPC=∠A=∠B=90°,∴∠ADP+∠APD=90°,∠BPC+∠APD=90°,∴∠APD=∠BPC,∴△ADP∽△BPC,∴=,∴AD•BC=AP•BP;(2)结论AD•BC=AP•BP仍成立;理由:如图2,∵∠BPD=∠DPC+∠BPC,又∵∠BPD=∠A+∠APD,∴∠DPC+∠BPC=∠A+∠APD,∵∠DPC=∠A=α,∴∠BPC=∠APD,又∵∠A=∠B=α,∴△ADP∽△BPC,∴=,∴AD•BC=AP•BP;(3)解:如图3,过点D作DE⊥AB于点E,∵AD=BD=5,AB=6,∴AE=BE=3∴DE==4,∵以D为圆心,以DC为半径的圆与AB相切,∴DC=DE=4,∴BC=5﹣4=1,∵AD=BD,∴∠A=∠B,又∵∠DPC=∠A,∴∠DPC=∠A=∠B,由(1)(2)的经验得AD•BC=AP•BP,又∵AP=t,BP=6﹣t,∴t(6﹣t)=5×1,∴解得:t1=1,t2=5,∴t的值为1秒或5秒.。

广东深圳2024年九年级下学期期中数学试题+答案

广东深圳2024年九年级下学期期中数学试题+答案

2023-2024学年度第二学期中期过关性评价数学试卷九年级数学试卷一.选择题(共10小题)1.如图是加工零件的尺寸要求,现有下列直径尺寸的产品(单位:mm),其中不合格的是()A.Φ44.9B.Φ45.02C.Φ44.98D.Φ45.012.第19届亚运会在浙江杭州举行,下列与杭州亚运会相关的图案中,是轴对称图形的是()A.B.C.D.3.2022年10月12日下午,“天宫课堂”第三课在中国空间站开讲,神舟十四号飞行乘组三位航天员陈冬、刘洋、蔡旭哲进行授课,央视新闻抖音号进行全程直播,某一时刻观看人数达到421.1万,421.1万用科学记数法可以表示为()A.0.4211×107B.4.211×106C.421.1×104D.4211×1034.如图,分别在长方形ABCD的边DC,BC上取两点E,F,使得AE平分∠DAF,若∠BAF=60°,则∠DAE=()A.45° B.30° C.15° D.60°5.在某次数学质量监测中,八年一班数学老师随机抽取了10份试卷,成绩表中所显示的分数如下:105,101,109,101,92,102,97,101,99,103,则这组数据的中位数是()A.101 B.96.5 C.97 D.1026.下列运算一定正确的是()A.(m+n)2=m2+n2B.(mn)3=m3n3C.(m3)2=m5D.m•m2=2m27.校园里一片小小的树叶,也蕴含着“黄金分割”,如图,P为AB的黄金分割点(AP>PB),如果AB的长度为10cm,那么AP的长度为()cm.A.√5−1 B.2√5−2 C.5√5−5 D.10√5−108.11月17日,2023年“全民健身日”系列活动——玉溪市健步走暨玉溪市职工“勤锻炼健康行”在玉溪高原体育运动中心举行,广大人民群众通过运动收获愉悦、收获健康、收获幸福.甲、乙两人沿着总长度为9千米的“健身步道”行走,甲的速度是乙的1.5倍,甲比乙提前15分钟走完全程,如果设乙的速度为x千米/时,那么下列方程中正确的是()A.9xx−91.5xx=15B.9xx−91.5xx=14C.91.5xx−9xx=15D.91.5xx−9xx=149.如图,在平地上种植树木时,要求株距(相邻两棵树之间的水平距离)为5m,若在坡比为i=1:2.5的山坡种树,也要求株距为5m,那么相邻两棵树间的坡面距离为()A.2.5m B.5m C.√29mm D.10m10.如图①,在正方形ABCD中,点E为DC边的中点,点P为线段BE上的一个动点.设BP=x,AP=y,图②是点P运动时y随x变化的关系图象,则正方形的周长为()A.4√5B.8 C.8√2D.10二.填空题(共5小题)11.新学期开始,小颖从学校开设的感兴趣的5门劳动教育课程:烹饪、茶艺、花卉种植、整理收纳、家电维修中,随机选择一门课程学习,她选择“茶艺”课程的概率是______.12.已知a+b=1,则代数式a2﹣b2+2b+9的值为______.13.如图,AB为⊙O的直径,点C在⊙O上,点P在线段OB上运动(不与O,B重合),若∠CAB=30°,设∠ACP为α,则α的取值范围是______.14.如图,D、E分别是△ABC的边上AB、BC上的点,DE∥AC,若S△BDE:S△CDE=1:3,当S△DOE=1时,则S△AOC的值为______.15.如图所示,点A1,A2,A3在x轴上且OA1=A1A2=A2A3,分别过点A1,A2,A3作y轴的平行线与反比例函数y=kk xx(k>0,x>0)的图象分别交于点B1,B2,B3,分别过点B1,B2,B3作x轴的平行线分别与y轴交于点C1,C2,C3,连接OB1,OB2,OB3,那么图中阴影部分的面积之和为______.三.解答题(共7小题)16.(5分)计算:2ssss ss60°+√12+|−5|−(ππ−√2)0.17.(7分)先化简,再求值:(xx2−4xx2−4xx+4−1xx−2)⋅xx2−2xx xx+1,其中x=5.18.全球工业互联网大会永久会址落户沈阳.为了让学生了解工业互联网相关知识,某校准备开展“工业互联网”主题日活动,聘请专家为学生做五个领域的专题报告:A.数字孪生;B.人工智能;C.应用5G ;D .工业机器人;E .区块链.为了解学生的研学意向,在随机抽取的部分学生中下发如图所示的调查问卷,所有问卷全部收回且有效,根据调查数据绘制成两幅不完整的统计图. “工业互联网”主题日学生研学意向调查问卷请在下列选项中选择您的研学意向,并在其后“□”内打“√”(每名同学必选且只能选择其中一项),非常感谢您的合作.A .数字孪生□B .人工智能□C .应用5G □D .工业机器人□E .区块链□请根据统计图提供的信息,解答下列问题:(1)本次调查所抽取的学生人数为____________,并直接补全条形统计图;(2)扇形统计图中领域“B ”对应扇形的圆心角的度数为_________;(3)学校有600名学生参加本次活动,地点安排在两个多功能厅,每场报告时间为90分钟.由下面的活动日程表可知,A 和C 两场报告时间与场地已经确定.在确保听取报告的每名同学都有座位的情况下,请你合理安排B ,D ,E 三场报告,补全此次活动日程表(写出一种方案即可),并说明理由. “工业互联网”主题日活动日程表地点(座位数)时间1号多功能厅(200座) 2号多功能厅(100座)8:00﹣9:30①________ A 10:00﹣11:30C ②________ 13:00﹣14:30 ③________ 设备检修暂停使用 19.家用电灭蚊器的发热部分使用了PTC 发热材料,电阻R (单位:k Ω)随温度t (单位:℃)(在一定范围内)变化而变化,通电后该表记录了发热材料温度从上升到30℃的过程中,发现电阻与温度有如下关系:t (℃) 5 10 15 20 30R(kΩ)12 6 4 3 2(1)根据表中的数据,在图中描出实数对(t,R)的对应点,猜测并确定R与t之间的函数解析式并画出其图象;(2)当t≥30时,R与t间的函数解析式为R=415t﹣6.在图中画出该函数图象;(3)根据以上信息,家用电灭蚊器在使用过程中,温度在什么范围内发热材料的电阻不超过6kΩ.20.列方程(组)或不等式(组)解应用题:学校为了支持体育社团开展活动,鼓励同学们加强锻炼,准备增购一些羽毛球拍和乒乓球拍.(1)根据图中信息,求出每支羽毛球拍和每支乒乓球拍的价格;(2)学校准备用5300元购买羽毛球拍和乒乓球拍,且乒乓球拍的数量为羽毛球拍数量的3倍,请问最多能购买多少支羽毛球拍?21.根据背景素材,探索解决问题.生活中的数学﹣﹣﹣﹣自动旋转式洒水喷头如何灌溉草坪背景素材数学来源于生活,九4班分四个小组,开展数学项目式实践活动,获取所有数据共享,对草坪喷水管建立数学模型.草坪装有1个自动旋转式洒水喷头,灌溉园林草坪.如图1所示,观察喷头可顺、逆时针往返喷洒.22.例:如图1,在Rt△ABC中,∠ACB=90°,CD是斜边AB上的中线.求证:CD=12AB.证明:延长CD至点E,使DE=CD,连接AE,BE.…(1)请根据教材提示,结合图1,写出完整的证明过程.(2)初步探究如图2,在四边形ABCD中,∠BAD=∠BCD=90°,AB=AD,∠CBD=30°,AP⊥BD于点P,连接CP,AAAA=√3+1①∠ACD的度数为45°.②求AD长.(3)拓展运用如图3,在平行四边形ABCD中,F是BC边上一点,∠ABC=60°,BC=6,BF=2.按以下步骤作图:①以点B为圆心,以适当的长为半径作弧,分别交AB,BC于点M,N;②分别以点M,N为圆心,大于12MMMM的长为半径作弧,两弧交于点E,作射线BE.过点F作FP∥AB交BE于点P,过点P作PG⊥AB于点G,Q为射线BE上一动点,连接GQ,CQ,若PPPP=12BBPP,直接写出GGGG CCGG的值.九年级数学期中答案参考答案与试题解析一.选择题(共10小题)1.【分析】依据正负数的意义求得零件直径的合格范围,然后找出不符要求的选项即可.【解答】解:∵45+0.03=45.03,45﹣0.04=44.96,∴零件的直径的合格范围是:44.96≤零件的直径≤45.03,∵44.9不在该范围之内,∴不合格的是A,故选:A.【点评】本题主要考查的是正数和负数的意义,根据正负数的意义求得零件直径的合格范围是解题的关键.2.【分析】根据轴对称图形的概念判断即可.【解答】解:A、不是轴对称图形,不符合题意;B、不是轴对称图形,不符合题意;C、不是轴对称图形,不符合题意;D、是轴对称图形,符合题意;故选:D.个图形叫做轴对称图形.3.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正整数;当原数的绝对值<1时,n是负整数.【解答】解:421.1万=4211000=4.211×106.故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a的值以及n的值.4.【分析】长方形内角为90°,已知∠BAF=60°,所以可以得到∠DAF,又因为AE平分∠DAF,所以∠DAE便可求出.【解答】解:在长方形ABCD中,∠BAD=90°∵∠BAF=60°∴∠DAF=90°﹣∠BAF=30°又AE平分∠DAF所以∠DAE=12∠DAF=15°故选:C.【点评】运用了长方形的四个角都是直角以及角平分线的概念即可解决.5.【分析】根据中位数的定义进行计算即可.【解答】解:将这10个数据从小到大排列,处在中间位置的两个数的平均数是101+1012=101,因此掌握是101,故选:A.【点评】本题考查中位数,理解中位数的定义,掌握中位数的计算方法是正确解答的前提.6.【分析】直接利用完全平方公式以及积的乘方运算法则、同底数幂的乘除运算法则分别计算得出答案.【解答】解:A、(m+n)2=m2+2mn+n2,不符合题意;B、(mn)3=m3n3,符合题意;C、(m3)2=m6,不符合题意;D、m•m2=m3,不符合题意.故选:B.解题关键.7.【分析】直接利用黄金分割的定义计算出AP的长即可.【解答】解:∵P为AB的黄金分割点(AP>PB),AB=10cm,∴AP=�5−12AB=�5−12×10=5√5−5(cm),故选:C.【点评】此题考查了黄金分割:把线段AB分成两条线段AC和BC(AC>BC),且使AC是AB和BC的比例中项(即AB:AC=AC:BC),叫做把线段AB黄金分割,点C叫做线段AB的黄金分割点.8.【分析】由甲、乙速度之间的关系可得出甲的速度为1.5x km/h,利用时间=路程÷速度,结合甲比乙提前15分钟走完全程,即可得出关于x的分式方程,此题得解.【解答】解:∵甲的速度是乙的1.5倍,且乙的速度为x km/h,∴甲的速度为1.5x km/h.根据题意得9xx91.5xx=14.故选:B.【点评】本题考查了由实际问题抽象出分式方程,找准等量关系,正确列出分式方程是解题的关键.9.【分析】利用坡度先求得垂直距离,根据勾股定理求得坡面距离.【解答】解:∵水平距离为5m,坡比为i=1:2.5,∴铅直高度为5÷2.5=2(m).根据勾股定理可得:坡面相邻两株树间的坡面距离为√52+22=√29(m).故选:C.【点评】此题考查了解直角三角形的应用﹣坡度坡角问题,解决本题的关键是对坡度坡角的理解掌握情况.10.【分析】由点P的运动可知,当点AP⊥BE时,AP的值最小;再根据题可证得△ABP∽△BEC,进而可得AB的长,进而可得正方形的周长.【解答】解:由点P的运动可知,当点AP⊥BE时,AP的值最小,如图;∵点E是CD的中点,∴CE:CD=1:2,∴CE:BC=1:2,∵∠C=∴CE:BC:BE=1:2:√5,∵∠ABC=∠C=∠APB=90°,∴∠ABP+∠CBE=∠CBE+∠BEC=90°,∴∠ABP=∠BEC,∴△ABP∽△BEC,∴AP:AB=BC:BE=2:√5,∴AB=√5,∴正方形的周长为:4√5,故选:A.【点评】本题考查的是正方形中的动点问题,解题的关键是找到图中的关键点及对应的关键数.二.填空题(共5小题)11.【分析】直接利用概率公式可得答案.【解答】解:∵共有烹饪、茶艺、花卉种植、整理收纳、家电维修5门兴趣课程,∴小颖选择“茶艺”课程的概率是15.故答案为:15.【点评】本题考查了概率公式:随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数.12.【分析】方法一:直接将a2﹣b2进行因式分解为(a+b)(a﹣b),再根据a+b=1,可得a2﹣b2=a﹣b,由此可得原式=a+b+9=10.方法二:将原式分为三部分,即a2﹣(b2﹣2b+1)+10,把前两部分利用平方差进行因式分解,其中得到一因式a+b﹣1=0.从而得出原式的值.【解答】方法一:解:∵a2﹣b2+2b+9=(a+b)(a﹣b)+2b+9又∵a+b=1,∴原式=a﹣b+2b+9=a+b+9=10.方法二:解:∵a2﹣b2+2b+9=a2﹣(b2﹣2b+1)+10=a2﹣(b﹣1)2+10=(a﹣b+1)(a+b﹣1)+10.又∵a+b=1,∴原式=10.【点评】本题考查了因式分解应用,用到的知识为平方差公式:a2﹣b2=(a+b)(a﹣b).13.【分析】由于P为动点,由图可知,当点P位于O点时α取得最小值,当点P位于B点时α取得最大值.【解答】解:当点P位于O点时,OA=OC,则α=∠CAB=30°,此时α的值最小;当点P位于B点时,根据直径所对的角是90°可得α=∠ACB=90°,此时α的值最大;由于点P不与O,B重合,于是30°<α<90°.故答案为:30°<α<90°.【点评】此题考查了圆周角定理与等腰三角形的性质.此题难度适中,注意掌握数形结合思想与分类讨论思想的应用.14.【分析】由题意可得BE:CE=1:3,通过证明△BDE∽△BAC,可得BBBB BBCC=DDBB AACC=14,通过证明△DEO ∽△CAO,可得SS△DDDDDDSS△CCCCDD=(DDBB AACC)2=116,即可求解.【解答】解:∵S△BDE:S△CDE=1:3,∴BE:CE=1:3,∴BBBB BBCC=14,∵DE∥AC,∴△BDE∽△BAC,∴BBBB BBCC=DDBB AACC=14,∵DE∥AC,∴△DEO∽△CAO,∴SS△DDDDDDSS△CCCCDD=(DDBB AACC)2=116,∵S△DOE=1,∴S△AOC=16,故答案为:16.【点评】本题考查了相似三角形的判定和性质,掌握相似三角形的性质是解题的关键.15.【分析】先根据反比例函数上的点向x轴、y轴引垂线形成的矩形面积等于反比例函数的|k|,得到S△OB1C1=S△OB2C2=S△OB3C3=12k,再根据相似三角形的面积比等于相似比的平方得到3个阴影部分的三角形的面积从而求得面积和.【解答】解:根据题意可知S△OB1C1=S△OB2C2=S△OB3C3=12k,∵OA1=A1A2=A2A3,A1B1∥A2B2∥A3B3∥y轴,设图中阴影部分的面积从左向右依次为s1,s2,s3则s1=12k,∵OA1=A1A2=A2A3,∴s2:S△OB2C2=1:4,s3:S△OB3C3=1:9,∴图中阴影部分的面积分别是=12kk,s2=18kk,s3=118kk,∴图中阴影部分的面积之和=12kk+18kk+118kk=49kk72,故答案为:49kk72.【点评】此题综合考查了反比例函数的性质,此题难度稍大,综合性比较强,注意反比例函数上的点向x轴、y轴引垂线形成的矩形面积等于反比例函数的|k|.三.解答题(共7小题)16.【分析】先化简各式,然后再进行计算即可解答.【解答】解:2ssss ss60°+√12+|−5|−(ππ−√2)0=2×�32+2√3+5﹣1=√3+2√3+5﹣1=3√3+4.【点评】本题考查了实数的运算,零指数幂,特殊角的三角函数值,准确熟练地进行计算是解题的关键.17.【分析】根据分式的加减运算法则、乘除运算法则进行化简,然后将x的值代入化简后的式子即可求出答案.【解答】解:原式=[(xx+2)(xx−2)(xx−2)2−1xx−2]•xx(xx−2)xx+1=(xx+2xx−2−1xx−2)•xx(xx−2)xx+1=xx+1xx−2•xx(xx−2)xx+1=x,当x=5时,原式=5.【点评】本题考查分式的化简求值,解题的关键是熟练运用分式的加减运算法则、乘除运算法则,本题属于基础题型.18.【分析】(1)根据意向领域“A”的人数及其百分比求得总人数,用总人数减去其它领域的人数求出意向领域“D”的人数即可补全条形统计图;(2)用360°乘以意向领域“B”的百分比即可;(3)分别求出意向领域“B”“D”“E”的人数,补全此次活动日程表即可.【解答】解:(1)40本次调查所抽取的学生人数为4÷10%=40(人),意向领域“D”的人数为40﹣(4+6+10+8)=12(人),补全条形统计图如下:(2)54°360°×640×100%=54°,答:扇形统计图中领域“B”对应扇形的圆心角的度数为54°;(3)意向领域“B”的人数为600×640=90(人),意向领域“D”的人数为600×1240=180(人),意向领域“E”的人数为600×840=120(人),补全此次活动日程表如下:“工业互联网”主题日活动日程表地点(座位数)时间 1号多功能厅(200座)2号多功能厅(100座)8:00﹣9:30 ① DA10:00﹣11:30 C② B13:00﹣14:30③ E设备检修暂停使用【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.19.【分析】(1)待定系数法求出即可; (2)待定系数法求出一次函数解析式即可;(3)从图象直接获取满足条件的自变量取值范围即可.【解答】解:(1)由题意得,当10≤t ≤30时,设R 和t 的函数的解析式为 RR =kk tt, 把(10,6)代入 RR =kktt 中,解得k =60. ∴反比例函数的解析式为 RR =60tt, 画出其图象如下:(2)当t ≥30时,R 与t 间的函数解析式为R =415t ﹣6.∵当x=30时,y=2;当x=45时,y=6.∴(30,2),(45,6)在函数R=415t﹣6上.图象如图所示.(3)根据图上信息,家用电灭蚊器在使用过程中,温度在10°C≤t≤45°C时发热材料的电阻不超过6kΩ.【点评】主要考查了反比例函数的应用.解题的关键是根据实际意义列出函数关系式,从实际意义中找到对应的变量的值,利用待定系数法求出函数解析式,再根据自变量的值求算对应的函数值.20.【分析】(1)设每支羽毛球拍的价格为x元,每支乒乓球拍的价格为y元,利用总价=单价×数量,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)设购买m支羽毛球拍,则购买3m支乒乓球拍,利用总价=单价×数量,结合总价不超过5300元,即可得出关于m的一元一次不等式,解之即可得出m的取值范围,再取其中的最大整数值即可得出结论.【解答】解:(1)设每支羽毛球拍的价格为x元,每支乒乓球拍的价格为y元,依题意得:�xx+2yy=2002xx+yy=220,解得:�xx=80yy=60.答:每支羽毛球拍的价格为80元,每支乒乓球拍的价格为60元.(2)设购买m 支羽毛球拍,则购买3m 支乒乓球拍, 依题意得:80m +60×3m ≤5300, 解得:m ≤26513.又∵m 为整数,∴m 的最大值为20. 答:最多能购买20支羽毛球拍. (答不写,倒扣1分)【点评】本题考查了二元一次方程组的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,正确列出一元一次不等式.21.【分析】任务1由题意得抛物线过点D (8,0),(7,54),A (0,23),设抛物线的解析式为y =ax 2+bx +c ,待定系数法求出解析式即可; 任务2求出F 点的坐标(6,136),则E (6,0),即可求解;任务3①根据扇形的面积公式即可求解;②根据等腰三角形以及直角三角形的性质,解答即可.【解答】解:任务1由题意得抛物线过点D (8,0),(7,54),A (0,23), 设抛物线的解析式为y =ax 2+bx +c , ∴⎩⎨⎧64aa +8bb +cc =049aa +7bb +cc =54cc =23,解得⎩⎪⎨⎪⎧aa −16bb =54cc =23, ∴水柱所在抛物线的函数解析式为y =−16x 2+54x +23; 任务2∵水柱所在抛物线的函数解析式为y =−16x 2+54x +23, 当y =136时,−16x 2+54x +23=136,解得x =32或6,∵点F 在抛物线上且离水喷头水平距离较远, ∴F (6,136),∵E 在OD 上,OD ⊥EF .∴E (6,0),∴OE =6,∴OE 的长为6米; 任务3①由题意得OD =8米, ∴这个喷头最多可洒水的面积为:240ππ×82360=1283π(平方米),答:这个喷头最多可洒水1283π平方米;②过点O 作OH ⊥DD ′于H ,由题意得OD=OD′=8米,∠DOD′=360°﹣240°=120°,∵OD=OD′=8米,OH⊥DD′,∴DH=D′H=12DD′,∠DOH=12∠DOD′=60°,∴∠ODH=30°,∴OH=12OD=4米,DH=√3OH=4√3米,∴DD′=2DH=8√3米.【点评】此题是二次函数综合题,考查了二次函数的实际应用以及二次函数的性质,扇形的面积,等腰三角形以及直角三角形的性质,理解题意,利用数形结合思想解题是关键.22.【分析】(1)证延长CD到点E,使DE=CD,连接AE,BE,求得AACC=12AACC⋅根据直角三角形的性质得到AD=BD,推出四边形ACBE是矩形,根据矩形的性质即可得到结论;(2)①根据三角形的内角和定理得到∠ADB=45°,∠BDC=60°,根据等边三角形的判定定理得到△PDC 是等边三角形,求得∠CPD=∠PCD=60°,根据等腰三角形的性质得到∠ACP=15°,根据三角形内角和定理即可得到结论;②如图2,过点D作DG⊥AC于点G,设CG=DG=m,则AAAA=√3mm,AD=2m,根据AC=AG+CG,列方程得到mm+√3mm=√3+1,解方程即可得到结论;(3)过点Q作QH⊥BC于点H.根据平行四边形的性质得到AB∥CD,求得∠BFP=180°﹣∠ABC=120°,根据角平分线的定义得到∠FFBBPP=12∠AABBAA=30°,根据等腰三角形的性质得到PF=BF=2,于是得到BBPP=√3BBFF=2√3⋅分两种情况:①如图3,当点Q在线段BP上时,过点Q作QH⊥BC于H,求得AAPP= PPPP=12BBPP=√3⋅②如图4,当点Q在BP延长线上时,过Q作QH⊥BC于H,解直角三角形即可得到结论.【解答】(1)证明:延长CD到点E,使DE=CD,连接AE,BE,则CD=12CE,∵CD是斜边AB上的中线,∴AD=BD,∴四边形ACBE是平行四边形,∵∠ACB=90°,∴四边形ACBE是矩形,∵CE=AB,∴AACC=12AABB;解:①45°∵∠BAD=∠BCD=90°,AB=AD,∠CBD=30°,∴∠ADB=45°,∠BDC=60°,∵AP⊥BD于点P,∴PB=PD=P A,∴PC=PD=P A,∴△PDC是等边三角形,∴∠CPD=∠PCD=60°,∴∠APC=150°,∴∠ACP=15°,∴∠ACD=∠PCD﹣∠ACD=45°,∴∠DAC=180°﹣∠ACD﹣∠ADC=30°,②如图2,过点D作DG⊥AC G,设CG=DG=m,则AAAA=√3mm,AD=2m,∵AC=AG+CG,∴mm+√3mm=√3+1,解得m=1,∴AD=2m=2;√77或1;(2)(只写出一个,给1分,两个都写出来给3分)过点Q作QH⊥BC于点H.∵四边形ABCD是平行四边形,∴AB∥CD,∴∠BFP=180°﹣∠ABC=120°,由作图可知,BE平分∠ABC,∴∠FFBBPP=12∠AABBAA=30°,∵PF∥AB,∴∠ABP=∠BPF,∴∠BPF=∠FBP,∴PF=BF=2,∴BP=√3BP=√3BF=2√3;分两种情况:①如图3,当点Q在线段BP上时,过点Q作QH⊥BC于H,∵PPPP=12BBPP,则Q为BP的中点,∴GQ=PQ=12BP=√3,在Rt△BHQ中,∠HBQ=30°,∴BBBB=ccccss∠BBBBPP⋅BBPP=�32×√3=32,BBPP=12BBPP=�32,∴AABB=BBAA−BBBB=92,在Rt△CHQ中,AAPP=�BBPP2+AABB2=�(�32)2+(92)2=√21,∴GGGG CCGG=√3√2=√77,②如图4,当点Q在BP延长线上时,过Q作QH⊥BC于H,∵BP=2√3,PQ=12PPBB=√3,∴BBPP=3√3,∵PG⊥AB,∴∠PGB=90°,∴PG=12PB=√3,∴PPAA=PPPP=√3,∴∠QGP=∠GQP=30°,∴GQ=3,在Rt△BHQ中,∠HBQ=30°,∴BBBB=ccccss∠BBBBPP⋅BBPP=�32×3√3=92,BBPP=12BBPP=3�32,∴AABB=BBAA−BBBB=32,在Rt△CHQ中,AAPP=�BBPP2+AABB2=�(3�32)2+(32)2=3,∴GGGG CCGG=33=1,综上GGGG CCGG的值为√77或1.【点评】本题是四边形的综合题,考查了矩形的判定和性质,平行四边形的判定和性质,直角三角形的性质,等腰三角形的判定和性质,勾股定理,基本作图,正确地作出辅助线是解题的关键.。

江西省吉安市十校联盟2023-2024学年九年级下学期期中数学试题(解析版)

江西省吉安市十校联盟2023-2024学年九年级下学期期中数学试题(解析版)

吉安市十校联盟2023—2024学年第二学期期中联考九年级数学试卷考试时间:120分钟、全卷满分120分一、选择题(本大题共6小题,每小题3分,共18分)1. ﹣3的相反数是( )A. B. C. D. 【答案】D【解析】【分析】相反数的定义是:如果两个数只有符号不同,我们称其中一个数为另一个数的相反数,特别地,0的相反数还是0.【详解】根据相反数的定义可得:-3的相反数是3,故选D .【点睛】本题考查相反数,题目简单,熟记定义是关键.2. 下列运算正确的是( )A. B. C. D. 【答案】D【解析】【分析】本题主要考查合并同类项,积的乘方和幂的乘方,完全平方公式以及同底数幂的除法,根据相关运算法则逐项计算即可判断【详解】解:A.,故选项A 计算错误,不符合题意;B. ,故选项B 计算错误,不符合题意;C. ,故选项C 计算错误,不符合题意;D. ,此选项计算正确,符合题意;故选:D3. 如图,几何体的左视图是( )13-133-32242a a a +=()222436ab a b -=()222a b a b -=-()264a a a ÷-=2222a a a +=()222439ab a b -=()2222a b a ab b -=-+()26624a a a a a =÷-÷=A. B. C. D.【答案】B【解析】【分析】本题考查了简单几何体的三视图,根据从左面看得到的图形是左视图,可得答案.【详解】解:左面看,得到的图形是:.故选:B .4. 如图,点A 和点B 恰好分别在GH 和EF 上,GH ∥EF 且BA 平分∠DBE ,若∠C =90°,∠CAD =32°,则∠BAD 度数为( )A. 28°B. 29°C. 30°D. 31°【答案】B【解析】【分析】根据三角形的内角和定理,平行线的性质以及角平分线的定义即可得到结论.详解】解:,,,,,平分,的【90C ∠=︒ 32CAD ∠=︒903258ADC ∴∠=︒-︒=︒ //EF GH 58DBE ADC ∴∠=∠=︒BA DBE ∠,直线直线,,故选:B .【点睛】本题主要考查了平行线的性质,角平分线的定义以及三角形内角和定理,解题时注意:两直线平行,内错角相等.5. 如图,将矩形绕点逆时针旋转得到矩形,交于点,若,,则长为( )A. B. C. D. 【答案】D【解析】【分析】本题考查了利用旋转的性质结合勾股定理求线段长.解题过程中涉及到矩形的性质、勾股定理等知识,熟练掌握几何图形旋转不变性及勾股定理求线段长是解决问题的关键.根据旋转不变性得到,设,在中结合勾股定理即可得出结论.【详解】解:∵将矩形绕点逆时针旋转得到矩形,∴,∵,∴,设,则,∵,∴,即,的1292ABE DBE ∴∠=∠=︒ //EF GH 29BAD ABE ∴∠=∠=︒ABCD A AB C D '''AB 'CD E DE B E '=5,4AB AD ==AE325841105AB AB '==AE CE x ==Rt ADE △ABCD A AB C D '''5AB AB '==DE B E '=AE CE =AE CE x ==5DE x =-90D ∠=︒222AD DE AE +=()22245+-=x x解得:,故选:.6. 如图1在矩形中,点从点出发,匀速沿向点运动,连接,设点的运动距离为的长为关于的函数图像如图2所示,则当点为中点时,的长为( )A. 5B. 8C. D. 【答案】D【解析】【分析】本题考查了动点问题的函数图象,矩形的性质,勾股定理,从函数图象中获取信息是解题的关键.通过观察图2可以得出,,,由勾股定理可以求出a 的值,从而得出,当P 为的中点时,由股定理求出长度.【详解】解∶因为P 点是从A 点出发的,A 为初始点,观察图象时,则,P 从A 向B 移动的过程中,是不断增加的而P 从B 向D 移动的过程中,是不断减少的,因此转折点为B 点,P 运动到B 点时,即时,,此时,即,,由勾股定理得:解得:当点P 为中点时,,4110=x D ABCD P A AB BD →D DP P x DP ,y y ,x P AB DP 6AD =AB a =2BD a =+8AB =AB 4AP =DP 0x =6y =6AD =DP DP x a =AB a =2y a =+2DP DB a ==+6AD =AB a=90A ∠=︒()22226a a +=+8a =8AB ∴=AB 4AP =DP ∴====故选:D .二、填空题(本大题共6小题,每小题3分,共18分)7.的值______.【答案】答案不唯一【解析】【分析】此题考查了二次根式的有意义的条件,二次根式被开方数大于等于零时,二次根式有意义,据此解答.在实数范围内有意义,则,即,则写出一个满足条件的的值为.故答案为:答案不唯一.8. 刘慈欣科幻巨作《三体》中所描述的三体文明距地球大约光年,它们之间被大量氢气和暗物质纽带连接,看起来似乎是连在一起的“三体星系”.其中数字用科学记数法表示为_______.【答案】【解析】【分析】此题考查了科学记数法的表示方法,根据科学记数法的表示形式为的形式,其中,为整数即可求解,解题的关键要正确确定的值以及的值.【详解】解:,故答案为:.9. 已知是方程的两个实数根,求的值为__________.【答案】4【解析】【分析】由已知中,是方程的两个实数根,结合根与系数的关系转化求解即可.【详解】解:,是方程的两个实数根,可得,,x 3()10x -≥1x ≥x 33()420000004200000074.210⨯10n a ⨯110a ≤<n a n 742000000 4.210=⨯74.210⨯,αβ2220230x x +-=22ααββ+-αβ2220230x x +-=αβ2220230x x +-=2αβ+=-2023=-αβ.所以的值为4.故答案为:4.【点睛】本题考查的知识点是一元二次方程根与关系,若,是一元二次方程的两根时,,.10. 如图,在中,,,,分别是边,的中点,连接,过点作于点,连接,若,则的长为______.【解析】【分析】本题主要考查等边三角形的性质,三角形中位线定理,角所对直角边等于斜边一半,勾股定理等,根据中位线定理求出,由得由勾股定理求出,再求出由勾股定理可求出【详解】解:∵在中,,,∴是等边三角形,∴∵,分别是边,的中点,∴是的中位线,∴∴∵,即∴()()()()222224222=+-=--=-+=-⨯-=+-ααββαβαββααβ22ααββ+-αβ()200ax bx c a ++=≠b a αβ+=-c aαβ=ABC AB BC ==60B ∠︒D E AC BC DE D DF AB ⊥F EF 2AB =EF 30︒1,60DE EDC =∠=︒DF AB ⊥130,1,2ADE AF AD ∠=︒==DF =90,FDE Ð=°EF ABC AB BC ==60B ∠︒ABC 2,60,AC AB BC A B ===∠=∠=︒D E AC BC DE ABC 11,,2DE AB DE AB ==∥11,2AD AC ==60,EDC B ∠=∠=︒DF AB ⊥90,DFB ∠=︒30,ADF ∠=︒∴在中,又∴11. 如图,在平面直角坐标系中,点在反比例函数的图象上,,是轴正半轴上的两点,,,若的面积为4,则的值为______.【答案】12【解析】【分析】过点作于点,连接,根据可知,再由可知,故可得出,进而可得出的面积,根据反比例函数系数的几何意义即可得出结论.本题考查反比例函数系数的几何意义,过双曲线上的任意一点和垂足以及坐标原点所构成的三角形的面积是,且保持不变.【详解】解:过点作于点,连接,,的面积为4,11,22AF AD ==Rt ADF DF ===180180603090,EDF CDE ADF ∠=︒-∠-∠=︒-︒-︒=︒EF ===A ()0k y x x =>B C x AB AC =OB BC =ABC k A AD BC ⊥D OA OB BC =4ABC AOB S S == AB AC =BD CD =122ADB ABC S S == AOD △k k 1||2k A AD BC ⊥D OA BC OB = ABC∴.,,,,点在反比例函数的图象上,,.故答案为:12.12. 如图,在中,已知,,点P 为边上一动点,若为直角三角形,则的长为__________.【答案】2或4或10【解析】【分析】本题考查了直角三角形的性质,解直角三角形,解一元二次方程.分情况讨论,当时,为直角三角形,由,设,则,利用勾股定理求得,;当时,为直角三角形,作于点,求得,利用正切函数的定义列式求解即可.【详解】解:当时,为直角三角形,4ABC AOB S S == AB=AC BD CD ∴=114222ADB ABC S S ∴==⨯= 246AOD ADB AOB S S S ∴=+=+= A (0)k y x x=<∴162AOD k S == 12k ∴=ABCD Y AB =10BC =tan 2A =AD PBC AP 1PB BC ⊥1PBC △11tan 2PB A AP ==1AP x =12PB x =12AP =14PB =290BP C ∠=︒2P BC △2P E BC ⊥E 22tan tan BP E P CE ∠=∠1PB BC ⊥1PBC△∵,设,则,∵∴,解得,∴,;当时,为直角三角形,作于点,则四边形是矩形,∴,,∴,∴,即,∴,解得或,经检验或都是方程的解,∴或,∴或,此时点与点重合,综上,的长为2或4或10,故答案为:2或4或10.三、解答题(本大题共5小题,每小题6分,共30分)13. (1)计算:.(2)如图,在中,点,分别是边,上的点,.求证:.11tan 2PB A AP ==1AP x =12PB x =AB =()(2222x x +=2x =12AP =14PB =290BP C ∠=︒2P BC △2P E BC ⊥E 12PBEP 12PP BE =124PB EP ==22290BP E CP E P CE ∠=︒-∠=∠22tan tan BP E P CE ∠=∠22P E BE P E CE=4410BE BE=-2BE =8BE =2BE =8BE =122PP BE ==128PP BE ==2224AP =+=32810AP =+=3P D AP ()01232sin 45π++--+︒ABC D E AB AC 180BDE C ∠+∠=︒ADE ACB ∽【答案】(1;(3)见详解【解析】【分析】本题考查了含特殊角的三角函数的混合运算以及相似三角形的判定.(1)先化简零次幂、绝对值、正弦值,再进行加减运算,即可作答.(2)根据两角对应相等的两个三角形相似证明即可.【详解】解:(1)(2),,,,∴.14. 先化简,再求值:,其中: 【答案】,【解析】【分析】先根据分式的加减乘除混合运算进行化简,再根据分母有理化的方法求值即可.【详解】解:()01232sin 45π++--+︒2321+-+=123=+-+=180C EDB ∠+∠=︒ 180ADE EDB ∠+∠=︒C ADE ∠∠∴=A A ∠=∠ ADE ACB ∽2121211x x x x -⎛⎫÷- ⎪+++⎝⎭1x =-11x -+2121211x x x x -⎛⎫÷- ⎪+++⎝⎭()2121111x x x x x -+⎛⎫=÷- ⎪++⎝⎭+()21111x x x x -+=⨯-+当时,原式【点睛】本题考查分式的加减乘除混合运算,分母有理化,正确计算是解题的关键.15. 如图,点在上,点在内,,,请仅用无刻度的直尺按下列要求作图(保留作图痕迹).(1)在图1中作弦,使;(2)在图2中作矩形,使矩形的面积是面积的8倍.【答案】(1)见解析(2)见解析【解析】【分析】本题主要考查圆周角定理的应用:(1)通过延长交于点,延长交于点,连接,即可完成作图任务;(2)通过延长交于点,延长交于点,连接并延长,交于点,依次连接,即可完成作图任务【小问1详解】解:如图,即为所作;理由如下:∵,,∴,∴11x =-+1x =-===A O B O 30A ∠=︒90B Ð=°CD CD AO ∥AMNP AMNP AOB AB O D OB O C CD AB O M AO O N MO O P MN NP PA ,,CD 30A ∠=︒90∠=︒ABO 60O ∠=︒1302D O ∠=∠=︒∴,∴;【小问2详解】解:如图,矩形即为所作;理由如下:∵,∴,∵,∴∴,∵,∴,∵,为的直径,∴,∴四边形是矩形,且16. 随着社会经济发展和物质消费水平的大幅度提高,我国每年垃圾产生量迅速增长,为了倡导绿色社区,做好垃圾分类工作,某社区成立了甲、乙两个检查组,采取随机抽查的方式对辖区内四个小区进行抽查,并且每个小区不重复检查.(1)若由甲组对四个小区进行抽查,则抽到B 小区的概率是________;(2)若甲、乙两组同时抽查,请用画树状图法或列表法求出甲组抽到C 小区,同时乙组抽到D 小区的概率.【答案】(1) 30A D ∠=∠=︒CD AO ∥AMNP 90∠=︒ABO OB AM ⊥OA OM =2AM AB=2AOM AOB S S = OP ON OM OA ===2AOP PON MON AOM AOB S S S S S ==== AN PM O 90PAN APN PNM AMN ∠=∠=∠=∠=︒AMNP 8AOBAMNP S S = 矩形,,,A B C D ,,,A B C D 14(2)【解析】【分析】此题考查列表法与树状图法,解题关键在于根据题意画出树状图.(1)直接利用概率公式求解可得;(2)画树状图列出所有等可能结果,根据概率公式求解可得.【小问1详解】解:由甲组对四个小区进行抽查,则抽到B 小区的概率是;【小问2详解】画树状图为:共有12种等可能的结果数,其中甲组抽到C 小区,同时乙组抽到D 小区的结果数为1,∴甲组抽到C 小区,同时乙组抽到D 小区的概率为.17. 为响应国家节能减排的倡议,某汽车专卖店销售A ,B 两种型号的新能源汽车,B 型汽车的售价比A 型汽车售价高8万元,本周售出1辆A 型车和3辆B 型车,销售总额为96万元.(1)求每辆A 型车和B 型车的售价;(2)随着新能源汽车越来越受消费者认可,汽车专卖店计划下周销售A ,B 两种型号汽车共10辆,若销售总额不少于220万元,求B 型车至少销售多少辆?【答案】(1)每辆A 型汽车的售价为18万元,每辆B 型汽车的售价为26万元(2)5辆【解析】【分析】本题考查了二元一次方程组的应用以及一元一次不等式的应用.(1)设每辆型车的售价是万元,每辆型车的售价是万元,根据“型汽车的售价比型汽车售价高8万元,本周售出1辆型车和3辆型车,销售总额为96万元”,可列出关于,的二元一次方程组,解之即可得出结论;(2)设销售型车辆,则销售型车辆,利用销售总额每辆型车的售价销售型车的的112,,,A B C D 14112A xB y B A A B x y B m A (10)m -=A ⨯A数量每辆型车的售价销售型车的数量,结合销售总额不少于220万元,可列出关于的一元一次不等式,解之取其中的最小值,即可得出结论.【小问1详解】解:设每辆型车的售价是万元,每辆型车的售价是万元,根据题意得:,解得:.答:每辆型车的售价是18万元,每辆型车的售价是26万元;【小问2详解】解:设销售型车辆,则销售型车辆,根据题意得:,解得:,的最小值为5.答:型车至少销售5辆.四、解答题(本大题共3小题,每小题8分,共24分)18. 如图,点A 在第一象限,轴,垂足为C ,,,反比例函数的图像经过的中点B ,与交于点D .(1)求k 值;(2)求的面积.【答案】(1)2(2)【解析】【分析】(1)在中,,,再结合勾股定理求出,,得+B ⨯B m A x B y 8396y x x y -=⎧⎨+=⎩1826x y =⎧⎨=⎩A B B m A (10)m -18(10)26220m m -+≥5m ≥m ∴B AC x ⊥OA =1tan 2A =k y x=OA AC OBD 32Rt ACO ∆90ACO ∠=︒1tan 2A =2OC =4AC =到,再利用中点坐标公式即可得出,求出值即可;(2)在平面直角坐标系中求三角形面积,找平行于坐标轴的边为底,根据轴,选择为底,利用代值求解即可得出面积.【小问1详解】解:根据题意可得,在中,,,,,,,,的中点是B ,,;【小问2详解】解:当时,,,,.【点睛】本题考查反比例函数的图像与性质,涉及到勾股定理,三角函数求线段长,中点坐标公式、待定系数法确定函数关系式中的,平面直角坐标系中三角形面积的求解,熟练掌握反比例函数的图像与性质是解决问题的关键.19. 为了保护小吉的视力,妈妈为他购买了可升降夹书阅读架(如图1),将其放置在水平桌面上的侧面示意图(如图2),测得底座高为,,支架为,面板长为,为.(厚度忽略不计)()2,4A ()1,2B k AD y ∥AD O B D O A D B A D S S S =-△△△Rt ACO ∆90ACO ∠=︒1tan 2A =2AC OC ∴=222(2)OC OC ∴+=2OC ∴=4AC =()2,4A ∴ OA ()1,2B ∴2k ∴=2x =1y =()2,1D ∴413AD ∴=-=∴O B D O A D B A D S S S =-△△△()11332321222=⨯⨯-⨯⨯-=k AB 2cm 150ABC ∠=︒BC 18cm DE 24cm CD 6cm(1)求支点C 离桌面l 的高度;(计算结果保留根号)(2)小吉通过查阅资料,当面板绕点C 转动时,面板与桌面的夹角α满足时,问面板上端E 离桌面l 的高度是增加了还是减少了?增加或减少了多少?(精确到,参考数据:)【答案】(1)(2)当α从变化到的过程中,高度增加了【解析】【分析】本题考查解直角三角形的应用.把所求线段和所给角放在合适的直角三角形中是解决本题的关键. (1)过点C 作于点F ,过点B 作于点M ,,易得四边形为矩形,那么可得,所以,利用的三角函数值可得长,进而可求解;(2)过点C 作,过点E 作于点H ,分别得到与所成的角为和时的值,相减即可得到面板上端E 离桌面l 的高度增加或减少了.【小问1详解】解:过点C 作于点F ,过点B 作于点M ,,由题意得:,四边形为矩形,.,DE 3070α︒≤≤︒0.1cm sin 700.94,cos 700.34,tan 70 2.75︒≈︒≈︒≈2)cm 30︒70︒7.9cmCF l ⊥BM CF ⊥ABMF 2cm 90MF AB ABM ==∠=︒,60MBC ∠=︒60︒CM CN l EH CN ⊥CE CN 30︒70︒EH CF l ⊥BM CF ⊥90CFA BMC BMF ∴∠=∠=∠=︒90BAF ∠=︒∴ABMF 2cm 90MF AB ABM ∴==∠=︒,150ABC ∠=︒.,,答:支点C离桌面l的高度为;【小问2详解】解:过点C作,过点E作于点H,,,,当时,;当时,;,∴当α从变化到的过程中,面板上端E离桌面l的高度是增加了.20. 某区积极响应国家“双减”政策,为了了解全区4000名七年级的学生完成作业时间情况,随机抽取几所学校七年级学生进行调查,统计他们平均每天完成作业的时间,并根据调查结果绘制如下不完整的统计图:60MBC∴∠=︒18cmBC=sin6018CM BC∴=⋅︒==2)cmCF CM MF∴=+=+()2cm+CN l EH CN⊥90EHC∴∠=︒24cm,2cmDE CD==18cmCE∴=30ECH∠=︒1sin30189cm2EH CE=⋅︒=⨯=70ECH∠=︒sin70180.9416.92cmEH CE=⋅︒≈⨯=16.9297.927.9cm∴-=≈30︒70︒请根据图表中提供的信息,解答下面的问题:(1)此次调查活动抽取的七年级有______人,扇形统计图中的值是______;(2)补全频数分布直方图,并估计全区平均每天完成作业时长在“”分钟的学生约有______人;(3)若平均每天完成作业时长在100分钟以下学生认定为“学习轻松者”,那你估计一下全区有多少位七年级的孩子是“学习轻松者”?【答案】(1)200;10(2)图见解析,400(3)2200名【解析】【分析】本题考查频数分布直方图、扇形统计图、用样本估计总体.(1)根据选A 人数和所占的百分比,可以求得此次调查的人数,再根据频数分布直方图中的数据,即可得到m 的值;(2)根据(1)的结果和条形统计图中的数据,可以计算出B 组的人数,从而可以将条形统计图补充完整,再用样本估计总体即可;(3)利用样本估计总体即可.【小问1详解】解:此次调查活动抽取的七年级人数为:(人),(人),,即m 的值是10,故答案为:200,10;【小问2详解】的m 6080t ≤<4020%200÷=2004050306020----=%20200100%10%m =÷⨯=解:补充统计图如图所示:(人),即估计全区平均每天完成作业时长在“”分钟的学生约有400人.故答案为:400;【小问3详解】解:(人),答:估计全区有2200位七年级的孩子是“学习轻松者”.五、解答题(本大题共2小题,每小题9分,共18分)21. 如图,已知是的直径,点是弧上的一点,于,点是弧的中点,交于点,交于点.(1)判断的形状,并证明;(2)若,.①求的长.②求阴影部分的面积.【答案】(1)是等腰三角形,详见解析(2)①;②【解析】【分析】(1)根据直径所对的圆周角是直角可得,从而可得,根据垂直定义可得,从而可得,然后根据已知可得,从而可得204000400200⨯=6080t ≤<11040002200200⨯=AB O C AB CEAB ⊥E D BC ADCE F BC G FGC △30CAD ∠=︒12AB =CF FGC△CF=6π-90ACB ∠=︒90CAG AGC ∠+∠=︒90CEA ∠=︒90FAE AFE ∠+∠=︒ DCDB =,进而可得,最后根据对顶角相等可得,从而可得,进而根据等角对等边即可解答;(2)①由(1)得故可得所以再证明通过解直角,求出②连接,可得是等边三角形,故有根据可得结论.【小问1详解】是等腰三角形,理由如下:∵为的直径,∴,∴,∵,∴,∴,∵D 为弧的中点,∴,∴,∴,∵,∴,∴,∴是等腰三角形;【小问2详解】①∵∴∵即∴∵CAG FAE ∠=∠AGC AFE ∠=∠AFE CFG ∠=∠AGC CFG ∠=∠60,CAE CAF EAF ∠=∠+∠=︒30,30,ACE ABC ∠=︒∠=︒116,3,22AC AB AE AC ====AF CF =,AEF AE AF ==CO AOC 60,AOC ∠=︒AOC AOC S S S =- 阴影扇形FGC △AB O 90ACB ∠=︒90CAG AGC ∠+∠=︒CE AB ⊥90CEA ∠=︒90FAE AFE ∠+∠=︒BC DCDB =CAG FAE ∠=∠AGC AFE ∠=∠AFE CFG ∠=∠AGC CFG ∠=∠CF CG =FGC △30,BAD CAD ∠=∠=︒303060,CAE CAF EAF ∠=∠+∠=︒+︒=︒,CE AB ⊥90,CED ∠=︒90906030,ACE CAE ∠=︒-∠=︒-︒=︒90,ACB ∠=︒∴∴∴在直角中,∵,∴∵∴②连接如图,∵∴是等边三角形,∴又∴【点睛】本题考查了圆周角定理,扇形的面积等知识,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.22. 阅读下列材料并完成问题.抛物线()的图象如图(1)所示,我们把点称为该抛物线的焦点,把抛物线上任意一点到焦点的距离称为焦半径,把直线称为该抛物线的准线,抛物线上任意一点到准线的距离称为准距.90906030,ABC CAB ∠=︒-∠=︒-︒=︒11126,22AC AB ==⨯=1163,22AE AC ==⨯=AEF △cos AEEAF AF=∠3cos cos30AE AF EAF ===∠︒30,CAF ACF ∠=∠=︒CF AF ==,CO 60,,CAO AO CO ∠=︒=AOC 60,AOC ∠=︒CE ===26061663602AOCAOC S S S ππ⨯⨯=-=-⨯=- 阴影扇形2y ax =0a >10,4A a ⎛⎫⎪⎝⎭P PA 14y a=-P 14y a=-PB[知识感悟](1)抛物线的焦点的坐标是______,若抛物线上点的坐标为,则焦半径______,准距______.[问题探究](2)对于抛物线()上点,试猜想焦半径与准距的数量关系,并说明理由.[知识应用](3)如图(2),已知抛物线的焦点为,点为抛物线上一点,连接,过点作直线的垂线,垂足为,直线与轴交于点,当时,求点的坐标.【答案】(1),4,4(2),理由见解析;(3)或【解析】【分析】本题主要考查二次函数图象与性质的应用:(1)根据示例中的定义求解即可;(2)设点,根据两点间距离公式求出的长即可判断;(3)连接,证明是等边三角形,求出,设,得,求出方程的解即可得出点P 的坐标218y x =A P ()4,2PA =PB =2y ax =0a >P PA PB 212y x =A P PA P 12y =-B 12y =-y M 60APB ∠=︒P ()02,PA PB =32⎫⎪⎭,32⎛⎫ ⎪⎝⎭,()2,P m am,PA PB AB PAB 2PB =212P x x ⎛⎫ ⎪⎝⎭,211222x +=【详解】解:(1)∵,∴焦点A 的坐标为∴点与焦点的距离,点到准线的距离为:故答案为:,4,4(2),理由如下:由题意知,焦点为,准线为直线,设点,∴,,∴(3)连接,由(2)知,,,∴是等边三角形,∴,由题意知,,∴,∵与直线垂直,∴∴1121448a ==⨯()02,()4,2P ()02A ,4PA =()4,2P =2y -()224,P =--=()02,PA PB =104A a ⎛⎫ ⎪⎝⎭,14y a=-()2,P m am2222221144PA m am am a a ⎛⎫⎛⎫=+-=+ ⎪ ⎪⎝⎭⎝⎭22214PB am a ⎛⎫=+ ⎪⎝⎭PA PB =AB PA PB =60APB ︒∠=PAB 60PBA ︒∠=102A ⎛⎫ ⎪⎝⎭,1AM =BP 12y =-30ABM ∠=︒22AB AM ==∴;设,得,解得,∴点的坐标为或六、解答题(本大题共12分)23. (1)发现问题:如图1,在和中,,,,连接,,延长交于点.则与的数量关系是______,______;(2)类比探究:如图2,在和中,,,,连接,,延长,交于点.请猜想与的数量关系及的度数,并说明理由;(3)拓展延伸:如图3,和均为等腰直角三角形,,连接,,且点,,在一条直线上,过点作,垂足为点.求,,之间的数量关系;(4)实践应用:正方形中,,若平面内存在点满足,,则______.【答案】(1)(2)(3)(4)【解析】【分析】(1)根据等腰三角形的性质,利用证明即可得出结论;(2)根据等腰三角形的性质,利用证明即可得出结论;(3)根据等腰直角三角形的性质,利用证明即可得出结论;(4)根据直径所对的圆周角是直角,先找到点P ,利用勾股定理计算出,再利用第3小题的结论得到2PB =212P x x ⎛⎫⎪⎝⎭,211222x +=x =P 32⎫⎪⎭,32⎛⎫ ⎪⎝⎭,ABC AEF △AB AC =AE AF =30BAC EAF ∠=∠=︒BE CF BE CF D BE CF BDC ∠=ABC AEF △AB AC =AE AF =120BAC EAF ∠=∠=︒BE CF BE FC D BE CF BDC ∠ABC AEF △90BAC EAF ∠=∠=︒BE CF B E F A AM BF ⊥M BF CF AM ABCD 2AB =P 90BPD ∠=︒1PD =S ABP =△30BE CF =︒,60BE CF BDC =∠=︒,2BF CF AM =+SAS ABE ACF ≌ SAS BAE CAF ≌ SAS BAE CAE ≌ BP三角形的高,的面积即可求出.【详解】解:(1),理由如下:如图1所示:∵和都是等腰三角形,∴,又∵,∴,即∴,∴,∴,∵,,∴;故答案为:(2),理由如下:如图2所示:证明:∵,∴,即,又∵,ABP 30BE CF BDC =∠=︒,ABC AEF △AB AC AE AF ==,30BAC EAF ∠=∠=︒BAC CAE FAE CAE ∠+∠=∠+∠,BAE CAF Ð=Ð()SAS ABE ACF ≌BE CF =ABE ACD ∠=∠A O E A B E B A C ∠=∠+∠AOE ACD BDC ∠=∠+∠30BDC BAC ∠=∠=︒30BE CF =︒,60BE CF BDC =∠=︒,120BAC EAF ∠=∠=︒BAC EAC EAF EAC ∠-∠=∠-∠BAE CAF ∠=∠AB AC AE AF ==,∴∴,∴,∵,∴,∴;(3),理由如下:如图3所示:∵和都是等腰三角形,∴,∴,即:,∴,∴,∵,∴,∵,∴;(4)如图4所示:连接,以为直径作圆,()SAS BAE CAF ≌BE CF =AEB AFC Ð=Ð120EAF AE AF ∠=︒=,30AEF AFE ∠=∠=︒30(30)60B D C B E F E FD A E B A FC ∠=∠-∠=∠+︒-∠-︒=︒2BF CF AM =+ABC AEF △90CAB EAF AB AC AE AF ∠=∠=︒==,,CAB CAE FAE CAE ∠-∠=∠-∠BAE CAF ∠=∠()SAS BAE CAF ≌BE CF =90AM BF AE AF EAF ⊥=∠=︒,,2EF AM =BF BE EF =+2BF CF AM =+BD BD由题意,取满足条件的点P ,,则.,∵,∴,∴,连接,作于点F ,在上截取,∵,∴,∴,∴,由(3)可得:,∴,∴,延长至点,使,过点A 作于点,连接,,∵,,∴,∴,∴,∴,∴,P '1PD P D '==90BPD BP D '∠=∠=︒2AB=BD=BP ===PA ⊥AF PB BP BE PD =PDA ABE AD AB ∠==,()SAS ADP ABE ≌AP AE BAE DAP =∠=∠,90PAE ∠=︒2PB PD AF -=2PB PD AF -==12PAB S PB AF =⋅=P B 'G BG P D '=AF BP '⊥'F ''AP AG AB AD =ABG ADP ∠'=∠(SAS)ABG ADP '≌ AG AP BAG DAP =∠=∠'',90GAP '∠=︒12AF F P GP ''''==2GP AF DP BP ''''==+∴,∴故.【点睛】本题主要考查了全等三角形的判定,等腰三角形和等腰直角三角形的性质,圆周角定理,勾股定理,三角形的面积等知识,熟练掌握全等三角形的判定是解题的关键.2DP BP AF ''+'==12P AB S P B AF '''=⋅= ABP。

九年级(下)期中数学试卷含答案

九年级(下)期中数学试卷含答案

九年级(下)期中数学试卷一、选择题1.﹣3的相反数是()A.3 B.﹣3 C.D.2.如图,直线AB∥CD,直线EF与AB,CD分别交于点E,F,EC⊥EF,垂足为E,若∠1=60°,则∠2的度数为()A.15°B.30°C.45°D.60°3.若a﹣b+c=0,则关于x的一元二次方程ax2+bx+c=0必有一根为()A.0 B.1 C.﹣1 D.24.如图,△ABC中,已知AB=8,∠C=90°,∠A=30°,DE是中位线,则DE的长为()A.4 B.3 C.D.25.如图,△ABO的面积为3,且AO=AB,双曲线y=经过点A,则k的值为()A.B.3 C.6 D.96.如图,已知顶点为(﹣3,﹣6)的抛物线y=ax2+bx+c经过点(﹣1,﹣4),则下列结论中错误的是()A.b2>4acB.ax2+bx+c≥﹣6C.若点(﹣2,m),(﹣5,n)在抛物线上,则m>nD.关于x的一元二次方程ax2+bx+c=﹣4的两根为﹣5和﹣1二、填空题7.因式分解3x2﹣3y2=.8.几个棱长为1的正方体组成的几何体的三视图如图所示,则这个几何体的体积是.9.如图,某数学兴趣小组将边长为5的正方形铁丝框ABCD变形为以A为圆心,AB为半径的扇形(忽略铁丝的粗细),则所得的扇形ABD的面积为.10.在函数y=中,自变量x的取值范围是.11.小明用S2= [(x1﹣3)2+(x2﹣3)2+…+(x10﹣3)2]计算一组数据的方差,那么x1+x2+x3+…+x10=.12.当﹣1≤x≤2时,二次函数y=(x﹣m)2+m2有最小值3,则实数m的值为.三、解答题13.(1)解方程:=﹣(2)如图,点B在线段AD上,BC∥DE,AB=ED,BC=DB,求证:∠A=∠E.14.先化简,再求代数式(﹣)÷的值,其中a=+1.15.如图,AB是⊙O的直径,点C在⊙O上,点D在AB延长线上,且∠BCD=∠A.(1)求证:DC是⊙O的切线;(2)若∠A=30°,AC=2,求图中阴影部分的面积.16.已知:▱ABCD的两边AB,AD的长是关于x的方程x2﹣mx+﹣=0的两个实数根.(1)当m为何值时,四边形ABCD是菱形?求出这时菱形的边长;(2)若AB的长为2,那么▱ABCD的周长是多少?17.如图,已知矩形OABC中,OA=3,AB=4,双曲线y=(k>0)与矩形两边AB、BC分别交于D、E,且BD=2AD(1)求k的值和点E的坐标;(2)点P是线段OC上的一个动点,是否存在点P,使∠APE=90°?若存在,求出此时点P的坐标,若不存在,请说明理由.四、解答题18.学校实施新课程改革以来,学生的学习能力有了很大提高.王老师为进一步了解本班学生自主学习、合作交流的现状,对该班部分学生进行调查,把调查结果分成四类(A:特别好,B:好,C:一般,D:较差)后,再将调查结果绘制成两幅不完整的统计图(如图).请根据统计图解答下列问题:(1)本次调查中,王老师一共调查了名学生;(2)将条形统计图补充完整;(3)为了共同进步,王老师从被调查的A类和D类学生中分别选取一名学生进行“兵教兵”互助学习,请用列表或画树状图的方法求出恰好选中一名男生和一名女生的概率.19.利用直尺画图(先用铅笔画图,然后再用墨水笔将符合条件的图形画出).(1)利用图1中的网格,过P点画直线AB的平行线和垂线;(2)平移图(2)网格中的三条线段AB、CD、EF,使平移后三条线段首尾顺次相接组成一个三角形;(3)如果每个方格的边长是单位1,那么图(2)中组成的三角形的面积等于.20.如图,一个书架上的方格中放着四本厚度和长度相同的书,其中左边两边上紧贴书架方格内侧竖放,右边两本书自然向左斜放,支撑点为C,E,右侧书角正好靠在方格内侧上,若书架方格长BF=40cm,∠DCE=30°.(1)设一本书的厚度为acm,则EF=cm;(2)若书的长度AB=20cm,求一本书的厚度(结果保留根号)五、解答题21.如图,抛物线C1:y=x2+4x﹣3与x轴交于A、B两点,将C1向右平移得到C2,C2与x轴交于B、C两点.(1)求抛物线C2的解析式.(2)点D是抛物线C2在x轴上方的图象上一点,求S△ABD的最大值.(3)直线l过点A,且垂直于x轴,直线l沿x轴正方向向右平移的过程中,交C1于点E交C2于点F,当线段EF=5时,求点E的坐标.22.如图,△AOB是等腰直角三角形,直线BD∥OA,OB=OA=1,P是线段AB上一动点,过P点作MN∥OB,分别交OA、BD于M、N,PC⊥PO,交BD于点C.(1)求证:OP=PC;(2)当点C在射线BN上时,设AP长为m,四边形POBC的面积为S,请求出S 与m间的函数关系式,并写出自变量m的取值范围;(3)当点P在线段AB上移动时,点C也随之在直线BN上移动,△PBC是否可能成为等腰三角形?如果可能,求出所有能使△PBC成为等腰三角形时的PM的值;如果不可能,请说明理由.六、解答题23.问题提出:如图1,在Rt△ABC中,∠ACB=90°,CB=4,CA=6,⊙C半径为2,P为圆上一动点,连结AP、BP,求AP+BP的最小值.(1)尝试解决:为了解决这个问题,下面给出一种解题思路:如图2,连接CP,在CB上取点D,使CD=1,则有==,又∵∠PCD=∠BCP,∴△PCD∽△BCP.∴=,∴PD=BP,∴AP+BP=AP+PD.请你完成余下的思考,并直接写出答案:AP+BP的最小值为.(2)自主探索:在“问题提出”的条件不变的情况下,AP+BP的最小值为.(3)拓展延伸:已知扇形COD中,∠COD=90°,OC=6,OA=3,OB=5,点P是上一点,求2PA+PB的最小值.参考答案与试题解析一、选择题1.﹣3的相反数是()A.3 B.﹣3 C.D.【考点】14:相反数.【分析】由相反数的定义容易得出结果.【解答】解:﹣3的相反数是3,故选:A.2.如图,直线AB∥CD,直线EF与AB,CD分别交于点E,F,EC⊥EF,垂足为E,若∠1=60°,则∠2的度数为()A.15°B.30°C.45°D.60°【考点】JA:平行线的性质.【分析】根据对顶角相等求出∠3,再根据两直线平行,同旁内角互补解答.【解答】解:如图,∠3=∠1=60°(对顶角相等),∵AB∥CD,EG⊥EF,∴∠3+90°+∠2=180°,即60°+90°+∠2=180°,解得∠2=30°.故选B.3.若a﹣b+c=0,则关于x的一元二次方程ax2+bx+c=0必有一根为()A.0 B.1 C.﹣1 D.2【考点】A3:一元二次方程的解.【分析】由a﹣b+c=0求得b=a+c,将其代入方程ax2+bx+c=0中,可得方程的一个根是﹣1.【解答】解:∵a﹣b+c=0,∴b=a+c,①把①代入方程ax2+bx+c=0中,ax2+(a+c)x+c=0,ax2+ax+cx+c=0,ax(x+1)+c(x+1)=0,(x+1)(ax+c)=0,∴x1=﹣1,x2=﹣(非零实数a、b、c).故选:C.4.如图,△ABC中,已知AB=8,∠C=90°,∠A=30°,DE是中位线,则DE的长为()A.4 B.3 C.D.2【考点】KX:三角形中位线定理;KO:含30度角的直角三角形.【分析】先由含30°角的直角三角形的性质,得出BC,再由三角形的中位线定理得出DE即可.【解答】解:∵∠C=90°,∠A=30°,∴BC=AB=4,又∵DE是中位线,∴DE=BC=2.故选D.5.如图,△ABO的面积为3,且AO=AB,双曲线y=经过点A,则k的值为()A.B.3 C.6 D.9【考点】G5:反比例函数系数k的几何意义;KH:等腰三角形的性质.【分析】过点A作OB的垂线,垂足为点C,根据等腰三角形的性质得OC=BC,再根据三角形的面积公式得到OB•AC=3,易得OC•AC=3,设A点坐标为(x,y),即可得到k=xy=OC•AC=3.【解答】解:过点A作OB的垂线,垂足为点C,如图,∵AO=AB,∴OC=BC=OB,∵△ABO的面积为3,∴OB•AC=3,∴OC•AC=3.设A点坐标为(x,y),而点A在反比例函数y=(k>0)的图象上,∴k=xy=OC•AC=3.故选B.6.如图,已知顶点为(﹣3,﹣6)的抛物线y=ax2+bx+c经过点(﹣1,﹣4),则下列结论中错误的是()A.b2>4acB.ax2+bx+c≥﹣6C.若点(﹣2,m),(﹣5,n)在抛物线上,则m>nD.关于x的一元二次方程ax2+bx+c=﹣4的两根为﹣5和﹣1【考点】H4:二次函数图象与系数的关系;H5:二次函数图象上点的坐标特征;HA:抛物线与x轴的交点;HC:二次函数与不等式(组).【分析】由抛物线与x轴有两个交点则可对A进行判断;由于抛物线开口向上,有最小值则可对B进行判断;根据抛物线上的点离对称轴的远近,则可对C进行判断;根据二次函数的对称性可对D进行判断.【解答】解:A、图象与x轴有两个交点,方程ax2+bx+c=0有两个不相等的实数根,b2﹣4ac>0所以b2>4ac,故A选项正确;B、抛物线的开口向上,函数有最小值,因为抛物线的最小值为﹣6,所以ax2+bx+c ≥﹣6,故B选项正确;C、抛物线的对称轴为直线x=﹣3,因为﹣5离对称轴的距离大于﹣2离对称轴的距离,所以m<n,故C选项错误;D、根据抛物线的对称性可知,(﹣1,﹣4)关于对称轴的对称点为(﹣5,﹣4),所以关于x的一元二次方程ax2+bx+c=﹣4的两根为﹣5和﹣1,故D选项正确.故选C.二、填空题7.因式分解3x2﹣3y2=3(x+y)(x﹣y).【考点】55:提公因式法与公式法的综合运用.【分析】先提取公因式3,再对余下的多项式利用平方差公式继续分解.【解答】解:3x2﹣3y2=3(x2﹣y2)=3(x+y)(x﹣y).故答案为:3(x+y)(x﹣y).8.几个棱长为1的正方体组成的几何体的三视图如图所示,则这个几何体的体积是5.【考点】U3:由三视图判断几何体.【分析】根据三视图,该几何体的主视图以及俯视图可确定该几何体共有两行三列,故可得出该几何体的小正方体的个数,即可得出这个几何体的体积.【解答】解:综合三视图可知,这个几何体的底层应该有3+1=4个小正方体,第二层应该有1个小正方体,因此搭成这个几何体所用小正方体的个数是4+1=5个,所以这个几何体的体积是5.故答案为:5.9.如图,某数学兴趣小组将边长为5的正方形铁丝框ABCD变形为以A为圆心,AB为半径的扇形(忽略铁丝的粗细),则所得的扇形ABD的面积为25.【考点】MO:扇形面积的计算.【分析】根据扇形面积公式:S=•L•R(L是弧长,R是半径),求出弧长BD,根据题意=CD+BC,由此即可解决问题.【解答】解:由题意=CD+BC=10,S扇形ADB=••AB=×10×5=25,故答案为25.10.在函数y=中,自变量x的取值范围是x≥1.【考点】E4:函数自变量的取值范围.【分析】因为当函数表达式是二次根式时,被开方数为非负数,所以x﹣1≥0,解不等式可求x的范围.【解答】解:根据题意得:x﹣1≥0,解得:x≥1.故答案为:x≥1.11.小明用S2= [(x1﹣3)2+(x2﹣3)2+…+(x10﹣3)2]计算一组数据的方差,那么x1+x2+x3+…+x10=30.【考点】W7:方差.【分析】根据计算方差的公式能够确定数据的个数和平均数,从而求得所有数据的和.【解答】解:∵S2= [(x1﹣3)2+(x2﹣3)2+…+(x10﹣3)2],∴平均数为3,共10个数据,∴x1+x2+x3+…+x10=10×3=30,故答案为:30.12.当﹣1≤x≤2时,二次函数y=(x﹣m)2+m2有最小值3,则实数m的值为或.【考点】H7:二次函数的最值.【分析】根据二次函数的最值问题列出方程求出m的值,再根据二次项系数大于0解答.【解答】解:∵二次函数y=(x﹣m)2+m2有最小值3,二次项系数a=1>0,故图象开口向上,对称轴为x=m,当m<﹣1时,最小值在x=﹣1取得,此时有(m+1)2+m2=3,求得m=,∵m<﹣1,∴m=;当﹣1≤m≤2时,最小值在x=m时取得,即有1﹣m2=﹣2求得m=或m=﹣(舍去)当m>2时,最小值在x=2时取得,即(2﹣m)2+m2=3求得m=(舍去)故答案为:或.三、解答题13.(1)解方程:=﹣(2)如图,点B在线段AD上,BC∥DE,AB=ED,BC=DB,求证:∠A=∠E.【考点】KD:全等三角形的判定与性质;B3:解分式方程.【分析】(1)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解;(2)由BC与DE平行得到一对同位角相等,利用SAS得到三角形ABC与三角形EDB全等,利用全等三角形对应角相等即可得证.【解答】解:(1)去分母得:2=2x﹣1﹣3,解得:x=3,经检验x=3是分式方程的解;(2)∵BC∥DE,∴∠ABC=∠D,在△ABC和△EDB中,,∴△ABC≌△EDB,∴∠A=∠E.14.先化简,再求代数式(﹣)÷的值,其中a=+1.【考点】6D:分式的化简求值.【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把a的值代入计算即可求出值.【解答】解:原式=•(a+1)=,当a=+1时,原式=.15.如图,AB是⊙O的直径,点C在⊙O上,点D在AB延长线上,且∠BCD=∠A.(1)求证:DC是⊙O的切线;(2)若∠A=30°,AC=2,求图中阴影部分的面积.【考点】MD:切线的判定;MO:扇形面积的计算.【分析】(1)连结OC,如图,根据圆周角定理得∠ACB=90°,再利用等腰三角形的性质得∠A=∠OCA,∠OBC=∠OCB,则∠A+∠BCO=90°,加上∠BCD=∠A,所以∠BCD+∠BCO=90°,于是根据切线的判定方法可判断DC是⊙O的切线;(2)根据含30度的直角三角形三边的关系,在Rt△ACB中计算出BC=AC=2,AB=2BC=4,再计算出∠AOC=120°,然后根据扇形面积公式,利用图中阴影部分的面积=S扇形AOC ﹣S△AOC进行计算.【解答】(1)证明:连结OC,如图,∵AB是⊙O的直径,∴∠ACB=90°,∵OA=OC,OB=OC,∴∠A=∠OCA,∠OBC=∠OCB,∴∠A+∠BCO=90°,∵∠BCD=∠A,∴∠BCD+∠BCO=90°,即∠OCD=90°,∴OC⊥CD,∴DC是⊙O的切线;(2)在Rt△ACB中,∵∠A=30°,∴BC=AC=2,AB=2BC=4,∵∠AOC=180°﹣∠A﹣∠ACO=120°,∴图中阴影部分的面积=S扇形AOC ﹣S△AOC=S扇形AOC﹣S△ABC=﹣••2•2=π﹣.16.已知:▱ABCD的两边AB,AD的长是关于x的方程x2﹣mx+﹣=0的两个实数根.(1)当m为何值时,四边形ABCD是菱形?求出这时菱形的边长;(2)若AB的长为2,那么▱ABCD的周长是多少?【考点】AD:一元二次方程的应用;L5:平行四边形的性质;L8:菱形的性质.【分析】(1)让根的判别式为0即可求得m,进而求得方程的根即为菱形的边长;(2)求得m的值,进而代入原方程求得另一根,即易求得平行四边形的周长.【解答】解:(1)∵四边形ABCD是菱形,∴AB=AD,∴△=0,即m2﹣4(﹣)=0,整理得:(m﹣1)2=0,解得m=1,当m=1时,原方程为x2﹣x+=0,解得:x1=x2=0.5,故当m=1时,四边形ABCD是菱形,菱形的边长是0.5;(2)把AB=2代入原方程得,m=2.5,把m=2.5代入原方程得x2﹣2.5x+1=0,解得x1=2,x2=0.5,∴C▱ABCD=2×(2+0.5)=5.17.如图,已知矩形OABC中,OA=3,AB=4,双曲线y=(k>0)与矩形两边AB、BC分别交于D、E,且BD=2AD(1)求k的值和点E的坐标;(2)点P是线段OC上的一个动点,是否存在点P,使∠APE=90°?若存在,求出此时点P的坐标,若不存在,请说明理由.【考点】GB:反比例函数综合题.【分析】(1)由矩形OABC中,AB=4,BD=2AD,可得3AD=4,即可求得AD的长,然后求得点D的坐标,即可求得k的值,继而求得点E的坐标;(2)首先假设存在要求的点P坐标为(m,0),OP=m,CP=4﹣m,由∠APE=90°,易证得△AOP∽△PCE,然后由相似三角形的对应边成比例,求得m的值,继而求得此时点P的坐标.【解答】解:(1)∵AB=4,BD=2AD,∴AB=AD+BD=AD+2AD=3AD=4,∴AD=,又∵OA=3,∴D(,3),∵点D在双曲线y=上,∴k=×3=4;∵四边形OABC为矩形,∴AB=OC=4,∴点E的横坐标为4.把x=4代入y=中,得y=1,∴E(4,1);(2)假设存在要求的点P坐标为(m,0),OP=m,CP=4﹣m.∵∠APE=90°,∴∠APO+∠EPC=90°,又∵∠APO+∠OAP=90°,∴∠EPC=∠OAP,又∵∠AOP=∠PCE=90°,∴△AOP∽△PCE,∴,∴,解得:m=1或m=3,∴存在要求的点P,坐标为(1,0)或(3,0).四、解答题18.学校实施新课程改革以来,学生的学习能力有了很大提高.王老师为进一步了解本班学生自主学习、合作交流的现状,对该班部分学生进行调查,把调查结果分成四类(A:特别好,B:好,C:一般,D:较差)后,再将调查结果绘制成两幅不完整的统计图(如图).请根据统计图解答下列问题:(1)本次调查中,王老师一共调查了20名学生;(2)将条形统计图补充完整;(3)为了共同进步,王老师从被调查的A类和D类学生中分别选取一名学生进行“兵教兵”互助学习,请用列表或画树状图的方法求出恰好选中一名男生和一名女生的概率.【考点】X6:列表法与树状图法;VB:扇形统计图;VC:条形统计图.【分析】(1)由题意可得:王老师一共调查学生:(2+1)÷15%=20(名);(2)由题意可得:C类女生:20×25%﹣2=3(名);D类男生:20×(1﹣15%﹣50%﹣25%)﹣1=1(名);继而可补全条形统计图;(3)首先根据题意列出表格,再利用表格求得所有等可能的结果与恰好选中一名男生和一名女生的情况,继而求得答案.【解答】解:(1)根据题意得:王老师一共调查学生:(2+1)÷15%=20(名);故答案为:20;(2)∵C类女生:20×25%﹣2=3(名);D类男生:20×(1﹣15%﹣50%﹣25%)﹣1=1(名);如图:(3)列表如下:A类中的两名男生分别记为A1和A2,男A1男A2…女A男D男A1男D男A2男D女A男D女D男A1女D男A2女D女A女D共有6种等可能的结果,其中,一男一女的有3种,所以所选两位同学恰好是一位男生和一位女生的概率为:=.19.利用直尺画图(先用铅笔画图,然后再用墨水笔将符合条件的图形画出).(1)利用图1中的网格,过P点画直线AB的平行线和垂线;(2)平移图(2)网格中的三条线段AB、CD、EF,使平移后三条线段首尾顺次相接组成一个三角形;(3)如果每个方格的边长是单位1,那么图(2)中组成的三角形的面积等于3.5.【考点】Q4:作图﹣平移变换;JA:平行线的性质.【分析】(1)根据网格结构的特点,利用直线与网格的夹角的关系找出与AB平行的格点以及垂直的格点作出即可;(2)根据网格结构的特点,过点E找出与AB、CD位置相同的线段,过点F找出与AB、CD位置相同的线段,作出即可;(3)根据S△=S正方形﹣三个角上的三角形的面积即可得出结论.【解答】解:(1)、(2)如图所示;=3×3﹣×1×2﹣×2×3﹣×1×3(3)S△EFH=9﹣1﹣3﹣=3.5.故答案为:3.5.20.如图,一个书架上的方格中放着四本厚度和长度相同的书,其中左边两边上紧贴书架方格内侧竖放,右边两本书自然向左斜放,支撑点为C,E,右侧书角正好靠在方格内侧上,若书架方格长BF=40cm,∠DCE=30°.(1)设一本书的厚度为acm,则EF=a cm;(2)若书的长度AB=20cm,求一本书的厚度(结果保留根号)【考点】T8:解直角三角形的应用.【分析】(1)根据三角形的内角和得到∠CED=60°,根据三角函数的定义即可得到结论;(2)设一本书的厚度为acm,根据BF=40cm,列方程即可得到结论.【解答】解:(1)如图,∵∠DCE=30°,∴∠CED=60°,∴∠GEH=30°,∴EH==a,∴HF=acos30°=a;∴EF=EH+HF=a故答案为:a;(2)设一本书的厚度为acm,则BD=2a,∴DE=CE=10cm,∵BF=40cm,∴2a+10+a=40,解得:a≈7.4.答:一本书的厚度7.4cm.五、解答题21.如图,抛物线C1:y=x2+4x﹣3与x轴交于A、B两点,将C1向右平移得到C2,C2与x轴交于B、C两点.(1)求抛物线C2的解析式.(2)点D是抛物线C2在x轴上方的图象上一点,求S△ABD的最大值.(3)直线l过点A,且垂直于x轴,直线l沿x轴正方向向右平移的过程中,交C1于点E交C2于点F,当线段EF=5时,求点E的坐标.【考点】HF:二次函数综合题.【分析】(1)先依据配方法求得抛物线C1的顶点坐标,然后令y=0,求得点A、B的坐标,从而可判断出C1平移的方向和距离,于是得到抛物线C2的顶点坐标,从而得到C2的解析式;(2)根据函数图象可知,当点D为C2的顶点时,△ABD的面积最大;(3)设点E的坐标为(x,﹣x2+4x﹣3),则点F的坐标为(x,﹣x2+8x﹣15),然后可求得EF长度的解析式,最后根据EF=5,可列出关于x的方程,从而可求得x的值,于是的得到点E的坐标.【解答】解:(1)∵y=﹣x2+4x﹣3=﹣(x﹣2)2+1,∴抛物线C1的顶点坐标为(2,1).令y=0,得﹣(x﹣2)2+1=0,解得:x1=1,x2=3.∵C2经过B,∴C1向右平移了2个单位长度.∵将抛物线向右平移两个单位时,抛物线C2的顶点坐标为(4,1),∴C2的解析式为y2=﹣(x﹣4)2+1,即y=﹣x2+8x﹣15.(2)根据函数图象可知,当点D为C2的顶点时,纵坐标最大,即D(4,1)时,△ABD的面积最大.S△ABD=AB•|y D|=×2×1=1.(3)设点E的坐标为(x,﹣x2+4x﹣3),则点F的坐标为(x,﹣x2+8x﹣15).EF=|(﹣x2+4x﹣3)﹣(﹣x2+8x﹣15)|=|﹣4x+12|.∵EF=5,∴﹣4x+12=5或﹣4x+12=﹣5.解得:x=或x=.∴点E的坐标为(,)或(,﹣)时,EF=5.22.如图,△AOB是等腰直角三角形,直线BD∥OA,OB=OA=1,P是线段AB上一动点,过P点作MN∥OB,分别交OA、BD于M、N,PC⊥PO,交BD于点C.(1)求证:OP=PC;(2)当点C在射线BN上时,设AP长为m,四边形POBC的面积为S,请求出S 与m间的函数关系式,并写出自变量m的取值范围;(3)当点P在线段AB上移动时,点C也随之在直线BN上移动,△PBC是否可能成为等腰三角形?如果可能,求出所有能使△PBC成为等腰三角形时的PM的值;如果不可能,请说明理由.【考点】LO:四边形综合题.【分析】(1)首先利用矩形的判定得出四边形OBNM 为矩形,即可得出∠CPN=∠POM ,进而得出△OPM ≌△PCN ,求出即可;(2)利用S=S △OPB +S △PBC 进而得出S 与m 的函数关系;(3)利用①当点P 与点A 重合时,PC=BC=1,②如图②,当点C 在OB 下方,且PB=CB 时,分别求出即可.【解答】(1)证明:如图①,△AOB 是等腰直角三角形,AO=BO=1,∴∠A=45°,∠AOB=90°,直线BN ∥OA ,MN ∥OB ,∴四边形OBNM 为矩形,∴MN=OB=1,∠PMO=∠CNP=90°而∠AMP=90°,∠A=∠APM=∠BPN=45°,∴OM=BN=PN ,∵∠OPC=90°,∴∠OPM +∠CPN=90°,又∵∠OPM +∠POM=90°,∴∠CPN=∠POM ,在△OPM 和△PCN 中,∴△OPM ≌△PCN (ASA ),∴OP=PC ,(2)解:∵AM=PM=APsin45°=m , ∴NC=PM=m ,∴BN=OM=PN=1﹣m ;∴BC=BN ﹣NC=1﹣m ﹣m=1﹣m , S=S △OPB +S △PBC =BO•MO +BC•PN ,=m 2﹣m +1(0≤m );(3)解:△PBC可能为等腰三角形,①当点P与点A重合时,PC=BC=1,此时PM=0,②如图②,当点C在OB下方,且PB=CB时,有OM=BN=PN=1﹣m,∴BC=PB=PN=﹣m,∴NC=BN+BC=1﹣m+﹣m,由(2)知:NC=PM=m,∴1﹣m+﹣m=m,∴m=1.∴PM=m=;∴使△PBC为等腰三角形时的PM的值为0或.六、解答题23.问题提出:如图1,在Rt△ABC中,∠ACB=90°,CB=4,CA=6,⊙C半径为2,P为圆上一动点,连结AP、BP,求AP+BP的最小值.(1)尝试解决:为了解决这个问题,下面给出一种解题思路:如图2,连接CP,在CB上取点D,使CD=1,则有==,又∵∠PCD=∠BCP,∴△PCD∽△BCP.∴=,∴PD=BP,∴AP+BP=AP+PD.请你完成余下的思考,并直接写出答案:AP+BP的最小值为.(2)自主探索:在“问题提出”的条件不变的情况下,AP+BP的最小值为.(3)拓展延伸:已知扇形COD中,∠COD=90°,OC=6,OA=3,OB=5,点P是上一点,求2PA+PB的最小值.【考点】MR:圆的综合题.【分析】(1)利用勾股定理即可求出,最小值为AD=;(2)连接CP,在CA上取点D,使CD=,则有,可证△PCD∽△ACP,得到PD=AP,即:AP+BP=BP+PD,从而AP+BP的最小值为BD;(3)延长OA到点E,使CE=6,连接PE、OP,可证△OAP∽△OPE,得到EP=2PA,得到2PA+PB=EP+PB,当E、P、B三点共线时,得到最小值.【解答】解:(1)如图1,连结AD,∵AP+BP=AP+PD,要使AP+BP最小,∴AP+AD最小,当点A,P,D在同一条直线时,AP+AD最小,即:AP+BP最小值为AD,在Rt△ACD中,CD=1,AC=6,∴AD==,AP+BP的最小值为,故答案为:;(2)如图2,连接CP,在CA上取点D,使CD=,∴,∵∠PCD=∠ACP,∴△PCD∽△ACP,∴,∴PD=AP,∴AP+BP=BP+PD,∴同(1)的方法得出AP+BP的最小值为BD==.故答案为:;(3)如图3,延长OA到点E,使CE=6,∴OE=OC+CE=12,连接PE、OP,∵OA=3,∴,∵∠AOP=∠AOP,∴△OAP∽△OPE,∴,∴EP=2PA,∴2PA+PB=EP+PB,∴当E、P、B三点共线时,取得最小值为:BE==13.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

九年级数学试题(满分150分) 2013.5.17 一、选择题(本大题共有8小题,每小题3分,共24分) 1. 的相反数是( )A 、 6B 、-6C 、D 、 2. “一方有难,八方支援”,截止27日22:00,中国移动为四川雅安发生7.0级地震累计发送免费应急公益短信2922.3万条,这个数用科学记数法表示为 ( )A 、2.9223×万B 、2.9223×万C 、2.9223×万D 、2.9223×万 3.下列计算正确的是( )A 、B 、C 、D 、4. 下列图形中既是轴对称图形又是中心对称图形的是 ( ) A、正六边形 B、正五边形 C、平行四边形 D、等腰三角形5. 如下右图是一个由多个相同小正方体堆积而成的几何体的俯视图.图中所示数字为该位主视图...是(6. 函数的自变量x的取值范围在数轴上表示为 ( )7.已知为矩形的对角线,则图中与一定不相等.....的是( )A .B .C .D .8. 如图,平面直角坐标系中,OB 在x 轴上,∠ABO =90°点A 的坐标 为(1,2).将△AOB 绕点A 逆时针旋转90°,点O 的对应点C 恰好落 在双曲线 (x >0)上,则k 的值为( ) A .2 B .3 C .4 D .6二、填空题(本大题共10个小题;每小题3分,共30分.把答案写在题中横线上)6-6161-510410310210632a a a =⋅633a a a =+628a a a =÷632)(a a =-y =AC ABCD 1∠2∠xky =ABCD5题图B C1 2B A DC B A C1 2 D1 2B A DCA 、B 、C 、D 、9.把温度计显示的零上5℃用+5℃表示,那么零下2℃应表示为____ _℃。

10. 如果,那么的算术平方根是 . 11. 分解因式a 3-a = _____12. 已知一组数据为8,4,6,5,7,则这组数据的方差..是____________. 13. 当时,代数式的值为 . 14. 分别以梯形ABCD 的上底AD 、下底BC 的长为直径作⊙、⊙,若两圆的圆心距等于这个梯形的中位线长,则这两个圆的位置关系是____________.15. 小明用下图中所示的扇形纸片作一个圆锥的侧面,已知扇形的半径为5cm ,弧长是cm ,那么这个的圆锥的高是 cm .16. 如图,Rt △ABC 中,∠B =90°,AB =6cm ,AC =10cm ,将△ABC 折叠,使点C 与A 重合,得折痕DE ,则△ABE 的周长等于________cm. (第16题图) (第17题图)17. 如图,A 、B 、C 三点在正方形网格线的交点处,则tan 的值为 . 18. 若x 是不等于1的实数,我们把称为x 的差倒数,如2的差倒数是; 的差倒数为,现已知,x 2是x 1的差倒数,x 3是x 2的差倒数,x 4是x 3的差倒数,…,依此类推,则_______________.三、解答题(本大题共10个小题,共96分.解答应写出文字说明、证明过程或推演步骤。

如果觉得有的题目有困难,那么把自己能写出的解答写出一部分也可以。

)19、(本小题满分10分) (1)计算: (2)解方程:20、(本小题满分8分) 先化简,再求值:,其中x 满足.2180a -=a 12s t =+222s st t -+1O 2O 6πBAC ∠x -111211-=-1-21)1(11=--311-=x =2013x ︒-++-45sin 2)231(210x x x --=+-2132135222x x x x -⎛⎫÷+- ⎪--⎝⎭022=-x x OB A第15题 5cm21.(本小题满分8分)吸烟有害健康!为配合“禁烟”行动,某校组织同学们在我区某社区开展了“你支持哪种戒烟方式”的问卷调查,征求居民意见,并将调查结果整理后制成了如下统计图:根据统计图解答:(1) 同学们一共随机调查了多少人? (2) 请你把统计图补充完整;(3)假定该社区有1万人,请估计该地区支持“警示戒烟”这种方式大约有多少人?22. (本小题满分8分)如图,在△ABD 和ACE 中,AB=AD ,AC=AE , ∠BAD=∠CAE ,连接BC 、DE 相交于点F ,BC 与AD 相交于点G 。

(1)试判断线段BC 、DE 的数量关系,并说明理由;(2)如果∠ABC=∠CBD ,那么线段FD 是线段FG 和 FB 的比例中项吗?为什么?23.(本小题满分8分)江都世纪影城同时放映三部不同的电影,分别记为A 、B 、C . (1)若王老师从中随机选择一部观看,则恰好是电影A 的概率是 ;(2)若小聪从中随机选择一部观看,小芳也从中随机选择一部观看,请用画树状图或列表格的方法求至少有一人在看A 电影的概率.24.(本小题满分10分)如图所示,A 、B 两城市相距100km. 现计划在这两座城市间修筑一条高速公路(即线段AB ),经测量,森林保护中心P 在A 城市的北偏东30°和B 城市的北偏西45°的方向上. 已知森林保护区的范围在以P 点为圆心,50km 为半径的圆形区域内. 请问:计划修筑的这条高速公路会不会穿越保护区. 为什么?(参考数据:,)25. (本小题满分10分))已知:如图,在⊿ABC 中,AB=AC ,以AB 为直径的⊙O 交BC 于点D ,过点D 作于点E .(1)请说明DE 是⊙O 的切线; (2)若,AB =8,求DE 的长.732.13≈414.12≈D E A C ⊥30B ∠=(第21题图)A (A ´) C (C ´) DB 图① 26. (本小题满分10分)如图1,将底面为正方形的两个完全相同......的长方体放入一圆柱形水槽内,并向水槽内匀速注水,速度为v cm 3/s ,直至水面与长方体顶面平齐为止.水槽内的水深h (cm )与注水时间 t (s )的函数关系如图2所示.根据图象完成下列问题: (1)一个长方体的体积是_____________ cm 3; (2)求图2中线段AB 对应的函数关系式; (3)求注水速度v 和圆柱形水槽的底面积S .27.(本小题满分12分)如图,在直角坐标系中,抛物线过点A (-1,0)、B (3,0)且与y 轴交与点C ,点D 为抛物线对称轴x=l 上一动点.(1)求抛物线的解析式;(2)求当AD+CD 最小时点D 的坐标;(3)有这样的点D 能使△ACD 为直角三角形吗?若能,求出点D 若不能请说明理由。

28.(本题12分) 小明在玩一副三角板时发现:含45°角的直角三角板的斜边可与含30°角的 直角三角板的较长直角边完全重合(如图①).即△C´DA ´的顶点A ´、C ´分别与△BAC 的顶点A 、C 重合.其中AB ..=.2.,现在,他让△C´DA ´固定不动, 将△BAC 通过变换使斜边BC 经过△C´DA ´的直角顶点D .(1)求A ’D 的长度(2)如图②,将△BAC 绕点C 按顺时针方向旋转角度α(0°<α<180°),使BC 边经过点D ,则α= °.(3)如图③,将△BAC 绕点A 按逆时针方向旋转,使BC 边经过点D .求点C 走过的路线长。

(4)如图④,将△BAC 沿射线A ´C ´方向平移m 个单位长度,使BC 边经过点D ,求m的值.九年级数学试题答案c x ax y ++=22BDA ´A DBC (C ´)A (A ´)C ´ C一、选择题(本题共8小题,每小题3分,共24分,每小题仅有一个答案正确)二、填空题(本大题共10小题,每小题3分,共30分,把答案填在题目中的横线上)9. 10.3 11. 12.2 13.14 .外切 15. 4 16. 14 17.5 18.4 三、解答题19、(1)计算 解:原式=0 …………………………… 5分(2)解:两边同时乘以(x-2)得 1+3(x-2)=x-1∴x=2 …………………………… (4分)检验:当x=2时,x-2=0,∴ x=2是原方程增根 ,原方程无解 ……………… (5分)20、(本小题满分8分)解:原式= …………… (5分) 由 得 x=0或x=2, 其中x=2舍去 ……………… (7分) 当x=0时,原式= ……………………………… (8分)21.解:(1)﹪=300 (人)答: 共随机调查了300人 ……………………………… 2分(2) 药物戒烟: 300×15﹪=45(人)警示戒烟: 300-120-30-45=105(人)图如下:……………… 6分(3)10000× =3500(人)答:估计该地区支持“警示戒烟”这种方式大约3500人 ………………8分22.………………1分2-)1)1(-+a a a 41=-+-211231)3)(3(223254232+=-+-⋅--=---÷--x x x x x x x x x x 022=-x x 311030÷300105………………4分 ………………5分………………8分 23、解:(1) ………………………………………………………………2分(2)解法一:(树状图):………………………………………………………………………..6分P (至少一人看A )=……………………………………………..8分 解法二:(列表法)24、解: 作PD ⊥AB 于点D ……………… 1分 设PD=x在R t △PDB 中,∠PBD=45°∴BD=PD=x ……………… 3分 ∵AB=100∴AD=100-x在R t △PDA 中,∠APD=30° ∴tan ∠APD= 即tan30°=25、解:(1)连接OD ,AD .∵AB 是⊙O 的直径,∴. ……………………1分 3195PD AD xx-10090A D B ∠=小聪 小芳 结果 A B C (A,B) (A,C)A (A,A)BBC(B,B) (B,C)A(B,A) C BC(C,B) (C,C)A(C,A)DB又∵AB =AC ,∴BD =CD . ……………………………2分 ∵OA =OB ,∴OD 是△ABC 的中位线. ……………………3分 ∴OD //AC ,∴. …………………4分 ∴DE 是⊙O 的切线. ……………………………5分 (2)连接AD∵AB 是⊙O 的直径,∴. ………………6分∴. ………………8分 又∵AB =AC ,∴CD =BD =,. ……9分 ∴……………………………10分26、解:(1)体积:20×20×25=1000 cm 3 ………………2分(2)设线段AB :y=kx+b 代入A(10,20) B(35,45)得 y=x+10 …………………………6分(3) 解得答:注水速度v 为200 cm 3/s ,圆柱形水槽的底面积S 为600 cm 2 ……10分 27、解(1)抛物线解析式为: … …………3分 (2)A 的对称点B ,连结BC 交对称轴于D抛物线的对称轴为:直线x=1 … …………4分 求出直线BC 解析式 … …………6分 当x=1时,y=2∴D(1,2) … …………7分 (3)能 … …………8分当.∠ACD=90°时由相似求出点D (1, ) … …………9分 当.∠CAD=90°时由相似求出点D(1, ) … …… 10分当.∠CDA=90°时,设D (1,m ) 由相似得方程整理得 解得m=1或m=2∴D(1,2) 或 D(1,1) 综上所述,D(1, )、D(1, )、D(1,2) 或 D(1,1) … …… 12分28、解:(1)如图①R t △ABC 中,∠ACB=30°,AB= 2 ∴AC=90O D ED E C ∠=∠=90A D B ∠=c o s B D A B B =⋅=430C B ∠=∠=1232D E C D ==⎩⎨⎧-⋅-=-⋅⨯-=)2045()400()1035(20)2025(10S V S V ⎩⎨⎧==600200S V 322++-=x x y 3+-=x y 3832-231m m -=0232=+-m m 3832-6A C ´BDDB A ´A DBC (C ´)A (A ´)A ´C ´CC图④图③图②HHR t △A ´D C ´中,∠A ´C ´D=45°,AC=∴A ’D= … …………3分(2)如图②,α=∠A´C´A =45°-30°=15° ………………………………5分 (3)如图③,过点A 作AH ⊥BC .垂足为H .根据旋转可得:旋转角∠CA C´=∠BAH .易证:在Rt △ABC 中,∵AH ⊥BC ,∴∠C =∠BAH .∴∠CA C´=∠C =30°∴点C 走过路线长……………………………8分 (4)如图④,过点D 作DH ⊥AC ,垂足为H .由DH =12 A ´C ´=62,△DHC ∽△BAC ,可得C H =322.所以m 的值为322-62.…………………………………………………12分63ππ36618030=⋅⋅。

相关文档
最新文档