高考复习 力的合成与分解
力的合成与分解-高考物理复习

两物体的质量均为m=2 kg,重力加速度g取10 m/s2,
sin 55°≈0.82。根据所学的知识,不需计算,推理出
OA绳的拉力约为( B )
A.16 N
B.23 N
C.31 N
D.41 N
图9
目录
研透核心考点
解析 甲、乙两物体的质量均为m=2 kg,则OC绳的 拉力与OB绳的拉力均为20 N,这两个力的合力与OA绳 的拉力大小相等,方向相反。由几何关系可知OC绳的 拉力与OB绳的拉力夹角为110°,而夹角为120°大小 均为20 N的两个力的合力大小为20 N,所以OC绳的拉 力与OB绳的拉力的合力略比20 N大。由于OA绳的拉力 大小等于OC绳与OB绳拉力的合力,所以可推理出OA 绳的拉力约为23 N,故B正确。
目录
透核心考点
3.有一种瓜子破壳器其简化截面如图6所示,将瓜子放入两圆柱 体所夹的凹槽之间,按压瓜子即可破开瓜子壳。瓜子的剖面 可视作顶角为θ的扇形,将其竖直放入两完全相同的水平等高 圆柱体A、B之间,并用竖直向下的恒力F按压瓜子且保持静 止,若此时瓜子壳未破开,忽略瓜子重力,不考虑瓜子的形
状改变,不计摩擦,若保持A、B距离不变,则( B )
等效替代
合力
目录
夯实必备知识
目录
夯实必备知识
合力 合力
线段
线段
有向
目录
夯实必备知识
2.力的分解
分力 逆运算
平行四边形
垂直
目录
夯实必备知识
3.矢量和标量
方向 方向
平行四边形 算术
目录
夯实必备知识
1.思考判断
× (1)合力和分力可以同时作用在一个物体上。( ) (2)两个力的合力一定比其分力大。(× ) (3)当一个分力增大时,合力一定增大。( ×) √ (4)几个力的共同作用效果可以用一个力来替代。( ) (5)一个力只能分解为一对分力。(×) √ (6)两个大小恒定的力F1、F2的合力的大小随它们夹角的增大而减小。( ) √ (7)互成角度的两个力的合力与分力间一定构成封闭的三角形。( )
力的合成与分解复习

【答案】 见解析
2.如图所示,物体静止于光滑水平面上(图为俯视图),F作用于
物体O点,现要使物体的合力沿OO′方向(F和OO′都在水平面内)。 那么,必须同时再加一个力F′,那么这个力的最小值是( )
A.Fcos θ C.Ttan θ 【答案】 B
B.Fsin θ D .Fcot θ
作业1.已知三个力F1、F2、F3的合力为零,则这三个力
两种常用的分解方法
1.力的效果分解法
(1)根据力的实际 作用效果 确定两个实际分力的方向;
(2)再根据两个实际分力方向画出 平行四边形 ;
(3)最后由平行四边形和数学知识求出两分力的大小。
2.正交分解法 把一个力分解为互相 垂直 的两个分力,特别是物体受多个 力作用时,把物体受到的各力都分解到这两个方向上去,然 后分别求出每个方向上力的 代数和 。
G B.FA= tan θ D.FB=Gcos θ
【解题切点】 画出受力分析图,然后利用分解法或合成法求解。
2.如下图所示,物体O所受重力为100N,用一轻绳悬挂在水平
轻杆BC的C端,C点由细绳AC系在竖直墙上,B端用铰链固定。
已知∠ACB=30°,试求出轻绳AC和轻杆BC各受多大的作用 力。
规律总结:
【答案】 C
可能选取的数值为( A.15 N、10 N、6 N C.1 N、2 N、10 N ) B.3 N、6 N、4 N D .1 N、6 N、8 N
作业2.如右图所示,静止在斜面上的重物的重力可分解
为沿斜面方向向下的分力F1和垂直斜面方向的分力F2。关
于这两个分力,下列说法中正确的是( )
A.F1作用在物体上,F2作用在斜面上 B.F2的性质是弹力 C.F2就是物体对斜面的正压力
高考一轮复习 力的合成与分解

C.3 N和4 N
D.3 N和3.5 N
四、力的分解
1.概念:求一个力的 分力 的过程.力的分解与力的合 成互为 逆运算 .
平行四边形定则 或____________ 三角形法则 2.分解法则: __________________
一条对角线,可以作出无
3.分解的方法 (1)按力产生的效果进行分解. (2)按题目给出的要求分解. (3)力的正交分解法.
用表示两个共点力F1和F2的线段为邻边作平 行四边形,那么两邻边所夹的对角线即表示 合力 F 的大小和方向。
F1
F合
F2
三角形法则
两个分力首尾相接,从第一个分力的始端 指向第二个分力的末端的有向线段就表示 合力的大小和方向.
F1
F 注意:三角形的
三条边对应着三 个力的关系。
F2
三、力的合成
1.一条直线上的力的合成
斧 子
F1`
F
F2` F2 F
F1
F 2 sin
F1 F2
2
按题目的要求分解
(1)已知合力和两个分力的方向,力F的分解是唯一的。 (2)已知合力和一个分力的大小与方向,力F的分解也是唯一的。
(3)已知一个分力F1的方向和另一个分
力F2的大小,对力F进行分解,则有 三种可能(F1与F的夹角为θ)。 ①F2<Fsinθ时无解。 ②F2=Fsinθ或F2≥F时有一组解。 ③Fsinθ<F2<F时有两组解。
∑Fy=F1y+F2y+F3y+… (沿y轴负方向记为负值);
⑤正交分解的实质是求合力.
合力大小:F= ,
合力的方向与x轴夹角:θ=arctan
特别地,若物体处于平衡状态,合外力为零,
力的合成与分解高考复习讲解

一、力的合成
1.合力与分力.
如果一个力产生的效果和其他几个力同时作用产生的 效果 相同,那么这个力就叫做那几个力的 合力 , 那几个力就叫做这个力的 分力. 合力与分力是 等效替代 关系.
2.共点力. 多个力都作用在物体的 同一点,或者它们的延长线交 于 同一点,则这几个力称为共点力.
图1-2-15
解析:对球受力分析如图1-2-16所示,受重力G、墙对 球的支持力F′N1和板对球的支持力F′N2而平衡.作出F′N1 和F′N2的合力F,它与G等大反向.
当板BC逐渐放至水平的过程中,F′N1的方向不变,大 小逐渐减小,F′N2的方向发生变化,大小也逐渐减小;如图 所示,由牛顿第三定律可知:FN1=F′N1,FN2=F′N2,故选 项B正确.
例如:图1-2-5中所示三角架,在O点所挂重物的重力 可分解为如图1-2-6(a)所示的拉AO的力F1和压OB的力F2, F1、F2、G构成平行四边形,F1=G/sinα,F2=Gcotα.对O点及 重物整体受力分析如图1-2-6(b)所示,受重力G,AO对O点 的拉力F3,BO对O点的支持力F4.因三角架平衡,G、F3、F4三 个力合力为零,其中某个力必定与余下的两个力的合力等值 反向,如图F3、F4的合力与G等大反向,故F3=G/sinα,F4= Gcotα.
二、力的分解
1.力的分解:求一个力分的力 的过程,力的分解与力的合 成互为 逆运算.
2.遵从原则: 平行四边形定则.
3.矢量运算法则.
(1)平行四边形定则.
(2)三角形定则:把两个矢量的 首尾 顺次连接起来, 第一个矢量的首到第二个矢量的尾的有向线段 为合矢量.
特别提示:(1)合力不一大定于分力;
挡板A、B所受压力之比:FF1′1 =GGtsainnθθ=co1sθ, G
高中物理【力的合成和分解】复习课件

实例
分析
斜面上静止的物体的重力产生两个效果:一是使 物体具有沿斜面下滑的趋势,相当于分力F1的作 用;二是使物体压紧斜面,相当于分力F2的作用。 F1=mg sin α,F2=mg cos α(α为斜面倾角)
实例
分析
用斧头劈柴时,力F产生的作用效果为垂直于两
个侧面向外挤压接触面,相当于分力F1、F2的作
定点 3 | 有限制条件的力的分解 在力的平行四边形中,合力为平行四边形的对角线,合力一定时,对角线的大小、方向
就确定。 1.若已知合力和两个分力的方向,力的平行四边形是唯一的,有唯一解。
2.已知合力和一个分力的大小和方向时,力的平行四边形也是唯一的,有唯一解。
3.已知合力F以及一个分力F1的方向和另一个分力F2的大小,求F1的大小和F2的方向时,可以 合力F的箭头端为圆心、以表示分力F2大小的线段为半径作圆,用有向线段表示分力F1、 F2。分析如下: (1)若F与F1的夹角为θ(θ<90°),有下面几种可能: ①当F2<F sin θ时,无解,如图甲所示; ②F2=F sin θ时,有唯一解,如图乙所示; ③F sin θ<F2<F时,有两个解,如图丙所示; ④F2≥F时,有唯一解,如图丁所示。
力的合成和分解
必备知识 清单破
知识点 1 | 共点力、合力和分力 1.共点力:几个力如果都作用在物体的同一点,或者它们的作用线相交于一点,这几个力叫作 共点力。 2.合力和分力 (1)合力:假设一个力单独作用的效果跟某几个力共同作用的效果相同,这个力就叫作那几 个力的合力。 (2)分力:假设几个力共同作用的效果跟某个力单独作用的效果相同,这几个力就叫作那个 力的分力。
(5)多个共点力合成的方法:先求出任意两个力的合力,再求出这个合力跟第三个力的合力, 直到把所有的力都合成进去,最后得到的结果就是这些力的合力。 2.力的分解 (1)定义:求一个力的分力的过程叫作力的分解。 (2)分解法则:力的分解同样遵从平行四边形定则。把已知力F作为平行四边形的对角线,与 力F共点的平行四边形的两个邻边就表示力F的两个分力。 (3)常用分解方法:效果分解法和正交分解法。
第二章 第2讲 力的合成与分解-2025高三总复习 物理(新高考)

第2讲力的合成与分解[课标要求]1.了解力的合成与分解;知道矢量和标量。
2.会应用平行四边形定则或三角形定则求合力。
3.能利用效果分解法和正交分解法计算分力。
考点一力的合成1.合力与分力(1)定义:如果一个力单独作用的效果跟几个力共同作用的效果相同,这个力就叫作那几个力的合力,那几个力就叫作这个力的分力。
(2)关系:合力和分力是等效替代的关系。
2.共点力:作用在物体的同一点,或作用线的延长线交于一点的力。
3.力的合成(1)定义:求几个力的合力的过程。
(2)运算法则①平行四边形定则:求两个互成角度的力的合力,可以用表示这两个力的有向线段为邻边作平行四边形,这两个邻边之间的对角线就代表合力的大小和方向,如图甲所示。
②三角形定则:把两个矢量首尾相连,从而求出合矢量的方法,如图乙所示。
自主训练1两个力的合成及合力的范围如图为两个大小不变、夹角θ变化的力的合力的大小F与θ角之间的关系图像(0≤θ≤2π),下列说法中正确的是()A.合力大小的变化范围是0≤F≤14NB.合力大小的变化范围是2N≤F≤10NC.这两个分力的大小分别为6N和8ND .这两个分力的大小分别为2N 和8N 答案:C解析:由题图可知,当两力夹角为π时,两力的合力为2N ,而当两力夹角为π2时,两力的合力为10N ,则这两个力的大小分别为6N 、8N ,故C 正确,D 错误;当两个力方向相同时,合力大小等于这两个力的大小之和14N ;当两个力方向相反时,合力大小等于这两个力的大小之差2N ,由此可见,合力大小的变化范围是2N ≤F ≤14N ,故A 、B 错误。
自主训练2作图法求合力(2023·浙江嘉兴模拟)如图所示,某物体同时受到共面的三个共点力作用,坐标纸小方格边长的长度对应1N 大小的力。
甲、乙、丙、丁四种情况中,关于三个共点力的合力大小,下列说法正确的是()A .甲图最小B .乙图为8NC .丙图为5ND .丁图为1N答案:D解析:由题图可知,F 甲=2N ,方向竖直向上;F 乙=45N ,方向斜向右下;F 丙=25N ,方向斜向左上;F 丁=1N ,方向竖直向上;则题图丁的合力最小,为1N ,故选D 。
高考物理总复习力的合成与分解
分力大小分别为6 N、8 N,故C正确,D错误;当两个分力方向相同时,合力最大,
为14 N,当两个分力方向相反时,合力最小,为2 N,故合力大小的变化范围是2
N≤F≤14 N,A错误,B正确.
返回目录
第3讲
mgtan α ,F =
2
cos
.
(4)A、B两点位于同一水平面上,质量为m的物体被等长的a、b两线拉住,F1=F2
=
2sin
.
(5)质量为m的物体受细绳AO和轻杆OC(可绕C自由转动)的作用而静止,F1
=
mgtan α ,F =
2
cos
.
返回目录
第3讲
力的合成与分解
当你在单杠上做“引体向上”动作时,两臂的夹角越大,身体上升就越困难.请解
个力就叫作那几个力的[2]
合力
效果 跟某几个力共同作用的效果相同,这
,那几个力叫作这个力的[3] 分力
(2)关系:合力和分力在作用效果上是[4]
.
等效替代 关系.
返回目录
第3讲
力的合成与分解
2. 共点力
几个力如果都作用在物体的[5]
同一点 ,或者它们的作用线相交于一点,这几个
力叫作共点力.如图甲、乙、丙所示均是共点力.
[解析] 根据力的平行四边形是一个菱形的特点,由几何关系可知,合力的大小为F
=2F1 cos
1
4
60°=2×3×10 ×
2
N=3×104 N,方向沿两钢索拉力夹角的角平分线.
高考物理课程复习:力的合成和分解
考点二
力的分解的两种常用方法[自主探究]
1.力的分解的四种情况
(1)已知合力和两个分力的方向求两个分力的大小,有唯一解。
(2)已知合力和一个分力(大小、方向)求另一个分力(大小、方向),有唯一
解。
(3)已知合力和两分力的大小求两分力的方向
①F>F1+F2,无解;
②F=F1+F2,有唯一解,F1和F2跟F同向;
C.水平向右缓慢移动的过程中,细线的拉力减小
D.水平向左缓慢移动的过程中,细线的拉力减小
答案 D
解析 如图所示,开始时两个绳子是对称的,与竖
直方向夹角相等,左手不动,右手竖直向下或向
上缓慢移动的过程中,两手之间的水平距离L不
变,假设绳子的长度为x,则xsin θ=L,绳子一端在
上下移动的时候,绳子的长度不变,两杆之间的
渐分开双手。通过刻度尺读出细绳刚断时双手的距离为d,由此计算细绳
能承受的最大力,并说出计算依据。(动手做此实验时,请注意安全)
答案
2 2 - 2
解析 细线中间挂重物的点受力分析如图所示。两个力
的合力不变,始终等于mg,且夹角在逐渐变大,故两个力
逐渐变大。当绳子端点的距离为d来自,绳子断裂,两侧绳平面内的三个力同时作用于物体的同一点,三个力的大小分别为2 N、2 N、
3 N。下列关于物体的受力情况和运动情况判断正确的是(
)
A.物体所受静摩擦力可能为2 N
B.物体所受静摩擦力可能为4 N
C.物体可能仍保持静止
D.物体一定被拉动
答案 ABC
解析 两个2 N的力的合力范围为0~4 N,与3 N的力合成,则三力的合力范围
(8)力是矢量,相加时可以用算术加法直接求和。( × )
力的合成与分解高考物理中的重要考点
力的合成与分解高考物理中的重要考点力的合成与分解是高考物理中的重要考点力的合成与分解是物理学中一个基本的概念,也是高考物理中的重要考点之一。
理解和掌握这个概念对于解决与力有关的物理问题至关重要。
本文将深入探讨力的合成与分解的概念、原理以及应用,帮助读者全面理解和掌握这一知识点。
一、力的合成力的合成指的是将多个力合成为一个力的过程。
在力的合成中,我们需要了解两个重要的概念:力的大小和方向。
1. 力的大小在合成力的过程中,力的大小是通过矢量相加的方法来计算的。
如果有两个力P1和P2,它们的大小分别为F1和F2,方向分别为θ1和θ2,则合成力的大小可以使用以下公式计算:F = √(F1^2 + F2^2 + 2F1F2cos(θ1 - θ2))其中,F为合成力的大小。
2. 力的方向在合成力的过程中,力的方向是通过矢量相加的方法来确定的。
如果有两个力P1和P2,它们的大小分别为F1和F2,方向分别为θ1和θ2,则合成力的方向可以通过以下公式计算:tanα = (F2sinθ2 + F1sinθ1) /(F2cosθ2 + F1cosθ1)其中,α为合成力与水平方向的夹角。
二、力的分解力的分解是将一个力分解为几个力的过程。
在力的分解中,我们需要了解两个重要的概念:水平分力和垂直分力。
1. 水平分力当一个力斜向上施加在一个物体上时,可以将该力分解为水平方向上的力和垂直方向上的力。
水平分力的计算可以使用以下公式:Fh = Fcosθ其中,Fh为水平分力的大小,F为合成力的大小,θ为合成力与水平方向的夹角。
2. 垂直分力当一个力斜向上施加在一个物体上时,可以将该力分解为水平方向上的力和垂直方向上的力。
垂直分力的计算可以使用以下公式:Fv = Fsinθ其中,Fv为垂直分力的大小,F为合成力的大小,θ为合成力与水平方向的夹角。
三、力的合成与分解的应用力的合成与分解在物理学中有广泛的应用。
以下是力的合成与分解的一些具体应用:1. 航空航天在航空航天领域中,合成力的概念常常用于计算飞机的推力与阻力之间的平衡。
2024年高考物理总复习第一部分知识点梳理第二章相互作用第3讲力的合成与分解
第3讲 力的合成与分解整合教材·夯实必备知识一、力的合成(必修一第三章第4节) 1.合力与分力2.力的合成定义求几个力的合力的过程运算法则平行四边形定则用表示这两个分力的有向线段为邻边作平行四边形,这两个邻边之间的对角线就表示合力的大小和方向。
三角 形定则 把两个矢量的首尾顺次连接起来,第一个矢量的起点到第二个矢量的终点的有向线段为合矢量。
二、力的分解(必修一第三章第4节)1.力的分解是力的合成的逆运算,遵循的法则:平行四边形定则或三角形定则。
2.分解方法(1)按力产生的效果分解;(2)正交分解法。
【质疑辨析】角度1合力与分力(1)合力和分力可以同时作用在一个物体上。
(×)(2)几个力的共同作用效果可以用一个力来替代。
(√)角度2平行四边形定则(3)两个力的合力一定比分力大。
(×)(4)当一个分力增大时,合力一定增大。
(×)(5)一个力只能分解为一对分力。
(×)(6)两个大小恒定的力F1、F2的合力的大小随它们夹角的增大而减小。
(√)(7)互成角度的两个力的合力与分力间一定构成封闭的三角形。
(√)精研考点·提升关键能力考点一共点力的合成(核心共研)【核心要点】1.求合力的方法作图法作出力的图示,结合平行四边形定则,用刻度尺量出表示合力的线段的长度,再结合标度算出合力大小计算法根据平行四边形定则作出力的示意图,然后利用勾股定理、三角函数、正弦定理等求出合力2.合力范围的确定(1)两个共点力的合力大小的范围:|F1-F2|≤F≤F1+F2。
①两个力的大小不变时,其合力随夹角的增大而减小。
②当两个力反向时,合力最小,为|F1-F2|;当两个力同向时,合力最大,为F1+F2。
(2)三个共点力的合力大小的范围①最大值:三个力同向时,其合力最大,为F max=F1+F2+F3。
②最小值:若任意两个力的大小之和大于或等于第三力,则三个力的合力最小值为零,否则合力最小值等于最大的力减去另外两个力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考复习力的合成与分解【题文】(理综卷·2015届广东省广州市第六中学高三上学期第一次质量检测(2014.09))15.如图所示,某人静躺在椅子上,椅子的靠背与水平面之间有固定倾斜角θ。
若此人所受重力为G,则椅子对他的作用力大小为A.GB.G sinθC.G cosθD.G tanθ【知识点】力的合成.B3 B4【答案解析】 A 解析:人受多个力处于平衡状态,人受力可以看成两部分,一部分是重力,另一部分是椅子各部分对他的作用力的合力.根据平衡条件得椅子各部分对他的作用力的合力与重力等值,反向,即大小是G.故选:A.【思路点拨】人受多个力处于平衡状态,合力为零.人受力可以看成两部分,一部分是重力,另一部分是椅子各部分对他的作用力的合力.根据平衡条件求解.通过受力分析和共点力平衡条件求解,注意矢量叠加原理.【题文】(理综卷·2015届广东省广州市第六中学高三上学期第一次质量检测(2014.09))20.在粗糙水平地面上放着一个截面为半圆的柱状物体A,A与竖直墙之间放一光滑半圆球B,整个装置处于平衡状态.已知A、B两物体的质量分别为M和m,则下列说法正确的是A.A物体对地面的压力大小为MgB.A物体对地面的压力大小为(M+m)gC.B物体对A物体的压力小于MgD.A物体对地面的摩擦力可能大于Mg【知识点】共点力平衡的条件及其应用;力的合成与分解的运用.B3 B4 B7【答案解析】 BD 解析:对B物体受力如右上图,根据合力等于0,运用合成法得,墙壁对B的弹力N1=mgtanα,A对B的弹力N2则B物体对A的压力大于mg.对整体分析得,地面的支持力N3=(M+m)g,摩擦力f=N1=mgtanα<mg.因为m和M的质量大小未知,所以A物体对地面的摩擦力可能大于Mg.故A、C错误,B、D正确.故选BD.【思路点拨】隔离对B分析,根据合力为零,求出A对B的弹力,墙壁对B的弹力,再对整体分析,求出地面的支持力和摩擦力.解决本题的关键能够合适地选择研究对象,正确地进行受力分析,抓住合力为零,运用共点力平衡知识求解.【题文】(理综卷·2015届广东省广州市第六中学高三上学期第一次质量检测(2014.09))21.右下图是给墙壁粉刷涂料用的“涂料滚”的示意图.使用时,用撑竿推着粘有涂料的涂料滚沿墙壁上下缓缓滚动,把涂料均匀地粉刷到墙上.撑竿的重量和墙壁的摩擦均不计,而且撑竿足够长,粉刷工人站在离墙壁一定距离处缓缓上推涂料滚,关于该过程中撑竿对涂料滚的推力F1,涂料滚对墙壁的压力F2,以下说法中正确的是A.F1增大B.F1减小C.F2增大D.F2减小【知识点】共点力平衡的条件及其应用.B3 B4【答案解析】BD 解析:以涂料滚为研究对象,分析受力情况,作出力图.设撑轩与墙壁间的夹角为α,根据平衡条件得:F12=Gtanα由题,撑轩与墙壁间的夹角α减小,cosα增大,tanα减小,则 F1、F2均减小.故选:BD.【思路点拨】以涂料滚为研究对象,分析受力情况,作出力图,根据平衡条件得到竿对涂料滚的推力为F1和墙壁对涂料滚的弹力的表达式,再分析两个力的变化.本题是动态平衡问题,采用函数法分析的,也可以采用图解法更直观反映出两个力的变化情况.【题文】(理综卷·2015届宁夏银川一中高三上学期第一次月考(2014.08))18.三个共点力大小分别是F1、F2、F3,关于它们的合力F的大小,下列说法中正确的是( )A.F大小的取值范围一定是0≤F≤F1+F2+F3B.F至少比F1、F2、F3中的某一个大C.若F1∶F2∶F3=3∶6∶8,只要适当调整它们之间的夹角,一定能使合力为零D.若F1∶F2∶F3=3∶6∶2,只要适当调整它们之间的夹角,一定能使合力为零【知识点】力的合成.B3【答案解析】 C 解析:A、三个力的合力最小值不一定为零,三个力最大值等于三个力之和.故A错误.B、合力可能比三个力都大,也可能比三个力都小.故B错误.C、若F1:F2:F3=3:6:8,设F1=3F,则F2=6F,F3=8F,F1、F2的合力范围为[3F,9F],8F在合力范围之内,三个力的合力能为零.故C正确.D、若F1:F2:F3=3:6:2,设F1=3F,则F2=6F,F3=2F,F1、F2的合力范围为[3F,9F],2F 不在合力范围之内,三个力的合力不可能为零.故D错误.故选C.【思路点拨】当三个力的方向相同时,合力最大,三个力的合力不一定为零,当第三个力不在剩余两个力的合力范围内,合力不能为零.解决本题的关键掌握两个力的合力范围,从而会通过两个力的合力范围求三个力的合力范围.【题文】(理综卷·2015届宁夏银川一中高三上学期第一次月考(2014.08))19.如图所示装置,两物体质量分别为m1,m2,不计一切摩擦、滑轮质量和滑轮的直径,若装置处于静止状态,则A.m1可以大于m2B.m1一定大于m2/2C.m2可能等于m1/2D.θ1一定等于θ2【知识点】共点力平衡的条件及其应用;力的合成与分解的运用.B3 B7【答案解析】AD 解析:对m2分析可知,m2受拉力及本身的重力平衡,故绳子的拉力等于m2g;对滑轮分析,由于滑轮跨在绳子上,故两端绳子的拉力相等,它们的合力一定在角平分线上;由于它们的合力与m1的重力大小相等,方向相反,故合力竖直向上,故两边的绳子与竖直方向的夹角θ1和θ2相等;故D正确;由以上可知,两端绳子的拉力等于m2g,而它们的合力等于m1g,因互成角度的两分力与合力组成三角形,故可知2m2g>m1g,故m2m1,故A正确,B错误故选:AD.【思路点拨】对m2分析可知绳子的拉力大小,对滑轮分析,由于滑轮放在一根绳子上,绳子两端的张力相等,故可知两绳子和竖直方向上的夹角相等,由共点力的平衡关系可得出两质量的关系.本题要注意题目中隐含的信息,记住同一绳子各部分的张力相等,即可由几何关系得出夹角的关系;同时还要注意应用力的合成的一些结论.【题文】(理综卷·2015届宁夏银川一中高三上学期第一次月考(2014.08))21.如图所示为位于水平面上的小车,固定在小车上的支架的斜杆与竖直杆的夹角为θ,在斜杆的下端固定有质量为m的小球。
下列关于杆对球的作用力F的判断中,正确的是A.小车静止时,F=mg sin θ,方向沿杆向上B .小车静止时,F =mg cos θ,方向垂直于杆向上C .小车向右匀速运动时,一定有F =mg ,方向竖直向上D .小车向右匀加速运动时,一定有F >mg ,方向可能沿杆向上【知识点】牛顿第二定律;力的合成与分解的运用.B3 C2 C5【答案解析】 CD 解析:A 、B 、小球受竖直向下的重力mg 与杆对小球的力F 作用;当小车静止时,小球也静止,小球处于平衡状态,受平衡力作用,杆的作用力F 与重力是一对平衡力,由平衡条件得:F=mg ,方向竖直向上.故A 、B 错误.C 、小车向右做匀速运动时,受力平衡,一定有F=mg ,方向竖直向上,故C 正确;D 、小车向右加速运动时,小球受力不平衡,小球受到的合力向右,F >mg ,方向可能沿杆向上,故D 正确;故选CD .【思路点拨】结合小车的运动状态对小车进行受力分析,确定杆对小球的作用力.本题中轻杆与轻绳的模型不同,绳子对物体只有拉力,一定沿绳子方向,而杆子对物体的弹力不一定沿杆子方向,要根据状态,由牛顿定律分析确定.【题文】(物理卷·2015届安徽省六校教育研究会高三第一次联考试卷(2014.08))6.如图所示,重物A 被绕过小滑轮P 的细线所悬挂,小滑轮P 被一根细线系于天花板上的O 点。
B 放在粗糙的水平桌面上,O '是三根线的结点,bO '水平拉着B 物体,aO '、bO '与cO '夹角如图所示。
细线、小滑轮的重力和细线与滑轮间的摩擦力均可忽略,整个装置处于静止状态。
若悬挂小滑轮的细线OP 的张力是,则下列说法中错误的是(210m/s g =)( )A .重物A 的质量为2kgB .桌面对BC .重物C 的质量为1kgD .OP 与竖直方向的夹角为60【知识点】共点力平衡的条件及其应用;物体的弹性和弹力.B3 B4 B7【答案解析】 D 解析:设悬挂小滑轮的斜线中的拉力与O′a 绳的拉力分别为T 1和T ,则有:2Tcos30°=T 1得:T=20N .重物A 的质量m A ,故A 正确;结点O′为研究对象,受力如图,根据平衡条件得,弹簧的弹力为:F1=Tcos60°=10N.m c g=10N m c=1kg,故C正确;根据平衡条件桌面对B物体的摩擦力与O′b的拉力相等,即:F2N,故B正确.D、由于动滑轮两侧绳子的拉力大小相等,根据对称性可知,细线OP与竖直方向的夹角为30°.故D错误.题目要求选错误的,故选:D.【思路点拨】根据悬挂小滑轮的斜线中的拉力与O′a绳的拉力关系,求出O′a绳的拉力.以结点O′为研究对象,分析受力,根据平衡条件求出弹簧的弹力和绳O′b的拉力.重物A的重力大小等于O′a绳的拉力大小.再根据物体B平衡求出桌面对物体B的摩擦力.本题涉及滑轮和结点平衡问题.根据动滑轮不省力的特点,确定细线OP与竖直方向的夹角是关键.【题文】(物理卷·2015届广西桂林十八中高三上学期第一次月考(2014.09))1.如图所示为节日里悬挂灯笼的一种方式,A、B点等高,O为结点,轻绳AO、BO长度相等,拉力分别为F A、F B,灯笼受到的重力为G.下列表述正确的是A.F A一定小于G B.F A与F B大小相等C.F A与F B是一对平衡力D.F A与F B大小之和等于G【知识点】共点力平衡的条件及其应用;力的合成与分解的运用.B3 B4 B7【答案解析】B 解析:设∠AOB=2θ,O点受到F A、F B、F三力作用,根据平衡条件得知:F A与F B合力与重力G大小相等,方向相反,所以此合力的方向竖直向上.建立如图所示的坐标系,列平衡方程得:F A sinθ=F B sinθF A cosθ+F B cosθ=G解出:F A=F B当θ=60°时,F A=F B=G;当θ<60°时,F A=F B<G;当θ>60°时,F A=F B>G;则可知F A不一定小于G;两力可能与G相等,两力的大小之和大于G;故选:B.【思路点拨】以O点为研究对象作出受力分析图,根据平衡条件,由正交分解法列方程,由几何关系可得出各力间的关系.本题中由于两力的夹角不确定,要注意讨论分析,本解法采用了正交分解法,也可以运用合成法或分解法列方程分析.【题文】(物理卷·2015届广西桂林十八中高三上学期第一次月考(2014.09))8.一物体位于光滑水平面上,同时受到三个水平共点力F1、F2和F3作用,其大小分别为F1=42N、F2=28N、F3=20N,且F2的方向指向正北,下列说法正确的是A.这三个力的合力可能为零;B.F1、F2两个力的合力大小可能为20N;C .若物体处于匀速直线运动状态,则F 1、F 3的合力大小为48N ,方向指向正南;D .若物体处于静止状态,则F 1、F 3的合力大小一定为28N ,方向指向正南。