压力、温度补偿公式
气体温压补偿方法介绍

SATSTEAM输入参数:
参数数据类型含义
P FLOAT 是在标准大气压下所测得的相对压力,单位为 KPa,其
范围为 0~15898.6777KPa
X SFLOAT 表示测量蒸气流量,为无因次量,数值范围为 0~100%
度为 TI-101:0~600℃,流量为 FI-101(已在变送器上进行开方处理),补偿后
的流量为自定义半浮点数 FI_101,计算方法如下:
1)经EXHSTEAM过热蒸汽计算器得出设计密度为13.92817951832Kg/m3;
2)图形化编程示例如下:
2.2饱和蒸汽:
5
flow0 SFLOAT 表示测量蒸气流量,为无因次量,数值范围为 0~100%
density0 FLOAT 蒸气设计密度,单位为 kg/m3
flow SFLOAT 补偿后的无因次化值
enthalpy FLOAT 表示当前蒸气的焓值,单位为 kJ/kg
注:1)flow0为实测流量信号;若现场信号未开方,需将该信号开方后再输入模块;
98.6777~15898.6777 Kpa。
EXHSTEAM输入参数:
参数数据类型含义
press FLOAT 标准大气压下所测得的相对压力,单位为 KPa,其范围为
98.6777~15898.6777 KPa
temper FLOAT 表示实际温度,单位为摄氏度,范围为 140℃~560℃
DV FLOAT 设计比容,单位为 cm3/g
Y SFLOAT 补偿后的流量,为无因次量,数值范围为 0~100%
注:1)FLOW为未开方的差压输入信号;若现场信号已开方,需将该信号平方后再输入模块;
流量计示值修正(补偿)

流量计示值修正(补偿)公式我公司能源计量的流量计示值单位规定为20℃,101.325kPa标准状态的流量,如设计选型使用了不同流量计示值单位,则根据设计的流量单位(质量流量kg/h、0℃,101.325kPa及20℃,101.325kPa标准状态或工作状态)选用对应的温度、压力修正(补偿)公式;不同测量原理的流量计,应根据其流量计流量方程(公式)选用对应的温度、压力修正(补偿)公式。
1. 气体流量测量的温度、压力修正(补偿)公式:1.1 差压式流量计的温度、压力修正(补偿)实用公式:一般气体体积流量(标准状态20℃,101.325kPa),根据差压式流量计流量方程,可得干气体在标准状态(20℃,101.325kPa)的积流流量: )()()()(15.273T325.101p15.273T325.101pqqvN vN(1)式中:q'vN——标准状态下气体实际体积流量;qvN——标准状态下气体设计体积流量;p' ——气体实际压力,kPa;p ——气体设计压力,kPa;T'——气体实际温度,℃;T ——气体设计温度,20℃。
1.2 一般气体质量流量的温度、压力修正(补偿)公式:TpTpqqm m(2)式中:q'vN——标准状态下气体实际体积流量;qvN——标准状态下气体设计体积流量;p' ——气体实际压力,绝对压力;p ——气体设计压力,绝对压力;T'——气体实际温度,绝对温度;T ——气体设计温度,绝对温度。
1.3 蒸汽的温度、压力修正(补偿)公式:根据差压式流量计流量方程,可得蒸汽的质量流量:(3)式中:q'm——蒸汽实际质量流量;qm——蒸汽设计质量流量;ρ' ——蒸汽实测时密度;ρ ——蒸汽设计时密度;依据水和水蒸汽热力性质IAPWS-IF97公式其密度计算模型,工业常用范围内水蒸汽的密度为:) (1000 1 0iJ1 Ii431 ii50In)(.T5401MPap式中:,ρ 为水蒸汽密度;P 为压力, MPa ;v 为比体积,m3/ kg;T为温度,K;R为水物质气体常数,0. 461526kJ∙kg-1 ∙K-1;ni、Ii、Ji为公式系数见“表1”。
蒸汽流量测量的温度、压力补偿原理与DCS算法

据以曲线 、表格的形式提供给节流件设计人员 。
节流件的具体型式可以是各种各样 ,但不管哪一
种它的流量系数 α0都必须由实验数值确定 。根据对 以往实验数据的分析 ,总结了一批按一定的形状与要
求进行设计 、加工 、安装的节流件 ,可以保证其流量系
数的误差在一定的范围内 ,因此它们的数 值可以通
用 ,而不必个别加以试验确定 ,经过有关机构确认的
的差别 ,流体实际工况越接近节流件设计工况 ,那么
流量测量越准确。进行温度 、压力补偿可以有效地减
小由于实际工况偏离设计工况而造成的系统误差 。
3 DCS中过热蒸汽流量测量温度 、压力补偿的算法
在 DCS中 ,实现过热蒸汽流量测量的温度 、压力
补偿实质上就是将以上计算过程用计算机程序予以
实现 。由于 DCS厂商众多 ,不同厂商的 DCS提供给
算工况密度 ρ2 。 密度表仅给出部分点的数值 ,必须经过线性拟合
计算工况密度 ,密度表分度越细 ,拟合精度越高 。
a) 线 性 拟 合计 算 压 力 为 4. 375 M Pa 温 度 为
450℃的密度 :
(4. 375 - 4. 0 ) ( 14. 150 7 - 12. 50 8 7 ) / ( 4. 5 -
况下的密度得出的 ; 补偿后的流量是以蒸汽在实际工 况下的密度得出的 。可以进行以下推导得出蒸汽流
量测量的密度补偿公式 :
设 :蒸汽在节流件设计工况下的密度为 1 , 蒸汽在实际工况下的密度 2 , 未补偿的流量为 q1 , 补偿后的流量为 q2 。
将 1 、2 代入式 7 并相比得出 :
q2 = 2
当为过热蒸汽在设计工况下的流量 ,也就是未补偿的
流量 。
差压式流量计计算公式和密度补偿公式

差压式流量计(A B对称,孔板)D C S计算公式
式中,
P
∆为差压值,单位为Pa
ρ为工况密度,单位为
K计算方法如下:
气体温压补偿公式
注:(以下为密度补偿,也可用DCS自带密度补偿公式)
ρ
—工作状态下气体密度
为密度补偿公式
:工况密度;
:绝对温标273.15℃;
:工业标准大气压101.33Pa;
:温度补偿;
:压力补偿;
:仪表工作点大气压;
过热蒸汽密度补偿公式
①当压力p为980~14700KPa,温度t为400℃~500℃时,过热蒸汽的密度为:
②当压力p为580~2000KPa,温度t为250℃~400℃时,过热蒸汽的密度为:
③当压力p为580~1500KPa,温度t为160℃~250℃时,过热蒸汽的密度为:
④当压力p为980~14700KPa,温度t为120℃~600℃时,过热蒸汽的密度为:
在以上四个公式中,④适用的压力、温度范围比较宽的工况。
应当说明的是,对于以上几种密度的拟合公式,在过热程度较高时,误差较小,一般可优于士0.5%。
随着过热度降低,误差会逐渐增大,在过热线附近,误差可能超过士1%。
具体使用时,可根据现场提供的工作条件进行修正。
水的密度补偿公式
表压P(Mpa)下水的密度
式中p—工作压力,Mpa;
t—工作温度,℃;
—纯水在绝对压力为101325Pa,t(℃)下的密度,kg/。
在DCS中实现流量计量的温度压力补偿

在DCS中实现流量计量的温度压力补偿天津石化公司化纤厂200kt/a PET纺丝装置的自动控制系统采用Honeywell公司的TPS系统实现。
公用工程系统的流量计量是在DCS中组态完成的,但在DCS中实现流量计量时仅采用对瞬时流量累计的方法,忽视了温度、压力波动所带来的偏差。
在一般情况下流体工况稳定(温度,压力参数基本稳定)的流量计量系统中,由于工况波动所产生的误差是在一个允许的范围内。
在聚酯短丝的生产过程中蒸汽等介质的温度、压力波动极大,这是由于短丝的生产性质决定的。
在短丝的生产过程中蒸汽用量随时都可能大范围波动,从停车到小负荷到满负荷运转经常变化。
另外,由于管线长压力损失也很大,以致压力达不到设计要求,经常发生压力下限报警。
如果压力降低得很多或蒸发前湿度较低,则因水滴蒸发而使温度降低后仍高于新的压力所对应的饱和温度,则蒸汽变为过热状态[1],而设计条件为饱和蒸汽。
此外,现蒸汽流量的测量单位是质量流量单位;气体流量的计量单位是体积流量单位,而由孔板或涡街测量的均为体积流量,要实现质量流量的计量需进行温度、压力的补偿。
由于以上原因,流量计量时仅采用对瞬时流量累计的方法,忽视了温度、压力波动所带来的偏差,这对压力变化比较大的工况是不适宜的。
解决的办法就是在测量中引入温度和压力补偿的方法来实现实时的流量温压补偿,将体积流量转变为质量流量。
1 温度压力补偿及基本公式在Honeywell的DCS中有专用的Flowcomp模块进行流量补偿。
此模块可用于补偿温度、压力、比密度或分子量变化的流量测量。
被测介质可以是气体,蒸汽和液体。
原理如图1所示。
注:简化等式PVCALC=F*Compterm,F—未补偿的流量;Compterm有5种形式—A 液体,B 气体,蒸汽 C 气体、蒸汽(特定引力),D 气体、蒸汽的体积流量,E 蒸汽FLOWCOMP模块的使用取决于Compterm的形式选择。
补偿输入端引自各变量的PV输入端。
气体流量测量的温度与压力补偿

(2)
式中,带下标“n”的参数为标准状态下的值。由此可得到流量在两种状态(标 准状态和工作状态)下的转换式:
将式(1)代入式(3)得:
(3)
而仪表的刻度是按设计工况设置的,即:
(4)
(5) 式(4)、式(5)相除即可得到当工况偏离设计值时密度的补偿公式:
大部分气体,可近似地视为理想气体,其密度可用经过补正的理想气体状态 方程来表示。有的气体,如水蒸气,即有别于理想气体,其密度不宜简单地用理 想气体状态方程来表示。气体又有干、湿之分,对于湿气体,其密度除了与温度、 压力有关外,还与湿度有关。近年来,不断涌现的微机化仪表,使气体流量测量 的温压补偿变得简便而精确,从而提高了测量精度。
模型有多种形式,下面列出两种常用的数学模型形式,谨供参考。 对于干饱和水蒸气,有: ρ=a+bP (13) 对于过热水蒸气,有:
(14) 上述数学模型的诸常数:a,b 与 A,B,C,D 的求法,可参考文献[4,5]。将 上述数学模型代入式(12)即可得到水蒸气的温压补偿公式。
近年来,有些微机化流量计内部芯片存有水蒸气密度表,可实现精确测量, 还可将质量流量转换成热流量,以便对能源进行更有效的管理。
2 湿气体流量测量的温压补偿
湿气体与干气体的不同点是,其密度除了与温度、压力有关外,还与湿度有 关。虽然湿度对测量的影响与温压比较相对较小,但与仪表的精度比,即不可忽 略。湿气体的密度可用下式表示:
(9)
式中:0.804 为温度 0℃,一个标准大气压下,水蒸气的密度,kg/m3;ρ0、T0、 Pn 分别表示气体在 0℃,一个标准大气压下的密度、绝对温度、绝对压力;F 为 气体的绝对湿度,kg/m3;Z 为气体压缩系数。
蒸汽温度压力补偿
温度压力标方体积以及质量补偿公式为:
Q=G*{P(273.15+20)/〔P0* (273.15+T)〕}
Q:标况流量(单位Nm3/h);P:流体的绝对压力
P0:大气压力T:流体温度(单位℃)
G: 工况体积流量(单位m3/h)
工况体积流量计算方法:
G=V*(I-4mA)/(20mA-4mA)
V:流量仪表输出20mA原始信号对应工况体积流量
I:流量仪表现场输出的电流信号(单位mA)
一般系统设置“流量仪表输出20mA原始信号对应工况体积流量”后通过现场采集到的流量计的流量信号(电流),现场温度传感器测量到的温度信号,现场压力仪表测量到的压力信号,在系统内部编译公式:Q=G*{P(273.15+20)/[P0* (273.15+T)]}进行准确计量。
在此如果计算质量流量M,可用公式M=Q* ƍ标其中Q:标况流量(单位Nm3/h), ƍ标为标况密度
蒸汽温度压力密度补偿(过热):
ƍ=10.1972*P/[1.346*(10-4)*P*T+4.71*(10-3)*T-0.0989*P+1.256]
ƍ为蒸汽密度(单位kg/m3); P为蒸汽的绝对压力(单位MPa)T为蒸汽温度(单位℃)
蒸汽压力密度补偿(饱和):
ƍ=0.7608+4.9264*p
ƍ为蒸汽密度(单位kg/m3); P为蒸汽的相对压力(单位MPa)。
压力温度补偿公式
压力温度补偿公式压力和温度是物质状态的两个重要参数,它们之间的关系对于很多工业和实验过程都具有非常重要的意义。
然而,在不同的温度下测量的压力值往往会存在一定的偏差,这就需要进行压力的温度补偿。
压力温度补偿是指根据被测压力和温度之间的关系进行修正,使得经过补偿后的压力数据更加准确和可靠。
压力温度补偿公式是用来计算压力补偿值的数学表达式,其具体形式由测量系统和被测介质的特性决定。
在许多情况下,常见的压力温度补偿公式为:Pc=Po*(1+α*(Tc-To))其中,Pc为补偿后的压力值,Po为实测压力值,Tc为被测温度值,To为参考温度值,α为补偿系数。
这个公式的基本思想是通过温度对压力的影响进行修正。
在实际测量中,如果温度高于参考温度,则修正值为正,如果温度低于参考温度,则修正值为负。
补偿系数α是一个重要的参数,需要根据被测系统的特点进行确定。
通常情况下,α是根据实验数据拟合得到的一组系数。
这组系数可以通过实验室标定或者由厂家提供。
压力温度补偿公式是基于热力学原理和观测到的实验数据得出的。
热力学原理告诉我们,当物体被加热时,其分子的平均运动速度增加,从而引起分子之间的碰撞频率增加。
这会导致物体的内部压强增加,从而使压力值增加。
所以,温度增加会引起压力值的增加。
另外,温度对于被测介质的密度也有影响。
当物体的温度升高时,其分子的平均间距增加,导致物体的密度减小。
根据牛顿第二定律(F = ma),物体的质量保持不变,而体积变大,所以密度减小会导致压力值的降低。
根据这些原理和观测到的实验数据,我们可以归纳出压力温度补偿公式。
通过测量温度和压力,并使用补偿系数进行修正,我们可以得到更加准确和可靠的压力数据。
需要注意的是,压力温度补偿公式适用于一定范围内的温度变化。
当温度变化超过补偿公式的可靠范围时,需要重新进行标定和修正。
总之,压力温度补偿公式是一种根据温度对压力的影响进行修正的数学表达式。
通过测量温度和压力,并使用补偿系数进行计算,可以得到更加准确和可靠的压力数据。
温压补正
公式:实际流量=P3*SQRT(C1/(273+P2)*(P1+101)/C2) 参数: C1:设计温度(K) C2:设计压力(KPa) P1:实际压力(Kpa) P2:实际温度(℃) P3:未补偿前流量实际上不同厂家,温压补偿公式可能也有差别由差压信号换算流量时,是跟流体密度有关的 Q=K*SQRT(ΔP/ρ),(K是一个综合的系数)四楼的意思是说根据设计时的温度、压力下的差压-流量换算公式,采用理想气体状态方程来计算流体密度,就是那个PV=nRT,这样的方法只能应用于那种可以当作理想气体的流体,比如氮气、氧气等,而水蒸气因为不能当作理想气体,同时水蒸气性质有很多试验数据,所以水蒸气的温压补偿有另外的算式。
另外上面说的补偿只针对气体,对液体显然要另外想办法,但是原则都是计算工况下的流体密度。
根据热力学方程P0V0/T0=P1V1/T1进行温压补偿,V0=P1V1T0/T1P0,单位统一后:V0=(P1*1000+101)*V1(T0+273)/(T1+273)(P0+101)可是有的资料上介绍F0=F1*SQRT{((P1*1000+101)*(T0+273)/[(T1+273)(P0*1000+101)]} 请教这里的开方是如何推倒出来的?对于蒸汽流量,其质量流量M=k*SQRT(ΔP*ρ) (1)k-常数;ΔP-孔板两侧差压值;ρ为蒸汽密度。
如果在孔板上只装有差压变送器,则密度ρ取管道中温度和压力变化范围内某一固定点上的密度ρ0,这样一来流量公式就变为M=k*SQRT(ΔP*ρ0)=K*SQRT(ΔP) (2)式中K=k*SQRT(ρ0)。
显然,由于密度取为固定值,因而当蒸汽的温度和压力波动引起密度变化时,必然会引起测量误差。
假如在管道上再装一个压力变送器和一个温度变送器,在测取差压信号的同时,测取管道内的压力和温度信号。
这样,假设原设计工作温度和压力分别为T0和P0,相应密度ρ0,现在实际工作温度和压力分别为T1和P1,密度为ρ1。
温压补偿计算公式
温压补偿计算公式(未知) 2007-10-28 1:01:00 公式:流量F=P3*SQRT(C1/(273+P2)*(P1+101)/C2)参数:C1:设计温度(K)C2:设计压力(KPa)P1:实际压力(Kpa)P2:实际温度(℃)P3:未补偿前流量三、燃烧控制原理及实现策略(1)温压补偿在气体流量控制中,由于气体所处的温度、压力不同,需要进行温压补偿。
计算公式如下:SQR[INT(A/B)*INT(C/D)空气流量温压补偿设K1,参数如下:A——AI1.11(空气压力)+1.02*10^4;B——1.02*10^4+8.5*10^2;C——(2.72+4.00)*10^2;D——AI5.1(燃烧空气冷却水温度)+2.73*10^2;按公式计算出的数值K1传入AOC149中,各空气流量变送器的实测数值乘以此稳压补偿后,再参与计算和控制。
煤气流量稳压补偿K2,参数如下:A——AI1.16(煤气压力)+1.02*10^4;B——1.02*10^4+6.5*10^2;C——(2.73+3.00)*10^2;D——AI5.9(废气温度)+2.73*10^2;计算出的数值K2传入AOC150中,各煤气流量变送器的实际测量值乘以该稳压补偿系数后,再参与计算和控制。
四在气体流量控制中,由于气体所处的温度、压力不同,需进行温压补偿。
在本加热炉燃烧控制中,空气流量温压补偿设为K1计算公式如下:按式(1)计算出的数值K1放在AOC149中,各空气流量变送器测的实际数值乘以此稳压补偿,在参与计算与控制。
煤气流量温压补偿设为K2,按式(2)计算出的数值K2放在AOC150中,各煤气流量变送器测的实际数值乘以此稳压补偿,在参与计算与控制。