压力容器设计要点
压力容器方案

压力容器方案1. 引言压力容器是一种用于存储和传输高压气体或液体的设备,广泛应用于化工、石油、制药、食品等多个行业。
在设计和选择压力容器方案时,需要考虑多个因素,包括工作条件、安全性能、材料选择等。
本文将介绍压力容器方案的一般设计原则和注意事项。
2. 压力容器设计原则2.1 工作条件分析在设计压力容器方案之前,首先需要对工作条件进行充分的分析和了解。
这包括工作压力、工作温度、介质特性等因素。
根据工作条件的不同,可以选择不同材料、结构和制造工艺来满足需要。
2.2 安全性能考虑在设计压力容器方案时,安全性是一个非常重要的考虑因素。
设计师需要根据设计压力和材料的物理和力学性质,确定合适的壁厚和结构。
此外,还需要考虑压力容器在运行过程中的安全阀、泄压装置等安全措施,以保证压力容器在超过设计压力时能够安全排放压力。
2.3 材料选择材料选择是压力容器设计中的关键环节。
一般来说,常见的材料有碳钢、不锈钢、合金钢等。
在选择材料时,需要考虑材料的强度、耐腐蚀性、耐高温性等因素。
根据具体的工作条件和介质特性,选择合适的材料能够提高压力容器的使用寿命和安全性能。
3. 压力容器方案的设计步骤3.1 确定工作条件根据压力容器的用途和工作环境,确定工作压力、工作温度等工作条件。
这些条件将直接影响到压力容器的设计和材料选择。
3.2 选择适当的材料根据工作条件和介质特性,选择适当的材料。
考虑到强度、耐腐蚀性、耐高温性等因素,选择合适的材料能够增强压力容器的安全性能和使用寿命。
3.3 计算压力容器的壁厚根据工作压力、材料的物理和力学性质,计算压力容器的最小壁厚。
这一步骤非常重要,壁厚的选择不当可能导致压力容器的破裂和事故发生。
3.4 设计容器结构根据压力容器的用途和工作条件,设计容器的结构。
常见的结构包括圆筒形、球形、椭圆形等。
同时,还需要考虑容器的支撑结构、密封设计等因素。
3.5 安全措施设计设计并安装压力容器的安全措施,包括安全阀、泄压装置、压力表等。
压力容器设计思路及相关知识

压力容器设计思路及相关知识压力容器是一种能够承受内部压力的设备,常常用于承载气体、液体或气体与液体的混合物。
它们广泛应用于化工、能源、石油和其他工业领域中,用于储存或运输危险物质、提供对压缩气体的储存和释放、或作为部分工艺装置的一部分。
1.压力容器设计标准:压力容器的设计必须符合一些国际和行业标准,如美国的ASME标准和欧洲的PED指令。
这些标准规定了压力容器的设计要求、材料选择、焊接、检验和试验等方面的内容。
2.材料选择:压力容器的材料选择对其性能和安全性非常重要。
常见的材料包括碳钢、不锈钢和合金钢等。
根据所需的耐腐蚀性、耐高温性和机械强度等特性,需要选择适当的材料。
3.设计压力:设计压力是指压力容器能够安全承受的最大内部压力。
在设计过程中,需要考虑正常操作压力、工艺变动时的压力波动以及临时过载压力等因素。
4.壁厚计算:为了确保容器的稳定性和强度,需要对其壁厚进行计算。
设计壁厚应满足内压力、外压力、温度、容器直径和材料强度等因素的要求。
5.焊接:焊接是连接压力容器部件的常用方法,但焊接质量对容器的安全性有重要影响。
焊接应符合标准规范,并进行非破坏性测试以确保焊缝的质量。
6.热传导:压力容器中的热量传递是一个重要的问题,特别是在换热器中。
合理的换热器设计可以提高热能利用效率,减少能源损耗。
7.板式换热器设计:板式换热器通过一系列的平行板组成,热介质通过板的两侧流动,实现热量传递。
板式换热器的设计涉及到板的材料选择、板间距、板型和板的密封等方面。
8.管式换热器设计:管式换热器使用管道来传递热量,冷、热介质通过管道内外流动,实现热量传递。
管式换热器的设计涉及到管子的材料选择、管道布局、管道尺寸和管道的密封等方面。
9.安全阀:为了保证压力容器在超出设计压力时能够安全释放压力,需要安装安全阀。
安全阀的设计应符合标准,并确保在超压时能够可靠启动和关闭。
10.检验和试验:在压力容器设计完成后,需要进行一系列的检验和试验,以确保容器满足设计要求和标准规范。
低温压力容器的设计分析

低温压力容器的设计分析低温压力容器是指在低于零度的环境中工作的容器,通常用于存储和运输液态气体,液氮、液氧、液氩等均为常见的低温液体。
由于低温环境下物质的特性会发生变化,因此低温压力容器的设计必须考虑到这些因素,以确保容器在安全可靠地工作。
本文将对低温压力容器的设计要点和分析进行探讨。
一、设计要点1.材料选用2.结构设计3.绝热设计由于低温液体的蒸发潜热较高,容器内的温度会迅速下降,导致容器表面结霜。
为了减少热量的散失,提高容器的绝热性能是必要的。
可以采取增加绝热层厚度、使用保温材料等措施来提高容器的绝热性能。
4.安全阀设计低温液体具有较大的蒸气压,一旦容器内压力过高,就会导致容器爆炸。
因此,在设计中必须考虑安全阀的设置,确保在容器内压力超过设定值时能够及时安全地排放压力。
5.排水设计由于低温液体的存在,容器内部会有凝露水和结冰现象。
这些水汽会降低容器的强度和耐腐蚀性,因此必须设计合理的排水系统,定期排除容器内的凝露水和结冰。
6.储罐涂层为了保护容器免受腐蚀和低温影响,可以在容器表面涂上特殊的防腐涂层。
这些涂层能够增强容器的抗腐蚀性能,延长容器的使用寿命。
二、设计分析针对低温压力容器的设计,需要进行结构分析和性能测试,以验证容器的强度和安全性。
1.结构分析在设计初期,需要进行有限元分析等结构分析,评估容器的受力和变形情况。
通过模拟不同工况下的受力情况,确定容器的最大受力位置和最大应力值,以确保容器在工作过程中不会发生结构破坏。
2.强度测试设计完成后,需要进行强度测试,验证容器的最大承载能力是否符合设计要求。
常见的测试方法包括液压试验、氢氦试验、抗冲击测试等。
通过这些测试,可以验证容器的强度和安全性,确保容器在工作中不会发生泄漏或爆炸等情况。
3.低温性能测试设计完成后,还需要进行低温性能测试,评估容器在低温环境下的工作性能。
通过模拟低温环境下的工作情况,测试容器在不同温度下的性能表现,验证容器的低温抗裂性能和绝热性能。
压力容器设计

六、封头
按构造形状分为: 半球形封头
凸形封头 椭圆形封头 碟形封头
锥形封头 平盖封头:
1、凸形封头
(1)半球形封头
是半个球壳。 从受力来看,
球形封头是最理想旳构造。 但整体冲压困难,加工工作 量大。
其厚度计算公式:
p c
Di
4[ ]t
p
c
(2)碟形封头
由球面、过渡段及圆柱 直边段三段构成。成型加 工以便,但在三部分连接 处,因为经线曲率发生突 变,受力情况不佳。
2、锥形封头
有两种,一种是无折边锥 形封头,另一种是与筒体连接 处有一过圆弧和一圆柱直边段 旳折边锥形封头。在厚度较薄 时,制造比较以便。
3、平板封头
是最简朴,制造 最轻易旳一种封头。 但相同直径和压力旳 容器,平板封头厚度 过大,材料花费过多 而且十分笨重。
第四节 压力容器附件
设备旳壳体能够采用铸造、铸造或焊接成一种整体, 但大多数化工设备是做成可拆旳几种部件,然后把它们 连接起来。这一方面是设备旳工艺操作需要开多种孔, 并使之与工艺管道或其他附件相连接;另一方面也是为 了便于设备制造、安装和检修。化工设备中旳可拆连接 应该满足下列基本要求:
在设计或选用压力容器零部件时需要将操作温 度下旳最高操作压力(或设计压力)调整为所要 求旳公称压力等级,然后再根据DN与PN选定零 部件旳尺寸。
练一练: P27,1-2,1-3 拟定计算压力、许用应力 P61,6,7 P62,2-3 拟定计算压力、许用应力
四、压力容器旳校核: 1、圆筒容器旳校核
筒体旳强度计算公式:
pD t
2
公式旳应用: 拟定承压容器旳厚度 对压力容器进行校核计算 拟定设计温度下圆筒旳最大允许工作压力 在指定压力下旳计算应力
压力容器设计综合知识要点

压力容器设计综合知识要点第一部分总论填空:1 《特种设备安全监察条例》是一部行政法规。
2 《压力容器安全技术监察规程》中规定,压力容器设计总图上必须压力容器设计资格印章(复印章无效),该总图是指蓝图。
3 极限载荷是相对一次加载而言;安定载荷是相对反复加载而言。
4 低循环和低频是不同的概念,低循环是指循环次数 102~105间,而低频是循环频率均为300 ~600次/分。
5 容器计算中所用的弹性名义应力是指材料进入塑性后,假定应力与应变关系仍服从虎克定律。
6 GB150规定,超压泄放装置不适用于操作过程中可能产生压力剧增,反应速度达到爆轰时的压力容器。
7 有一只压力容器,其最高工作压力为真空度670mmHg,设计压力为0.15Mpa,其容器类别为无类别。
按《容规》第2 条8压力容器检验孔的最少数量:《容规》表3-6300mm<Di≤500mm :2个手孔;500mm<Di≤1000mm :1个人孔或 2个手孔(不能开设手孔);Di>1000mm :1个人孔或 2个手孔(不能开设手孔)。
9符合下列条件之一的压力容器可不开设检查孔:《容规》第46 条1) 筒体内径小于等于 300 mm 的压力容器。
2) 压力容器上设有可以拆卸的封头、盖板或其他能够开关的盖子,它的尺寸不小于所规定的检查孔尺寸。
3) 无腐蚀或轻微腐蚀,检查和清理的。
4) 制冷装置用压力容器。
5) 换热器。
10常温下盛装混合液化石油气的压力容器(储存容器或移动式压力容器罐体)应进行炉内整体热处理。
《容规》第73 条11按《容规》规定,压力容器安全附件包括:安全阀、爆破片装置、紧急切断装置、压力表、液面计、测温仪表和快开门式压力容器的安全联锁装置。
《容规》第2 条12 《钢制压力容器》GB150-1998 不适用于设计压力低于 0.1MPa ;真空度低于 0.02MPa 的容器;要求作疲劳分析的容器。
GB150 1.3 条选择1 《压力容器安全技术监察规程规定》规定:压力容器介质为混合物质时,应按《压力容器安全技术监察规程规定》毒性程度或易燃介质的划分原则,由(d)提供介质毒性程度或是否属于易燃介质的依据。
压力容器设计(注意事项)

极度、高度危害:板材超探;全焊透结构;管法兰、紧固件选用;泄漏试验(气密性试验——最高允许工作);热处理;100%探伤;焊接试件;焊缝返修需进行热处理;不得使用GB/T8163、GB/T12771、GB/T24593、GB/T21832及Q235B、Q235C);液化石油气:热处理(有应力腐蚀的——焊缝返修需进行热处理);板材超探(含SH2、液氨使用介质的限制,见HG/T20581-2011的第7.8条规定(P65)NaOH、SH2低温容器:冲击试验;全焊透结构;焊缝返修需进行热处理;试件;圆滑过度,需垫板;需100%检测低温容器的A、B、C、D、E类焊接接头需表面检测;定义:设计温度低于-20℃的碳素钢、低合金钢、双相不锈钢和铁素体不锈钢制容器,以及设计温度低于-196℃的奥氏体不锈钢制容器。
(除低温低应力工况)低温换热器:压力容器法兰和管法兰使用对焊法兰(1.设计压力≥1.6MPa用于极度、高度危害、易燃易爆介质;2.设计压力≥2.5MPa;3.设计温度低于-40℃时)换热器:设计温度≥300℃,采用对焊;厚度大于60mm管板用锻件;U型管不宜热弯,当有耐应力腐蚀要求时,冷弯U型管的弯管段及至少包括150mm的直管段应进行热处理。
(碳钢、低合金钢进行消应力热处理)Q245R和Q345R用于壳体厚度>36mm,用于其他受压元件厚度>50mm,需正火状态Q235B用于壳体厚度≤16mm,用于其他受压元件厚度≤30mm;使用温度:20℃—300℃;设计压力<1.6MPa;厚度>6mm进行冲击试验GB/T8163(不得用于高度危害和极度危害的介质,压力不大于4.0MPa)、GB/T14976不得用于换热管用作容器筒体和封头的筒形、环形、碗形锻件应选用Ⅲ级或Ⅳ级。
高压容器(≥10MPa):锻件Ⅲ级以上(Ⅳ级以上需要复验);壳体厚度>60mm碳素钢和低合金刚板,应每张热处理钢板进行拉伸和V型缺口冲击试验(GB150—P46—4.1.5);板材超探;热处理及焊接试件(改善或者恢复材料力学性能—制作产品焊接试板和母材热处理试板);全焊透结构;100%探伤;JB/T4703-2000长颈法兰,当工作压力≥0.8倍本标准中规定的最大允许工作压力时,法兰与圆筒的对接焊缝必须进行100%RT或UT 1.钢板超声检测要求厚度大于或者等于12mm的碳素钢和低合金钢钢板(不包括多层压力容器的层板)用于制造压力容器壳体时,凡符合下列条件之一的,应当逐张进行超声检测:(1)盛装介质毒性程度为极度、高度危害的;(2)在湿S腐蚀环境中使用的;H2(3)设计压力大于或者等于10MPa的;(4)本规程引用标准中要求逐张进行超声检测的。
关于ASME压力容器的几个设计要点

关于ASME压力容器的几个设计要点VIII-1卷的设计方法VIII-1卷的设计要求根据:所采用的制造方法;所使用的材料。
使用条件的要求用户必须说明使用条件的类型、以及其它有关情况,否则,可能造成制造厂不能满足规范对特定使用条件提出的有关要求。
设计公式如果规范公式适合于具体一个元件的计算,那么,该公式的运用是强制性的。
使用条件的类型VIII-1卷提到使用条件有以下5个:1.有毒介质2.低温3.非受火蒸汽锅炉4.直接受火容器5.其它(UW-2中未提到的容器)设计载荷VIII-1卷列出了以下几类载荷,在设计时都必须考虑到:●压力●温度梯度●容器和介质的重量●叠加载荷(如:静压头)●局部应力*●循环和动载荷(如:疲劳考虑)●风载*●地震载荷**如果存在的话。
注:VIII-1提供的设计法则仅适合于压力载荷的计算,对于其它载荷,任何适用的工程方法都可使用。
确定设计参数的责任在“ASME体系”里涉及到的几个单位之间存在着接口,为每个单位规定了职责或要做的工作。
每个单位负责进行他们自己的工作,ASME持证单位仅负责确保符合ASME规范的所有相关要求。
用户的责任用户应向制造厂提供以下数据,以便使所设计的容器满足预期的使用条件:●设计压力和温度●载荷●腐蚀余量●使用要求●附加的PWHT或RTVIII-1卷容器的设计可以由用户或其设计代理、ASME持证单位或其分供方进行,但是,给容器打钢印的ASME持证单位必须对设计符合ASME规范的要求负责。
VIII-1卷对设计人员的资格没有要求。
接头形式及限制接头类别(Joint Category)接头类别是按接头在容器上的位置定义的。
注:D类接头可以是角接接头,也可以是对接接头。
平封头上拼接焊缝为A类接头。
焊接接头除类别外,规范还用类型(Type)来描述接头。
Type是焊接接头结构的定义。
Type 1 Type 2 Type 3Type 4 Type 5 Type 6UW-2(a) 有毒介质当容器按有毒介质设计时,所有的焊接接头必须100%RT。
压力容器设计管理条件

压力容器设计管理条件
压力容器是一种用于储存气体或液体的设备,因此其设计和管理条件至关重要。
以下是一些关键的设计和管理条件:
1. 安全标准:压力容器必须符合国家或地区的安全标准和法规。
这包括设计、制造、安装、维护和监测等方面的要求,以确保压力容器在使用过程中不会发生泄漏或爆炸等事故。
2. 材料选择:压力容器的材料必须能够承受所需的工作压力和温度,并具有足够的耐腐蚀性能。
通常使用的材料包括碳钢、不锈钢、铝合金等。
3. 设计压力:设计压力是指压力容器能够承受的最大压力。
设计压力必须考虑到压力容器所处的环境、使用条件、工艺要求等因素,并采用合适的安全系数。
4. 设计温度:设计温度是指压力容器能够承受的最高温度。
在选择材料和设计压力时,必须考虑到压力容器可能遭受的高温影响。
5. 安全阀和压力表:压力容器必须配备安全阀和压力表,以确保在发生超压情况时能够及时释放压力,避免事故的发生。
6. 定期检测和维护:压力容器必须定期接受检测和维护,以确保其性能和安全性。
这包括外观检查、压力测试、泄漏检测等。
7. 合格人员操作:压力容器的操作和维护必须由经过培训和合
格的操作人员进行,以确保其正常运行和安全使用。
综上所述,压力容器的设计和管理条件是多方面的,包括技术、安全、监测等各个环节。
只有全面考虑这些条件,才能确保压力容器的安全运行和可靠性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《压力容器设计》重点、难点及解决方法
《压力容器设计》课程共分6章,其中第二、三、四和五章是本课程的重点。
1、第二章中低压容器设计
重点主要包括:容器壳体的应力分析、内压薄壁容器的设计计算、螺栓法兰连接及密封设计三部分。
学习难点主要集中在容器壳体的应力分析和螺栓法兰连接及密封设计两节,其中容器壳体的应力分析部分是压力容器设计的基础。
主要学习内容为无力矩理论、有力矩理论和圆平板中的应力计算。
学习这一部分内容,不但要深刻理解微元受力分析、掌握相关公式推导方法、熟悉公式中各符号的意义,关键要学习准确选择研究对象。
在课堂教学时为了较好地解决这些问题,让学生理解并掌握这些重点,我们主要采用:
a.制作大量的图片和flash动画,采用多媒体技术,增强直观性;
b.深入浅出,难点重点讲解,讲透;
c.增加例题讲解,由简入繁,从原理至应用,让学生能够全面理解掌握。
2、第三章应力容器的总体设计问题
重点主要包括:容器壳体开孔及补强设计、结构设计及局部应力计算、卧式容器设计三部分。
学习难点主要集中在容器壳体开孔及应力集中、局部应力计算和卧式容器筒体应力分析。
在学习这一部分内容的时候,不但要深刻理解开孔周边受力分析、圆柱筒体和球壳局部的受力分析及卧式容器壳体各部分的受力分析,掌握相关公式推导方法,关键要学习准确选择研究对象如何进行应力限制和结构设计。
在课堂教学时为了较好地解决这些问题,让学生理解并掌握这些重点,我们主要采用:
a.课堂教学与实验教学相结合,利用实验结果阐述壳体开孔周边应力、壳体基本应力和卧式容器各部分应力的分布情况;
b.制作大量的图片和flash动画,采用多媒体技术,讲解压力容器结构设计;
c.归纳规律,增加例题讲解,让学生能够全面理解掌握容器壳体开孔补强设计方法和卧式容器设计方法。
3、第四章外压容器设计
重点主要包括:外压容器失稳与临界压力概念、临界压力计算、外压筒体的设计计算三部分。
学习难点主要集中在外压容器失稳临界压力的计算、外压圆筒封头的设计计算和加强圈设计计算。
在学习这一部分内容的时候,首先要理解外压容器失稳和临界压力的基本概念,在此基础上了解相关公式推导方法,关键要学习准确选择设计参数,准确合理地进行应力限制和结构设计。
在课堂教学时为了较好地解决这些问题,让学生理解并掌握这些重点,我们主要采用:
a.课堂教学与实验教学相结合,利用实验结果阐述外压容器失稳基本概念;
b.结合弹性力学讲述外压容器筒体受力分析;
c.例题分析,让学生能够全面理解掌握外压容器设计过程和设计方法。
4、第五章高压容器设计
重点主要包括:高压容器壳结构特点,高压容器筒体、零部件设计,高压容器的密封结构与设计计算三部分。
学习难点主要集中在高压容器的设计选型及强度计算,高压容器密封结构设计计算,高压螺栓、端盖和端部的设计计算。
在学习这一部分内容的时候,首先要准确选择研究对象,深刻理解厚壁筒体受力分析方法,掌握拉美公式推导方法。
在此基础上进一步学习高压厚壁筒体的设计,密封结构设计计算,高压螺栓、压盖和筒体端部的设计计算。
在课堂教学时为了较好地解决这些问题,让学生理解并掌握这些重点,我们主要采用:
a.课堂教学循序渐进、先基础理论后设计应用,难点问题分开解决;
b.与中低压容器设计对比学习,归纳高压容器设计与中低压容器设计的异同点,加强理解和掌握;
c.增加例题讲解,让学生能够全面理解掌握高压容器设计方法。
5、焊接质量检查
1)RT(射线检验):
适用于检查材料内部缺陷;例:对焊缝气孔和夹渣敏感.
检验原理:
X和γ射线的波长短,能够穿过一定厚度的物质,并且在穿透的过程中与物质中的原子发生相互作用。
这种相互作用引起辐射强度的衰减,衰减的程度又同受检材料的厚度、密度和化学成分有关。
因此,当材料内部存在某种缺陷而使其局部的有效厚度、密度和化学成分改变时,就会在缺陷处和周
射线检验
围区域之间引起射线强度衰减的差异。
如果用适当介质将这种差异记录或显示出来,就可据以评价受检材料的内部质量。
X射线检验和γ射线检验,基本原理和检验方法无原则区别,不同的只是射线源的获得方式。
X射线源是由各种X射线机、电子感应加速器和直线加速器构成的从低能(几千电子伏)到高能(几十兆电子伏)的系列,可以检查厚至 600mm的钢材。
γ射线是放射性同位素在衰变过程中辐射出来的。
常用的γ射线源及其主要特性见表。
检验方法:
射线检验因记录或显示介质的不同,有多种方法。
常用的方法:①胶片照相法。
用X射线胶片作为记录介质,这种方法直观、可靠,而且灵敏度较高。
用X射线源时,分辨力较高(用γ射线
射线检验
源时,分辨力要低些),并能提供永久性记录;其缺点是成本较高。
②荧光屏观察法。
这种方法是:射线束透过物体直接照射在荧光屏上,转换成可见的图象。
这种方法的优点是快速、简便、检验费用低。
但由于亮度较低,难于观察细节,分辨力较差。
因此多采用图象增强器,使亮度提高几千倍。
如果配合工业闭路电视系统,就成为工业X射线电视。
它不仅具有荧光屏观察法的优点,而且易于实现检验的自动化,主要适用于形状简单的零部件检查,不过灵敏度仍不如胶片照相法。
③还有一些应用较少的方法,如干板射线照相法、辐射测量法和高速射线照相法等。
目前在医疗诊断上已用电子计算机控制的层析照相法(通称CT),可望应用于工业。
无论采用何种射线检验都要加强人身安全防护。
参考书目
ASM Metals Handbook, 8th ed.,Vol.11,Non-Destructive Inspection and Quality Control,ASM,1976. J.F.Hinsley,Non-Destructive Testing, MacDonald & Evans Ltd.,London, 1959. Richard A. Quinn, Claire
C.Sigl,Radiography in Modern Industry,4th ed., Eastman Kodak Co.,Rochester, NeW York,1980.
2)UT(超声波检验):
适用于检查材料内部缺陷;例:对焊缝热裂纹敏感.
超声检测(UT)基本原理为:
金属中有气孔、裂纹、分层等缺陷(缺陷中有气体)或夹杂,超声波传播到金属与缺陷的界面处时,就会全部或部分反射。
反射回来的超声波被探头接收,通过仪器内部的电路处理,在仪器的荧光屏上就会显示出不同高度和有一定间距的波形。
可以根据波形的变化特征判断缺陷在工件重的深度、位置和形状。
目前普通材料的UT检测较为成熟,争议较大也即难度较高的属奥氏体不锈钢,因为奥氏体不锈钢的晶粒比较粗大,同时部分奥氏体不锈钢属铸造,相比锻
造的奥氏体不锈钢,其晶粒更为粗大,晶粒度级别常为3级以下,此时超声信号的衰减非常厉害,即信噪比低。
尤其是焊缝组织,其即为铸造,在没有脉冲、低热输入等的保证下,很难得到晶粒细化,故而有着较高的检测难度。
同比其他NDE方法而言,UT检测有着较高的优势,主要表现为UT检测对面积性缺陷的检测灵敏度优势(如RT是利用材料的厚度及密度差异对射线的吸收不同从而在底片上反应出不同的黑度,而UT只要有缺陷,就会有反射回波)。
3)MT(磁粉探伤):
适用于检查材料表面质量;例:对焊缝表面质量敏感.
局限性:
a)只能检测铁磁性材料.
b)只能检测工件表面和近表面缺陷.
c)受工件几何形状影响会产生非相并显示.
d)通电法和触头法磁化时,易产生打火烧伤.
CAPP(Computer Aided Process Planning)是指借助于计算机软硬件技术和支撑环境,利用计算机进行数值计算、逻辑判断和推理等的功能来制定零件机械加工工艺过程。
借助于CAPP系统,可以解决手工工艺设计效率低、一致性差、质量不稳定、不易达到优化等问题。