大学生数学建模:规划的基础实验-答案
数学建模实验答案 数学规划模型二

数学建模实验答案数学规划模型二实验05 数学规划模型㈡(2学时)(第4章数学规划模型)1.(求解)汽车厂生产计划(LP,整数规划IP)p101_102(1) (LP)在模型窗口中输入以下线性规划模型ma_ z = 2_1 + 3_2 + 4_3 s.t. 1.5_1 + 3_2 + 5_3 ≤ 600280_1 + 250_2 + 400_3 ≤ 60000_1, _2, _3 ≥ 0并求解模型。
(1) 给出输入模型和求解结果(见[101]):model: TITLE汽车厂生产计划(LP); !文件名:p101.lg4; ma_=2__1+3__2+4__3;1.5__1+3__2+5__3ma_ z = 2_1 + 3_2 + 4_3 s.t. 1.5_1 + 3_2 + 5_3 ≤ 600 280_1 + 250_2 + 400_3 ≤ 60000_1, _2, _3均为非负整数1并求解模型。
LINGO函数@gin见提示。
(2) 给出输入模型和求解结果(见[102]模型、结果):model: TITLE汽车厂生产计划(IP); !文件名:p102.lg4; ma_=2__1+3__2+4__3;1.5__1+3__2+5__3模型:(0?_?500)?10_?已知 c(_)??1000?8_(500?_?1000)?3000?6_(1000?_?1500)?注:当500 ≤ _ ≤ 1000时,c(_) = 10 _ 500 + 8( _ – 500 ) = (10 – 8 ) _ 500 + 8_2ma_z?4.8(_11?_21)?5.6(_12?_22)?c(_)_11?_12?500?__21?_22?1000_?1500_11?0.5_11?_21_12?0.6_12?_22_11,_12,_21,_22,_?02.1解法1(NLP)p104_106将模型变换为以下的非线性规划模型:ma_z?4.8(_11?_21)?5.6(_12?_22)?(10_1?8_2?6_3)_11?_12?500?__21?_22?1000 _11?0.5_11?_21_12?0.6_12?_22_?_1?_2?_3(_1?500)_2?0(_2?500)_3?00?_1,_2, _3?500_11,_12,_21,_22,_?0LINGO软件设置:局部最优解,全局最优解,见提示。
数学建模基础练习一及参考答案

数学建模基础练习一及参考答案数学建模基础练习一及参考答案练习1matlab练习一、矩阵及数组操作:1.利用基本矩阵产生3×3和15×8的单位矩阵、全1矩阵、全0矩阵、均匀分布随机矩阵([-1,1]之间)、正态分布矩阵(均值为1,方差为4),然后将正态分布矩阵中大于1的元素变为1,将小于1的元素变为0。
2.利用fix及rand函数生成[0,10]上的均匀分布的10×10的整数随机矩阵a,然后统计a中大于等于5的元素个数。
3.在给定的矩阵中删除含有整行内容全为0的行,删除整列内容全为0的列。
4.随机生成10阶的矩阵,要求元素值介于0~1000之间,并统计元素中奇数的个数、素数的个数。
二、绘图:5.在同一图形窗口画出下列两条曲线图像,要求改变线型和标记:y1=2x+5;y2=x^2-3x+1,并且用legend标注。
6.画出下列函数的曲面及等高线:z=sinxcosyexp(-sqrt(x^2+y^2)).7.在同一个图形中绘制一行三列的子图,分别画出向量x=[158101253]的三维饼图、柱状图、条形图。
三、程序设计:8.编写程序计算(x在[-8,8],间隔0.5)先新建的,在那上输好,保存,在命令窗口代数;9.用两种方法求数列:前15项的和。
10.编写程序产生20个两位随机整数,输出其中小于平均数的偶数。
11.试找出100以内的所有素数。
12.当时,四、数据处理与拟合初步:13.随机产生由10个两位随机数的行向量A,将A中元素按降序排列为B,再将B重排为A。
14.通过测量得到一组数据:t12345678910y4.8424.3623.7543.3683.1693.0383.0343.0163.0123.005分别采用y=c1+c2e^(-t)和y=d1+d2te^(-t)进行拟合,并画出散点及两条拟合曲线对比拟合效果。
15.计算下列定积分:16.(1)微分方程组当t=0时,x1(0)=1,x2(0)=-0.5,求微分方程t在[0,25]上的解,并画出相空间轨道图像。
数学建模课后习题答案

实验报告姓名:和家慧 专业:通信工程 学号:20121060248 周一下午78节实验一:方程及方程组的求解一 实验目的:学会初步使用方程模型,掌握非线性方程的求解方法,方程组的求解方法,MA TLAB 函数直接求解法等。
二 问题:路灯照明问题。
在一条20m 宽的道路两侧,分别安装了一只2kw 和一只3kw的路灯,它们离地面的高度分别为5m 和6m 。
在漆黑的夜晚,当两只路灯开启时 (1)两只路灯连线的路面上最暗的点和最亮的点在哪里? (2)如果3kw 的路灯的高度可以在3m 到9m 之间变化,如何路面上最暗点的亮度最大? (3)如果两只路灯的高度均可以在3m 到9m 之间变化,结果又如何?三 数学模型解:根据题意,建立如图模型P1=2kw P2=3kw S=20m 照度计算公式:2sin r p k I α= (k 为照度系数,可取为1;P 为路灯的功率)(1)设Q(x,0)点为两盏路灯连线上的任意一点,则两盏路灯在Q 点的照度分别为21111sin R p k I α= 22222sin R p k I α=22121x h R += 111sin R h =α22222)(x s h R -+= 222sin R h =αQ 点的照度:3232322222322111))20(36(18)25(10))((()(()(x x x s h h P x h h P x I -+++=-+++=要求最暗点和最亮点,即为求函数I(x)的最大值和最小值,所以应先求出函数的极值点5252522222522111'))20(36()20(54)25(30))(()(3)(3)(x x x x x s h x s h P x h x h P x I -+-++-=-+-++-=算法与编程利用MATLAB 求得0)('=x I 时x 的值代码:s=solve('(-30*x)/((25+x^2)^(5/2))+(54*(20-x))/((36+(20-x)^2)^(5/2))'); s1=vpa(s,8); s1计算结果运行结果: s1 =19.97669581 9.338299136 8.538304309-11.61579012*i .2848997038e-1 8.538304309+11.61579012*i因为x>=0,选取出有效的x 值后,利用MATLAB 求出对应的I(x)的值,如下表:综上,x=9.33m 时,为最暗点;x=19.97m 时,为最亮点。
数学建模实验答案

14.5714
第86页例3
>> c=[2;3;1];
>> a=[1,4,2;3,2,0];
>> b=[8;6];
>> [x,y]=linprog(c,-a,-b,[],[],zeros(3,1))
Optimization terminated.
x =
0.8066
-2.2943
rint =
-4.0390 4.0485
-3.2331 6.2555
-5.3126 1.9707
-6.5603 3.1061
-4.5773 5.0788
-0.5623 8.4132
-6.0767 3.1794
25.1698
0.0000
20.0000
14.8302
40.0000
y =
574.8302
实验报告三、 第二部分
data=[0,0.8,1.4,2.0,2.4,3.2,4.0,4.8,5.4,6.0,7.0,8.0,10.0;0,0.74,2.25,5.25,8.25,15,21.38,26.25,28.88,30.6,32.25,33,35];
b =
62.4054
1.5511
0.5102
0.1019
-0.1441
bint =
-99.1786 223.9893
-0.1663 3.2685
-1.1589 2.1792
-1.6385 1.8423
x5 = [1.62 1.79 1.51 1.60 1.61 1.31 1.02 1.08 1.02 0.82 1.03 1.08 0.92 0.79 0.86 1.27 1.10]';
数学建模课后答案

数学建模课后答案数学建模课后答案【篇一:《数学模型》习题解答】t>1.学校共1000名学生,235人住在a宿舍,333人住在b宿舍,432人住在c宿舍.学生们要组织一个10人的委员会,试用下列办法分配各宿舍的委员数:(1). 按比例分配取整数的名额后,剩下的名额按惯例分给小数部分较大者; (2). 1中的q值方法;(3).d’hondt方法:将a、b、c各宿舍的人数用正整数n=1,2,3,??相除,其商数如下表:将所得商数从大到小取前10个(10为席位数),在数字下标以横线,表中a、b、c行有横线的数分别为2,3,5,这就是3个宿舍分配的席位.你能解释这种方法的道理吗?如果委员会从10个人增至15人,用以上3种方法再分配名额,将3种方法两次分配的结果列表比较.解:先考虑n=10的分配方案,p1?235,p2?333,p3?432,方法一(按比例分配)第二章(1)(2008年9月16日)pi?13i1000.q1?p1npi?132.35,q2?p2nipi?133.33, q3?p3nipi?134.32i分配结果为: n1?3, n2?3, n3?4 方法二(q值方法)9个席位的分配结果(可用按比例分配)为:n1?2,n2?3, n3?4第10个席位:计算q值为235233324322q1??9204.17, q2??9240.75, q3??9331.22?33?44?5q3最大,第10个席位应给c.分配结果为 n1?2,n2?3,n3?5方法三(d’hondt方法)此方法的分配结果为:n1?2,n2?3,n3?5此方法的道理是:记pi和ni为各宿舍的人数和席位(i=1,2,3代表a、b、c宿舍).pi是ni每席位代表的人数,取ni?1,2,?,从而得到的pip中选较大者,可使对所有的i,i尽量接近. nini再考虑n?15的分配方案,类似地可得名额分配结果.现将3种方法两次分配的结果列表如下:2.试用微积分方法,建立录像带记数器读数n与转过时间的数学模型. 解:设录像带记数器读数为n时,录像带转过时间为t.其模型的假设见课本.考虑t到t??t时间内录像带缠绕在右轮盘上的长度,可得vdt?(r?wkn)2?kdn,两边积分,得tvdt?2?k?(r?wkn)dnn2?rk?wk22n22vv《数学模型》作业解答第二章(2)(2008年10月9日)15.速度为v的风吹在迎风面积为s的风车上,空气密度是? ,用量纲分析方法确定风车获得的功率p与v、s、?的关系.解: 设p、v、s、?的关系为f(p,v,s,?)?0,其量纲表达式为: [p]=mlt 23, [v]=lt1,[s]=l,[?]=ml,这里l,m,t是基本量纲.2?3量纲矩阵为:1?2?10a=?3?1(p)(v)齐次线性方程组为:2?3?(l)01??(m) 00??(t)(s)(??2y1?y2?2y3?3y4?0y1?y4?03y?y?012?它的基本解为y?(?1,3,1,1) 由量纲pi定理得p?1v3s1?1,?p??v3s1?1 ,其中?是无量纲常数.16.雨滴的速度v与空气密度?、粘滞系数?和重力加速度g有关,其中粘滞系数的定义是:运动物体在流体中受的摩擦力与速度梯度和接触面积的乘积成正比,比例系数为粘滞系数,用量纲分析方法给出速度v的表达式.解:设v,?,?,g 的关系为f(v,?,?,g)=0.其量纲表达式为[v]=lmt,[?]=lmt,0-1-3[?]=mlt(ltl)l=mlltt=lmt,[g]=lmt,其中l,m,t是基本量纲.-2-1-1-1-2-2-2-1-10-2量纲矩阵为1?3?11?(l)?0?(m)110?a=? ???10?1?2(t)??(v)(?)(?)(g)齐次线性方程组ay=0 ,即y1-3y2-y3?y4?0?0 ?y2?y3-y-y-2y?034?1的基本解为y=(-3 ,-1 ,1 ,1) 由量纲pi定理得*v?3??1?g. ?v??3g,其中?是无量纲常数. ?16.雨滴的速度v与空气密度?、粘滞系数?、特征尺寸?和重力加速度g有关,其中粘滞系数的定义是:运动物体在流体中受的摩擦力与速度梯度和接触面积的乘积成正比,比例系数为粘滞系数,用量纲分析方法给出速度v的表达式.解:设v,?,?,?,g 的关系为f(v,?,?,?,g)?0.其量纲表达式为[v]=lmt,[?]=lmt,[?]=mlt(ltl)l=mlltt=lmt,[?]=lm0t0 ,[g]=lmt0-1-3-2-1-1-1-2-2-2-1-10-2其中l,m,t是基本量纲. 量纲矩阵为1?0a=1(v)齐次线性方程组ay=0 即(l)?(m)?00?1?2?(t)?(?)(?)(?)(g)1?3?10111y1?y2?3y3?y4?y5?0?y3?y4?0 ?y1?y4?2y5?0?的基本解为11?y?(1,?,0,0,?)?12231?y2?(0,?,?1,1,?)22?得到两个相互独立的无量纲量1?v??1/2g?1/23/2?1?1/2g??2??即 v?1) g?1,?3/2?g1/2??1??2?1. 由?(?1,?2)?0 , 得 ?1??(?2g?(?3/2?g1/2??1) , 其中?是未定函数.20.考察阻尼摆的周期,即在单摆运动中考虑阻力,并设阻力与摆的速度成正比.给出周期的表达式,然后讨论物理模拟的比例模型,即怎样由模型摆的周期计算原型摆的周期. 解:设阻尼摆周期t,摆长l, 质量m,重力加速度g,阻力系数k的关系为f(t,l,m,g,k)?0其量纲表达式为:[t]?l0m0t,[l]?lm0t0,[m]?l0mt0,[g]?lm0t?2,[k]?[f][v]?1?mlt?2(lt 1 )1l0mt?1,其中l,m,t是基本量纲.量纲矩阵为0?0a=1(t)?(l)?(m)?00?2?1??(t)(l)(m)(g)(k)10011001齐次线性方程组y2?y4?0??y3?y5?0 ?y?2y?y?045?1的基本解为11?y?(1,?,0,,0)?122 ?11y2?(0,,?1,?,1)22?得到两个相互独立的无量纲量tl?1/2g1/2??11/2?1?1/2lmgk??2∴t?kl1/2l1, ?1??(?2), ?2?gmg1/2∴t?lkl1/2(1/2) ,其中?是未定函数 . gmg考虑物理模拟的比例模型,设g和k不变,记模型和原型摆的周期、摆长、质量分别为t,t;l?kl?1/2l,l;m,m. 又t() 1/2gm?g当无量纲量m?l?t?l?gl?时,就有 ?.mltgll《数学模型》作业解答第三章1(2008年10月14日)1. 在3.1节存贮模型的总费用中增加购买货物本身的费用,重新确定最优订货周期和订货批量.证明在不允许缺货模型中结果与原来的一样,而在允许缺货模型中最优订货周期和订货批量都比原来结果减少.解:设购买单位重量货物的费用为k,其它假设及符号约定同课本.10 对于不允许缺货模型,每天平均费用为:【篇二:数学建模习题答案】t>中国地质大学能源学院华文静1.在稳定的椅子问题中,如设椅子的四脚连线呈长方形,结论如何?解:模型假设(1)椅子四条腿一样长,椅脚与地面接触处视为一点,四脚的连线呈长方形(2)地面高度是连续变化的,沿任何方向都不会出现间断(没有像台阶那样的情况),即从数学角度来看,地面是连续曲面。
数学建模基础问题与答案!(有答案).

‘牡丹江师范学院期末考试试题库科目:数学模型与数学实验年级:2006 学期:2008-2009-2 考核方式:开卷命题教师:数学模型与数学实验课程组一、解答题:(每小题30分)x=[0.1 0.11 0.12 0.13 0.14 0.15 0.16 0.17 0.18 0.2 0.21 0.23]';n=length(x)X=[ones(n,1) x];Y=[42 43.5 45 45.5 45 47.5 49 53 50 55 55 60]';[b,bint,r,rint,stats]=regress(Y,X);b,bint,stats% 预测y=b(1)+b(2)*x%E误差平方和E=sum((Y-y).^2)参考结果:回归直线:ˆ28.4928130.8348=+y x误差平方和:17.4096是否重点:重点难易程度:中知识点所在章节:第十六章第一节检查数据中有无异常点、由x的取值对y作出预测。
解:参考程序(t2.m):x=[0.10 0.11 0.12 0.13 0.14 0.15 0.16 0.17 0.18 0.2 0.21 0.23]';Y=[42.0 41.5 45.0 45.0 45 47.5 49.0 55.0 50.0 55.0 55.5 60.5]'; scatter(x,Y);n=length(x)X=[ones(n,1) x];b,bint,stats %残差图 rcoplot(r,rint) % 预测y=b(1)+b(2)*x%剔除异常点重新建模 X(8,:)=[]; Y(8)=[];[b,bint,r,rint,stats]=regress(Y,X); b,bint,stats,rcoplot(r,rint) 结果和图:b =27.0269 140.6194 bint =22.3226 31.7313 111.7842 169.4546 stats =0.9219 118.0670 0.0000结果分析:由20.9226,119.2528,P =0.0000R F ==知,2R 接近1,10.5(1,10)F F ->,0.05P <,故x 对y 的影响显著,回归模型可用。
数学建模之规划问题

一、线性规划1.简介1.1适用情况用现有资源来安排生产,以取得最大经济效益的问题。
如: (1)资源的合理利用(2)投资的风险与利用问题 (3)合理下料问题 (4)合理配料问题 (5)运 输 问 题 (6)作物布局问题(7)多周期生产平滑模型 (8)公交车调度安排 1.2建立线性规划的条件(1)要求解问题的目标函数能用数值指标来反映,且为线性函数;(2)要求达到的目标是在一定条件下实现的,这些约束可用线性等式或不等式描述。
1.3线性规划模型的构成决策变量、目标函数、约束条件。
2、一般线性规划问题 数学标准形式:目标函数:1max ==∑ njjj z cx约束条件:1,1,2,...,,..0,1,2,...,.=⎧==⎪⎨⎪≥=⎩∑nij j i j ja xb i m s t x j nmatlab 标准形式:3、可以转化为线性规划的问题 例:求解下列数学规划问题解:作変量変换1||||,,1,2,3,4,22+-===i i i ii x x x x u v i 并把新变量重新排序成一维变量[]1414,,,,,⎡⎤==⎢⎥⎣⎦Tu y u u v v v ,则可把模型转化为线性规划模型其中:[]1,2,3,4,1,2,3,4;=T c 12,1,;2⎡⎤=---⎢⎥⎣⎦Tb 111111131 - - ⎡⎤⎢⎥= - -⎢⎥⎢⎥ -1 -1 3⎣⎦A 。
利用matlab 计算得最优解:12342,0,=-===x x x x 最优值z=2。
程序如下: 略二、整数规划 1.简介数学规划中的变量(部分或全部)限制为整数时称为整数规划。
目前流行求解整数规划的方法一般适用于整数线性规划。
1.1整数规划特点1)原线性规划有最优解,当自变量限制为整数后,出现的情况有①原线性规划最优解全是整数,则整数规划最优解与线性规划最优解一致。
②整数规划无可行解。
③有可行解(存在最优解),但最优解值变差。
2)整数规划最优解不能按照实数最优解简单取整获得。
数学建模实验答案_数学规划模型一

在出现的选项框架中,选择General Solver(通用求解器)选项卡,修改2个参数:( LINGO9 )
Dual Computations(对偶计算)设置为:Prices and Ranges(计算对偶价格并分析敏感性)
Model Regeneration(模型的重新生成)设置为:Always(每当有需要时)
★
输入的模型:
!文件名:p97.lg4;
max=290*x11+320*x12+230*x13+280*x14
+310*x21+320*x22+260*x23+300*x24
+260*x31+250*x32+220*x33;
x11+x12+x13+x14<100;
x21+x22+x23+x24<120;
@for(wu(i):@sum(cang(j):x(i,j))<w(i));
@for(cang(j):@sum(wu(i):x(i,j))<WET(j));
@for(cang(j):@sum(wu(i):v(i)*x(i,j))<VOL(j));
@for(cang(j):
@for(cang(k)|k#GT#j:!#GT#是大于的含义;
附
4.1 奶制品的生产与销售
例1 加工奶制品的生产计划
结果分析
例2 奶制品的生产销售计划
结果分析
4.2 自来水输送与货机装运
例1 自来水输送问题
例2 货机装运
b=50 60 50;
m1=30 70 10 10;
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验作业——规划基础练习格式要求——写出:程序、结果、解释、进一步(一)线性规划问题1.用matlab及lingo求解下列线性规划问题:程序:lindoMax 3x1-x2-x3StX1-2x2+x3<11-4x1+x2+2x3>3-2x1+x3=1Endmax=3*x1-x2-x3;x1-2*x2+x3<=11;-4*x1+x2+2*x3>=3;-2*x1+x3=1;结果:z=4, x1=4,x2=1,x3=92. 某班男同学30人、女同学20人,植树。
工作效率(个/人、天)如下表。
如何安排,植树最多?解:假设分别有x1、x2、x3个男同学挖坑、栽树、浇水,y1、y2、y3个女同学挖坑、栽树、浇水。
Max f = 20x1+10y112312311223330,20,..201030202515,,0,i j x x x y y y S T x y x y x y x y Integers ++=⎧⎪++=⎪⎨+=+=+⎪⎪≥⎩程序MAX 20x1+10y1 STx1+x2+x3=30 y1+y2+y3=2020x1+10y1-30x2-20y2=0 30x2+20y2-25x3-15y3=0 END GIN 6所求最优解为fmax = 340棵,X1=13(男13人全天挖坑),X2=4(男4人全天栽树),X3=13(男13人全天浇水);Y1=8,(女8人全天挖坑),Y2=11(女11人全天栽树),Y3=1(女1人全天浇水)其实可以取消整数的限制MAX 20x1+10y1STx1+x2+x3=30y1+y2+y3=2020x1+10y1-30x2-20y2=030x2+20y2-25x3-15y3=0END所求最优解为fmax = 350棵,X1=35/2(男17人全天挖坑,1个人挖半天坑)X2=0,X3=25/2(男12人全天浇水,1个人浇水半天);Y1=0,Y2=35/2(女17人全天栽树,1个人栽树半天),Y3=5/2(女2人全天浇水,1个人浇水半天)。
结果更优,一半可以解释为一天中的一半时间若用lingo语言编程,则程序如下:model:sets:nan/wa,zai,jiao/:nanxl,x;nv/wa,zai,jiao/:nvxl,y;endsetsdata:nanxl=20,30,25;nvxl=10,20,15;nannum=30;nvnum=20;enddatamax=nanxl(1)*x(1)+nvxl(1)*y(1);@sum(nan:x)=nannum;@sum(nv:y)=nvnum;!@for(nan:@gin(x));!@for(nv:@gin(y));nanxl(1)*x(1)+nvxl(1)*y(1)=nanxl(2)*x(2)+nvxl(2)*y(2);nanxl(1)*x(1)+nvxl(1)*y(1)=nanxl(3)*x(3)+nvxl(3)*y(3);end3.某牧场饲养一批动物,平均每头动物至少需要 700g 蛋白质、30g 矿物质和100g 维生素。
现有A、B、C、D、E五种饲料可供选用,每千克饲料的营养成分(单位:g)与价格(单位:元/kg)如下表所示:试求能满足动物生长营养需求又最经济的选用饲料方案。
模型:变量命名—设A饲料选用X1kg,B饲料选用X2kg,C饲料选用X3kg,D饲料选用X4kg,E饲料选用X5kg.目标函数:设买饲料的总成本为Z。
Min Z=0.4X1+1.4X2+0.8X3+1.6X4+1.6X5.约束条件:蛋白质:3X1+2X2+X3+6X4+12X5>700;矿物质:X1+0.5X2+0.2X3+2X4+0.5X5>30;维生素:0.5X1+X2+1.2X3+2X4+0.8X5>100;X1,X2,X3,X4,X5均为非负。
程序:MIN 0.4X1+1.4X2+0.8X3+1.6X4+1.6X5ST3X1+2X2+X3+6X4+12X5>700X1+0.5X2+0.2X3+2X4+0.5X5>300.5X1+X2+1.2X3+2X4+0.8X5>100END解释:经济即总成本最小,满足需求为约束条件,变量为非负约束93.33334VARIABLE VALUE REDUCED COSTX1 233.333328 0.000000X2 0.000000 1.133333X3 0.000000 0.666667X4 0.000000 0.800000X5 0.000000 0.000000ROW SLACK OR SURPLUS DUAL PRICES2) 0.000000 -0.1333333) 203.333328 0.0000004) 16.666666 0.000000进一步:三个需求的约束条件在报告中显示影子价格分别为-0.133333,0,0,则说明调整需求量对优化结果影响很小。
Lingo程序model:sets:yingyang/dbz,kwz,wss/:xuqiu;ciliao/a,b,c,d,e/:jiage,x;chengfen(ciliao,yingyang):hanliang;endsetsdata:xuqiu=700,30,100;jiage=0.4,1.4,0.8,1.6,1.6;hanliang=3 1.0 0.52 0.5 1.01 0.2 1.26 2.0 2.012 0.5 0.8;enddatamin=@sum(ciliao:jiage*x);@for(yingyang(i):@sum(ciliao(j):hanliang(j,i)*x(j))>=xuqiu(i));end4.在以色列,为分享农业技术服务和协调农业生产,常常由几个农庄组成一个公共农业社区。
在本课题中的这个公共农业社区由三个农庄组成,我们称之为南方农庄联盟。
南方农庄联盟的全部种植计划都由技术协调办公室制订。
当前,该办公室正在制订来年的农业生产计划。
南方农庄联盟的农业收成受到两种资源的制约。
一是可灌溉土地的面积,二是灌溉用水量。
这些数据由下表给出。
注:英亩-1英尺的体积;1英亩-英尺≈1233.48立方米。
南方农庄联盟种植的作物是甜菜、棉花和高粱,这三种作物的纯利润及耗水量不同。
农业管理部门根据本地区资源的具体情况,对本联盟农田种植规划制定的最高限额数据由下表给出。
家农庄种植何种作物并无限制。
所以,技术协调办公室面对的任务是:根据现有的条件,制定适当的种植计划帮助南方农庄联盟获得最大的总利润,现请你替技术协调办公室完成这一决策。
对于技术协调办公室的上述安排,你觉得有何缺陷,请提出建议并制定新的种植计划。
变量:设A农庄种植甜菜面积为X11,种植棉花面积为X12,种植高粱面积为X13.B农庄种植甜菜面积X21,种植棉花面积为X22,种植高粱面积为X23.C农庄种植甜菜面积为X31,种植棉花面积为X32,种植高粱面积为X33.模型&程序:max400x11+400x21+400x31+300x12+300x22+300x32+100x13+100x23+100x33st3x11+2x12+x13<6003x21+2x22+x23<8003x31+2x32+x33<375x11+x12+x13<400x21+x22+x23<600x31+x32+x33<300x11+x21+x31<600x12+x22+x32<500x13+x23+x33<325400x21+400x22+400x23-600x11-600x12-600x13=0300x21+300x22+300x23-600x31-600x32-600x33=0endLingo程序为:model:sets:nzh/A,B,C/:kymj,kysl;nzw/tian,mian,gao/:maxmj,hsl,clr;renwu(nzh,nzw):x;endsetsdata:kymj=400,600,300;kysl=600,800,375;maxmj=600,500,325;hsl=3,2,1;clr=400,300,100;enddata!目标是纯利润最大化;max=@sum(renwu(I,J):clr(J)*x(I,J));!可灌溉面积约束;@for(nzh(I):@sum(nzw(J):x(I,J))<=kymj(I));!可用水量约束;@for(nzh(I):@sum(nzw(J):hsl(J)*x(I,J))<=kysl(I));!最大种植面积约束;@for(nzw(J):@sum(nzh(I):x(I,J))<=maxmj(J));!播种面积与可灌溉面积之比相等的约束;@sum(nzw(J):x(1,J))*kymj(2)=@sum(nzw(J):x(2,J))*kymj(1);@sum(nzw(J):x(2,J))*kymj(3)=@sum(nzw(J):x(3,J))*kymj(2);end可见运行结果中,约束条件1和约束条件3中的值对优化结果影响很大,即分配给A和C 农场的用水量不合理,需重新分配,故设A用水量为a,B用水量为b,C用水量为c,得程序:max400x11+400x21+400x31+300x12+300x22+300x32+100x13+100x23+100x33st3x11+2x12+x13-a<03x31+2x32+x33-c<0a+b+c=1775x11+x12+x13<400x21+x22+x23<600x31+x32+x33<300400x21+400x22+400x23-600x11+600x12+600x13=0300x21+300x22+300x23-600x31+600x32+600x33=0x11+x21+x31<600x12+x22+x32<500x13+x23+x33<325end结果:比原方案更优。
5.有一艘货轮,分前、中、后三个舱位,它们的容积与最大允许载重量如下表所示:前舱中舱后舱最大允许载重量(t)2000 3000 1000容积(m3)4000 5400 1000现有三种货物待运,已知有关数据如下表所示:商品数量(件)每件体积(m3/件)每件重量(t/件)运价(元/件)A 600 10 8 1000B 1000 5 6 700C 800 7 5 600又为了航运安全,要求前、中、后舱在实际载重量上大体保持各舱最大允许载重量的比例关系。
具体要求前、后舱分别与中舱之间载重理比例上偏差不超过15%,前、后舱之间不超过10%。