自动控制原理 第二章 梅森公式-信号流图
25信号流图与梅森公式 共31页

i1
G 1 G 2 G 3 G 4 G 5 G 6 H 1 G 2 G 3 H 2 G 4 G 5 H 3 G 3 G 4 H 4
L iL j L 2 L 3 ( G 2 G 3 H 2 ) G ( 4 G 5 H 3 )
G 2G 3G 4G 5H 2H 3
2-5 信号流图及梅森公式
是表示复杂系统的又一种图示方法。
重点: 1)根据系统的结构框图可画出信号流图 2)根据信号流图求系统的传递函数
1
x5
一、信号流图的几个定义
f
输入节点(或源节点):
x1 a x 2
b
只有输出支路的节点,如x1、 x5。
d
e
c
x4
x3
输出节点(或阱节点):只有输入支路的节点,如x4。
作业:
2-11 求C(s)/R(s) 2-12 (a) (d)
30
谢谢!
xiexie!
8
Σ Li:所有各回路的“回路传递函数”之和; Σ LiLj:两两互不接触的回路,其“回路传递 函数”乘积之和; Σ LiLjLk:所有三个互不接触的回路,其“回 路传递函数”乘积之和; n:前向通道数;
9
注意事项:
“回路传递函数”是指反馈回路的前 向通路和反馈回路的传递函数的乘积, 并且包含代表反馈极性的正、负号。
11
所以
C (G s P ) 1 Δ 1
1
R(s) Δ R 1 R 2 C 1 C 2 s2 R 1 C 1 s R 1 C 2 s 1
28
练习eBiblioteka g1ab
c
d
R(s) f
C(s) h
四个单独回路,两个回路互不接触
2.4 梅森公式

(该通道所有传递函数的乘积) (回路传输之和) (两两不接触回路传输之和)
(特征式中,去掉与第k条通道相接触的 回路增益,剩下的部分
[例2.20] 用梅逊增益公式求图所示的传递函数。
G4
R
1
G1
G2
H
G3
C
回路与两个前向通道接触, 解 : 前向通道: △1=1, △ 2=1
P1=G1G2G3 P2=G4G3
L2 L5 G1G2G4G7 H 2 H3
特征式:
1 La Lb Lc
1 ( L1 L2 L3 L4 L5 ) (L1L2 L1L4 L2 L5 )
1 G2 H1 G4 H 2 G1G2G3G4G5 H3 G6G4G5 H3 G1G2G7 H 3 G2G4 H1H 2 G2G4G5G6 H1H3 G1G2G4G7 H 2 H3
C ( s) Gr ( s ) R( s) Gn ( s ) N (s) R( s) N ( s) 1 s
3 1 求出:a1 1, a2 , a3 2 2
8 1 s 1 C ( s) 2 2 s 6s 8 s s 6s 8 s
1
G2 ( s)
反馈通道: G2 (s)G3 (s)G1 ( s)
Y ( s) 1 D1 ( s ) D1 ( s) 1 G1G2G3
G1G3 Y (s) D2 ( s ) D2 ( s ) 1 G1G2G3
例[2.24] 系统结构如图,求 r (t ) n(t ) 1 时的输出。
1.给定输入作用下的闭环传递函数 令D(s)=0
C (s) ( s) R( s)
自动控制原理第二章梅森公式-信号流图课件

ABCD
然后,通过分析梅森公式 的各项系数,确定系统的 极点和零点。
最后,将梅森公式的分析 结果转换为信号流图,进 一步明确系统各变量之间 的传递关系。
梅森公式在信号流图中的应用实例
假设一个控制系统的传递函数为 (G(s) = frac{s^2 + 2s + 5}{s^2 + 3s + 2})
在信号流图中,将极点和零点表示为相 应的节点,并根据梅森公式的各项系数 确定各节点之间的传递关系。
02
信号流图基础
信号流图定义与构成
信号流图定义
信号流图是一种用于描述线性动 态系统数学模型的图形表示方法 ,通过节点和支路表示系统中的 信号传递和转换过程。
信号流图构成
信号流图由节点和支路组成,节 点表示系统的动态方程,支路表 示输入输出之间的关系。
信号流图的绘制方法
确定系统动态方程
根据系统描述,列出系统的动态方程。
2
梅森公式与信号流图在描述和分析线性时不变系 统时具有互补性,二者可以相互转换。
3
信号流图能够直观地表示系统各变量之间的传递 关系,而梅森公式则提供了对系统频率特性的分 析手段。
如何使用梅森公式进行信号流图分析
首先,将系统的传递函数 转换为梅森公式的形式。
根据极点和零点的位置, 判断系统的稳定性、频率 响应特性等。
在未来研究中的可能发展方向
随着科技的不断进步和应用需求的不断变化,控制系统面临着越来越多的 挑战和机遇。
在未来研究中,可以利用梅森公式和信号流图进一步探索复杂系统的分析 和设计方法,提高系统的性能和稳定性。
同时,随着人工智能和大数据技术的应用,可以结合这些技术对控制系统 进行智能化分析和优化设计,提高系统的自适应和学习能力。
信号流图与梅森公式

2.5 信号流图与梅森公式2.5.1 信号流图信号流图是表示复杂的又一种图示方法.信号流图相对于结构图更简便明了,而且不必对图形进行简化,只要根据统一的公式,就能方便地求出系统的传递函数.1. 信号流图的组成及基本性质信号流图由节点和支路组成.一个节点代表系统中的一个变量,用小圆圈”Ο”表示;连接两个节点之间有箭头的定向线段为支路.支路相当于信号乘法器,乘法因子(或支路增益)表在支路上;信号只能沿箭头单方向传递,经支路传递的信号应乘以乘法因子;只有输出支路,无输入支路的节点称为输入节点,代表系统的输入变量;只有输入支路,无输出支路的节点称为输出节点,代表系统的输出变量;既有输入支路,也有输出支路的节点称为混合节点.信号流图的特征描述还需要以下专用术语:前向通路 信号从输入节点到输出节点传递时,对任何节点只通过一次的通路称为前向通路.而前向通路上各支路增益之积,为前向通路总增益.回路 如果信号传递通路的起点和终点在同一节点上,且通过任何一个节点不多于一次的闭合通路称为单独回路,简称回路.回路中各支炉增益的乘积称为回路增益.不接触回路 两个或两个以上回路之间没有任何公共节点,此种回路称为不接触回路. 由图2-31的信号流图可以说明以上的基本元素,即 74321X XX X X是节点;j h d c b a ,,,,, 为支路增益;4,1X X 为输入节点;7X 为输入节点;6532X X X X 为混合节点。
信号流图共有三条前向通道,第一条是765321XXXXXX →→→→→;第二条是76531X XXXX →→→→;第三条是765324X XXXXX→→→→→。
有两个单独回路,一个是565X X X →→,起点和终点是5X ;另一个起点、终点在3X 的自回路。
而且这两个回路无公共节点,是不接触回路。
图2-31 信号流图注意:对于确定的控制系统,其信号流图不是唯一的。
2.5.2 信号流图的绘制信号流图可以根据系统方框图的绘制,也可以根据数学表达式绘制。
控制工程基础6-第2章 (数学模型-4:信号流图及梅逊公式)

1 R E
G1
Q
G2
O
1
C
R(s ) 1 R( s )
1
×G
G5
H
1
G6 G3 -H 1 G4 1 C (s )
G2 -H2
三个回路
梅森公式
C ( s) 1 n pk k R( s) k 1
△为特征式,其计算公式为
D= 1 - 邋 1 + L
其中:
L2 -
L3 +
n 为从输入节点到输出节点间前向通路的条数;
R(s)
E ( s) B( s)
G1 ( s )
G2 ( s )
C (s)
1 R E
N 1
G1
Q
G2
O
1
C
H (s)
H
信号流图常用的名词术语
(1)输入节点(源节点):只有输出支路而没有输入支路 的节点,称为源节点。它一般表示系统的输入变量,亦称 输入节点,如图中的节点R和N。 (2)输出节点(阱节点):只有输入支路而没有输出支 路的节点,称为阱节点。它一般表示系统的输出变量,亦 称输出节点,如图中的节点C (3)混合节点:既有输入支路又有输出支路的节点, 称为混合节点,如图中的节点E,Q,O
6
R(s) 1
G1 2
G2 3
G3 4
G4 H1 5
G5 6
C(s)
解:前向通路有3个
1 2 3 4 5 6
1 2 4 5 6来自H2P1 G1G2 G3G4 G5
2 1
1 1
P2 G1G6 G4 G5
1 2 3 6
P3 G1G2 G7
系统的信号流图与梅森公式

6-5 系统的信号流图与梅森公式一、信号流图的定义由节点与有向支路构成的能表征系统功能与信号流动方向的图,称为系统的信号流图,简称信号流图或流图。
例如,图6-29(a)所示的系统框图,可用图6-29(b)来表示,图(b)即为图(a)的信号流图。
图(b)中的小圆圈“o”代表变量,有向支路代表一个子系统及信号传输(或流动)方向,支路上标注的H(s)代表支路(子系统)的传输函数。
这样,根据图6-29(b),同样可写出系统各变量之间的关系,即图6-29二、三种运算器的信号流图表示三种运算器:加法器、数乘器、积分器的信号流图表示如表6-3中所列。
由该表中看出:在信号流图中,节点“o”除代表变量外,它还对流入节点的信号具有相加(求和)的作用,如表中第一行中的节点Y(s)即是。
三、模拟图与信号流图的相互转换规则模拟图与信号流图都可用来表示系统,它们两者之间可以相互转换,其规则是:(1) 在转换中,信号流动的方向(即支路方向)及正、负号不能改变。
(2) 模拟图(或框图)中先是“和点”后是“分点”的地方,在信号流图中应画成一个“混合”节点,如图6-30所示。
根据此两图写出的各变量之间的关系式是相同的,即。
(3) 模拟图(或框图)中先是“分点”后是“和点”的地方,在信号流图中应在“分点”与“和点”之间,增加一条传输函数为1的支路,如图6-31所示。
(4) 模拟图(或框图)中的两个“和点”之间,在信号流图中有时要增加一条传输函数为1的支路(若不增加,就会出现环路的接触,此时就必须增加),但有时则不需增加(若不增加,也不会出现环路的接触,此时即可以不增加。
见例6-17)。
(5) 在模拟图(或框图)中,若激励节点上有反馈信号与输入信号叠加时,在信号流图中,应在激励节点与此“和点”之间增加一条传输函数为1的支路(见例6-17)。
(6) 在模拟图(或框图)中,若响应节点上有反馈信号流出时,在信号流图中,可从响应节点上增加引出一条传输函数为1的支路(也可以不增加,见例6-17)。
信号流图的绘制及梅森公式

第二章 数学模型
例3.试用梅逊公式确定如图所示系统的传递函数。
P2 P1 P3
解:由图可知,系统有3条前向通路,其增益分别为
P1 G1G2G3G4G5
P2 G1G6G4G5
P3 G1G2G7
例3(续)
第二章 数学模型
L1
L2
L4
L3
有4个单独的回路,各回路增益分别为
L1 G4 H1
L2 G2G7 H2
信号流图续由系统微分方程绘制信号流图任何线性数学方程都可以用信号流图表示但含有微分或积分的线性方程一般应通过拉氏变换将微分或积分变换为关于的代数方程后再画信号流图
第二章 数学模型
§2-5 信号流图与梅逊公式
方框图虽对于分析系统很有用处,但遇到结构复杂 的系统时,其简化和变换过程往往显得烦琐,还得分 清比较点和引出点,一般二者不交换。因此可采用信 号流图,简单易绘制。
(1)信号流图是表达线性方程组的一种数学图形。 当系统由微方(或差方)描述时,应先变换成 代数方程并整理成因果关系形式。
(2)节点标志系统的变量。每个节点标志的变量是 所有流向该节点的信号之代数和,而从同一节 点流向各支路的信号均用该节点的变量表示。
(3)支路相当于乘法器,信号流经支路时,被乘以 支路增益而变换为另一信号。
信号流图(续)
第二章 数学模型
(11)前向通路——若从源节点到汇节点的通路上,通 过任何节点不多过一次,则称为前向通路。
(12)前向通路传输——前向通路中各支路传输的乘积 称为前向通路传输或增益。
(13)回路传输——闭通路(回路)上各支路传输的乘积 称为回路传输或增益。
第二章 数学模型
3.性质:
直接写出从输入节点到输出节点的总传输——系统总
2.6信号流图与梅森公式

G2 ( s) H ( s) N ( s) N ( s) 1 G1 ( s)G2 ( s) H ( s)
N ( s)
7)系统的总输出 X o (s) i (s) X i (s) N (s) N (s)
8)系统的总偏差 (s) i ( s) X i ( s) N (s) N (s) 结论
练习 试化简下图所示系统的方框图,并求系 统传递函数。
可看出此题方框图化简较复杂,试用梅森公式化简.
• 两条前向通路 • 两条回路 • 主特征式
P G1G3G5 , P2 G2G4G5 1
L1 G3 H , L2 G4 H
1 ( L1 L2 ) 1 G3 H G4 H
【例1】根据微分方程绘制信号流图
i1 (t ) 1 R1 [ui (t ) u A (t )]
1 u A (t ) [i1 (t ) i2 (t )]dt C1
1 i2 (t ) [u A (t ) uo (t )] R2
uo (t) 1 C2
i (t )dt
2
一般闭环控制系统的结构如下图所示
1)闭环系统的开环传递函数 将闭环控制系统主反馈 通道的输出断开,即 H(s)的输出通道断开 时,前向通道传递函数与反馈通道传递函数的乘积 G1(s)G2(s)H(s)称为该闭环控制系统的开环传递函数 ,记为GK(s)。
闭环系统的开环传递函数也可定义为反馈信 号B(s)和偏差信号ε(s)之间的传递函数,即:
X o ( s) G( s) G1 ( s)G2 ( s) ( s)
B( s) H ( s) X o (s)
4)输入信号作用下的闭环传递函数
令n(t)=0,此时在输入xi(t)作用下系统的闭环传 递函数为:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
已知系统信号流图, 例4 已知系统信号流图, 解:三个回路
求传递函数 X4/X1及 X2/X1。 。
∑L
则
a
= − d − eg − bcg
有两个互不接触回路 ∑ Lb Lc = deg
∆ = 1 + d + eg + bcg + deg
f
1. X 1 → X 4 , p1 = aef , p2 = abcf ∆1 = 1 + d , ∆ 2 = 1
G4 G1 H1 G4 G1 H1 H1 G2 G2
作用分解
G3 H3
G3 H3 H3
梅逊公式介绍 R-C :
C(s) = R(s)
∑Pk△k △
其中: 其中
△称为系统特征式 △= 1 - ∑La + ∑LbLc -∑LdLeLf+…
所有单独回路增益之和 所有单独回路增益之和 回路增益 ∑LbLc—所有两两互不接触回路增益乘积之和 —所有两两互不接触回路增益乘积之和 ∑LdLeLf—所有三个互不接触回路增益乘积之和 所有三个互不接触回路增益乘积之和
R(s) 1
e
g
a f
b
c
h
d
C(s)
前向通路两条
四个单独回路, 四个单独回路,两个回路互不接触 ab c d + e d (1 – b g) C(s) = – a – bg – c – R(s) 1 f h e h g f + af c h
信号流图
• 信号流图是由节点和支路组成的一种信号传递网络。 信号流图是由节点和支路组成的一种信号传递网络 是由节点和支路组成的一种信号传递网络。 信号流图的基本性质 基本性质: 信号流图的基本性质: 1) 节点标志系统的变量,节点标志的变量是所有流向该节点信 节点标志系统的变量 标志系统的变量, 号的代数和, 表示; 号的代数和,用“O”表示; 表示 2) 信号在支路上沿箭头单向传递; 信号在支路上沿箭头单向传递 在支路上沿箭头单向传递; 3) 支路相当于乘法器,信号流经支路时,被乘以支路增益而变 支路相当于乘法器 信号流经支路时, 相当于乘法器, 成另一信号; 成另一信号; 4) 对一个给定系统,信号流图不是唯一的。 对一个给定系统,信号流图不是唯一的。 x6 信号流图中常用的名词术语: 信号流图中常用的名词术语: x5 x1 • 源节点(输入节点): 源节点(输入节点): x2 x3 x7 I(s) x4 o在源节点上,只有信号输出 在源节点上, 在源节点上 1/R1 1+R1C1s R2 支路而没有信号输入的支路, 支路而没有信号输入的支路, 它一般代表系统的输入变量。 它一般代表系统的输入变量。 -1 •阱节点(输出节点): 阱节点( 阱节点 输出节点): 在阱节点上,只有信号输入的支路而没有信号输出的支路, 在阱节点上,只有信号输入的支路而没有信号输出的支路,它 一般代表系统的输出变量。 一般代表系统的输出变量。
• 混合节点 : 在混合节点上 , 既有信号输出的支路而又有信号输 混合节点:在混合节点上, 入的支路。 入的支路。 • 前向通路:信号从输入节点到输出节点传递时,每个节点只通 前向通路:信号从输入节点到输出节点传递时, 过一次的通路,叫前向通路。前向通路上各支路增益之乘积称前 过一次的通路,叫前向通路。前向通路上各支路增益之乘积称前 向通路总增益,一般用Pk表示 表示。 向通路总增益,一般用 表示。 • 回路:起点和终点在同一节点,而且信号通过每一节点不多于 回路:起点和终点在同一节点, 一次的闭合通路称回路。回路上各支路增益之乘积称回路增益 回路增益, 一次的闭合通路称回路。回路上各支路增益之乘积称回路增益, 一般用La表示 表示。 一般用 表示。 • 不接触回路:回路之间没有公共节点时,称它们为不接触回路。 不接触回路:回路之间没有公共节点时,称它们为不接触回路。
例5
G2 A2 R A1 G1 B G4 H G3 C
解:①用小圆圈表示各变 ① A 量对应的节点 1 , A2 ②在比较点之后的引出点
系统方块图
G2 R 1 G1 1 e1 e2 G4 G3
e
只需在比较点后设置一个节 点便可。 点便可。也即可以与它前面 的比较点共用一个节点。 的比较点共用一个节点。 ③在比较点之前的引出点 ,需设 在比较点之前的引出点B, 在比较点之前的引出点 置两个节点, 置两个节点,分别表示引出点和 比较点, 比较点,注意图中的 e1 e2
1 1
梅逊公式求E(s) 梅逊公式求
N(s) N(s) N(s)
G2(s) G2(s) G22(s) G (s) HH (s) 2 (s) H(s) 2 2 C(s) C(s) C(s) C(s)
P2= - G3G2H3 △ 2= 1 P2△2=?
HH (s) 1 (s) H(s) 1 1
H3(s) H3(s) H33(s) H (s)
∆2 = 1− a44
x3
a42 a12
a44 a34 a45 x4 a35 a52 x5
(a)
a23 x2 a32 x3
x1
(d)
x2
x3
互不接触
L1 = a23a32
L12 = a23a32a44 L2 = a23a34a42
(e) (f)
x2
x4 x4 x5 L3 = a44 互不接触 L22 = a23a35a52a44 L4 = a23a34a45a52
G1(s) R(s) E(S) P1= –G2H3 P1=1 H1(s)
△△1= 1 2HH2(s)P1△1= ? 1=1+G 2
E(s)=
R(s)[ (1+G2H2) + (- G3G2H3) ] + (–G2H3) N(s)
1 - G1H1 + G2H2
+ G1G2H3 -G1H1G2 H2
信号流图
U(s)
-1
பைடு நூலகம்-1
已知系统信号流图,求传递函数。 例3 已知系统信号流图,求传递函数。
L 解:三个回路: 1 = − G 2 H 2 三个回路:
-H1 R G1 H2 G2 -H2 G4 G3 C
L 2 = G 1G 2 H 2
L 3 = −G 2 G 3 H 1
• 回路相互均接触,则: 回路相互均接触, • 前向通路有两条: 前向通路有两条:
∆ = 1 − ∑ L a = 1 + G 2 H 2 + G 2 G 3 H 1 − G 1G 2 H 2
没有与之不接触的回路: P1 = G 1G 2 G 3 ,没有与之不接触的回路: 1 ∆
=1
P2 = G 4 ,与所有回路不接触: 2 = ∆ ∆ 与所有回路不接触:
G 1G 2 G 3 1 n G(s ) = ∑ Pk ∆ k = + G4 1 + G 2 H 2 + G 2 G 3 H 1 − G 1G 2 H 2 ∆ k =1
X4 1 aef (1 + d ) + abcf = ( p1 ∆ 1 + p 2 ∆ 2 ) = X1 ∆ 1 + d + eg + bcg + deg
2. X 1 → X 2 , p1 = a , ∆ 1 = 1 + d
X2 1 a (1 + d ) = p1 ∆ 1 = X1 ∆ 1 + d + eg + bcg + deg
信号流图的绘制
由系统结构图绘制信号流图 1) 用小圆圈标出传递的信号,得到节点。 用小圆圈标出传递的信号,得到节点。 2) 用线段表示结构图中的方框,用传递函数代表支路增益。 用线段表示结构图中的方框,用传递函数代表支路增益。 注意信号流图的节点只表示变量的相加。 注意信号流图的节点只表示变量的相加。
互不接触 L1与L2
L12 = G4 G2 G7 H 1 H 2
∆ = 1 + G1 H 1 + G2 G7 H 2 + G6 G4 G5 H 2 + G2 G3 G4 G5 H 2 + G4 G5 G7 H 1 H 2
P2= G4G3
L4= – G4G3
P1=G1G2G3
L1= –G1 H1 L2= – G3 H3 L5 = – G1G2G3
L3= – G1G2G3H3H1
L1L2= (–G1H1) (–G3H3) = G1G3H1H3
L1L4=(–G1H1)(–G4G3)=G1G3G4H1
G3(s) R(s) R(s) R(s) R(s) G3 (s) E(S)G(s) G33(s) E(S) E(S) E(S) GG (s) 1 (s) G(s)
G4(s)
R(s)
梅逊公式例R-C 梅逊公式例
G22(s) G (s) G33(s) G (s)
H3(s)
C(s)
G11(s) G (s) H1(s)
△1=1
R(s)
C(s) G1(s) =?
G4(s)
△2=1+G1H1
G2(s) G3(s) (s) 请你写出答案,行吗? 请你写出答案,行吗? G3
— ∑L
a
Pk—从R(s)到C(s)的第 条前向通路传递函数 的第k条前向通路传递函数 从 到 的第
称为第k条前向通路的余子式 △k称为第 条前向通路的余子式
求法: 去掉第k条前向通路后所求的 △k求法 去掉第 条前向通路后所求的△ 条前向通路后所求的△
△k=1-∑LA+ ∑LBLC- ∑LDLELF+…
∆2 = 1
P2 = G1G6 G 4 G5
1→ 2 → 3→ 6
P3 = G1G 2 G7
∆ 3 = 1 + G4 H 1
4个单独回路