信号流图与梅森公式
信号流 图与梅逊增益公式

【例 2-17】已知某系统的信号流图如图所示,试求其传递函数。
【解】由图可知,此系统有两条前向通路,即 n 2 ,其增益各为 p1 abcd 和 p2 fd ;
有三个回路,即 L1 be ,L2 abcdg ,L3 fdg ,因此 La L1 L2 L3 。上述三个 回路中只有 L1 与 L3 互不接触,L2 与 L1 及 L3都接触,因此 LbLc L1L3 。由此得系统的
(1)源点:也称输入节点,指只有输出支路的节点,如图中的 x1 。它一般表 示系统的输入量。
(2)汇点:也称输出节点,指只有输入支路的节点,如图中的 x6 。它一般表
示系统的输出量。
(3)混合节点:既有输入支路又有输 出支路的节点称为混合节点,如图中
的 x2 ,x3 ,x4 。它一般表示系统的中间
变量。
数。由于信号流图和结构图之间存在相应的联系,因此梅逊增益公式同样也
适用于结构图。
梅逊增益公式给出了系统信号流图中任意输入节点与输出节点
之间的增益(即传递函数),其公式为
式中
P
1
n k 1
pk k
n ——从输入节点到输出节点的前向通路的总条数;
pk ——从输入节点到输出节点的第 k 条前向通路总增益;
(5)回路:单独回路的简称,即起点和终点在同一节点且信号通过每一个节点不多于
一次的闭合通路。从一个节点开始,只经过一条支路又回到该节点的回路,称为自回
路。回路中所有支路增益的乘积称为回路增益,用 La 表示。在图中共有三条回路,一 条是起始于节点 x2 ,经过节点 x3 最后回到节点 x2 的回路,其回路增益为 L1 bc ;第二 条是起始于节点 x,2 经过节点 x,3 ,x4 x最5 后又回到节点 x的2 回路,其回路增益 为 L2 cegh ;第三个是起始于节点 x4 并回到节点 x4的自回路,其回路增益为 L3 f 。
25信号流图与梅森公式 共31页

i1
G 1 G 2 G 3 G 4 G 5 G 6 H 1 G 2 G 3 H 2 G 4 G 5 H 3 G 3 G 4 H 4
L iL j L 2 L 3 ( G 2 G 3 H 2 ) G ( 4 G 5 H 3 )
G 2G 3G 4G 5H 2H 3
2-5 信号流图及梅森公式
是表示复杂系统的又一种图示方法。
重点: 1)根据系统的结构框图可画出信号流图 2)根据信号流图求系统的传递函数
1
x5
一、信号流图的几个定义
f
输入节点(或源节点):
x1 a x 2
b
只有输出支路的节点,如x1、 x5。
d
e
c
x4
x3
输出节点(或阱节点):只有输入支路的节点,如x4。
作业:
2-11 求C(s)/R(s) 2-12 (a) (d)
30
谢谢!
xiexie!
8
Σ Li:所有各回路的“回路传递函数”之和; Σ LiLj:两两互不接触的回路,其“回路传递 函数”乘积之和; Σ LiLjLk:所有三个互不接触的回路,其“回 路传递函数”乘积之和; n:前向通道数;
9
注意事项:
“回路传递函数”是指反馈回路的前 向通路和反馈回路的传递函数的乘积, 并且包含代表反馈极性的正、负号。
11
所以
C (G s P ) 1 Δ 1
1
R(s) Δ R 1 R 2 C 1 C 2 s2 R 1 C 1 s R 1 C 2 s 1
28
练习eBiblioteka g1ab
c
d
R(s) f
C(s) h
四个单独回路,两个回路互不接触
第七节 信号流图与梅森公式

的就是梅逊增益公式。
P
1
K 1
n
PK
K
18
P ——从输入到输出间的总增益。(系统传递函数)
n ——从输入节点到输出节点的前向通路总数。
PK ——从输入节点到输出节点的第K条前向通路的总增益。
(分支传递函数)
K ——余因子式(在 中令与第K条前向通路相接触的回 路增益为 0 所得到的 值)
节点为汇节点,分离前后变量相同。
6
7Hale Waihona Puke 二、由方块图到信号流图方块图 信号线 信号线上所传递的信号 引出点 比较点 节点 节点变量 出支路 入支路
信号流图
方块及传递函数,保持同向 支路传递方向及增益
8
例1:将如图方块图化为信号流图。
9
例1:将如图方块图化为信号流图。
10
例1:将如图方块图化为信号流图。
X
3
BX
2
BX
2
ABX
1
4
2、说明
(1)节点变量(信号)等于所有流向该节点的信 号之代数和,与输出无关。从同一节点流出的信号均 等于该节点变量,与流入无关。同方向传递的信号不 能重复计算。
X
X
3
AX
CX
1
BX
2
4
3
X
5
DX
3
5
(2)信号在支路上沿箭头方向单向传递。 (3)支路相当于一个乘法器,信号流经支路时,被 乘以支路增益而变换为另一个信号。(支路增益为 “1”时,可不标出) (4)在混合节点上,增加一条具有单位增益的输出 支路,可以从信号流图中分离出系统变量。即变混合
①混合节点——既有输入信号又有输出信号的节点。
梅森公式-信号流图

例4 已知系统信号流图, 解:三个回路
求传递函数 X4/X1及 X2/X1。
L
a
d eg bcg
c
有两个互不接触回路
L L
b
deg
f
则 1 d eg bcg deg
1. X 1 X 4 , p1 aef , p2 abcf 1 1 d , 2 1
x2
(g)
x2
x3
x5 L5 a23a35a52
a12 a23 a34 a45 (1 a44 )a12 a23 a35 P 1 (a23 a32 a23 a34 a42 a44 a23 a34 a52 a23 a35 a52 ) a23 a32 a44 a23 a35 a52 a44
2 1 a44
x3
a42 a12
a44 a34 x4 a35 a52 a45 x5
(a)
a23 x2 a32 x3
x1
(d)
x2
x3
互不接触
L1 a23a32
L12 a23a32a44 L2 a23a34a42
(e) (f)
x2
x4 x4 x5 L3 a44 互不接触 L22 a23a35a52a44 L4 a23a34a45a52
E(s)=
R(s)[ (1+G2H2) + (- G3G2H3) ] + (–G2H3) N(s)
1 - G1H1 + G2H2
+ G1G2H3 -G1H1G2 H2
信号流图
R(s) 1
e
g
a
f
b
信号流图和梅森公式

例2:求系统传递函数。
e
g
R(s)
1
a f
b
c
h
d
C(s)
四个单独回路,两个回路互不接触。
前向通路两条。
ab c d + e d (1 – b g) C(s) = R(s) 1 – a f – b g – ch– e h g f + af c h
04:07
39
例3:求系统的传递函数
G1 R G2 C
04:07
42
解:由结构图绘制出信号流图。
x2 R(s) 1 x1 1 1 1 x6
04:07
G1
x3
1x
4
C(s)
1
G2
-1
1 x5
43
单独回路有5条:
x1 x2 x3 x4 x1 : L1 G1
x2
G1
x3 x4
R(s)
x1 x6 G2 -1 x5
04:07
Δ1=1 Δ2=1 Δ3=1-L1
1 N Gk Δ k 代入 G kΣ Δ 1
得系统的传递函数C(s)/R(s)为
C(s) 1 G (p1Δ1 p 2Δ 2 p 3Δ 3 ) R(s) Δ G1G 2 G 3 G 4 G 5 G1G 6 G 4 G 3 G1G 2 G 7 (1 G 4 H1 ) 1 G 4 H1 G 2 G 7 H 2 G 6 G 4 G 5 H 2 G 2 G 3 G 4 G 5 H 2 G 4 H 1G 2 G 7 H 2
04:07
31
G6
R(s)
G7
G3
G1 a
G2 b
G4 c
自动控制原理第二章梅森公式-信号流图课件

ABCD
然后,通过分析梅森公式 的各项系数,确定系统的 极点和零点。
最后,将梅森公式的分析 结果转换为信号流图,进 一步明确系统各变量之间 的传递关系。
梅森公式在信号流图中的应用实例
假设一个控制系统的传递函数为 (G(s) = frac{s^2 + 2s + 5}{s^2 + 3s + 2})
在信号流图中,将极点和零点表示为相 应的节点,并根据梅森公式的各项系数 确定各节点之间的传递关系。
02
信号流图基础
信号流图定义与构成
信号流图定义
信号流图是一种用于描述线性动 态系统数学模型的图形表示方法 ,通过节点和支路表示系统中的 信号传递和转换过程。
信号流图构成
信号流图由节点和支路组成,节 点表示系统的动态方程,支路表 示输入输出之间的关系。
信号流图的绘制方法
确定系统动态方程
根据系统描述,列出系统的动态方程。
2
梅森公式与信号流图在描述和分析线性时不变系 统时具有互补性,二者可以相互转换。
3
信号流图能够直观地表示系统各变量之间的传递 关系,而梅森公式则提供了对系统频率特性的分 析手段。
如何使用梅森公式进行信号流图分析
首先,将系统的传递函数 转换为梅森公式的形式。
根据极点和零点的位置, 判断系统的稳定性、频率 响应特性等。
在未来研究中的可能发展方向
随着科技的不断进步和应用需求的不断变化,控制系统面临着越来越多的 挑战和机遇。
在未来研究中,可以利用梅森公式和信号流图进一步探索复杂系统的分析 和设计方法,提高系统的性能和稳定性。
同时,随着人工智能和大数据技术的应用,可以结合这些技术对控制系统 进行智能化分析和优化设计,提高系统的自适应和学习能力。
系统的信号流图与梅森公式

6-5 系统的信号流图与梅森公式一、信号流图的定义由节点与有向支路构成的能表征系统功能与信号流动方向的图,称为系统的信号流图,简称信号流图或流图。
例如,图6-29(a)所示的系统框图,可用图6-29(b)来表示,图(b)即为图(a)的信号流图。
图(b)中的小圆圈“o”代表变量,有向支路代表一个子系统及信号传输(或流动)方向,支路上标注的H(s)代表支路(子系统)的传输函数。
这样,根据图6-29(b),同样可写出系统各变量之间的关系,即图6-29二、三种运算器的信号流图表示三种运算器:加法器、数乘器、积分器的信号流图表示如表6-3中所列。
由该表中看出:在信号流图中,节点“o”除代表变量外,它还对流入节点的信号具有相加(求和)的作用,如表中第一行中的节点Y(s)即是。
三、模拟图与信号流图的相互转换规则模拟图与信号流图都可用来表示系统,它们两者之间可以相互转换,其规则是:(1) 在转换中,信号流动的方向(即支路方向)及正、负号不能改变。
(2) 模拟图(或框图)中先是“和点”后是“分点”的地方,在信号流图中应画成一个“混合”节点,如图6-30所示。
根据此两图写出的各变量之间的关系式是相同的,即。
(3) 模拟图(或框图)中先是“分点”后是“和点”的地方,在信号流图中应在“分点”与“和点”之间,增加一条传输函数为1的支路,如图6-31所示。
(4) 模拟图(或框图)中的两个“和点”之间,在信号流图中有时要增加一条传输函数为1的支路(若不增加,就会出现环路的接触,此时就必须增加),但有时则不需增加(若不增加,也不会出现环路的接触,此时即可以不增加。
见例6-17)。
(5) 在模拟图(或框图)中,若激励节点上有反馈信号与输入信号叠加时,在信号流图中,应在激励节点与此“和点”之间增加一条传输函数为1的支路(见例6-17)。
(6) 在模拟图(或框图)中,若响应节点上有反馈信号流出时,在信号流图中,可从响应节点上增加引出一条传输函数为1的支路(也可以不增加,见例6-17)。
2.6信号流图与梅森公式

G2 ( s) H ( s) N ( s) N ( s) 1 G1 ( s)G2 ( s) H ( s)
N ( s)
7)系统的总输出 X o (s) i (s) X i (s) N (s) N (s)
8)系统的总偏差 (s) i ( s) X i ( s) N (s) N (s) 结论
练习 试化简下图所示系统的方框图,并求系 统传递函数。
可看出此题方框图化简较复杂,试用梅森公式化简.
• 两条前向通路 • 两条回路 • 主特征式
P G1G3G5 , P2 G2G4G5 1
L1 G3 H , L2 G4 H
1 ( L1 L2 ) 1 G3 H G4 H
【例1】根据微分方程绘制信号流图
i1 (t ) 1 R1 [ui (t ) u A (t )]
1 u A (t ) [i1 (t ) i2 (t )]dt C1
1 i2 (t ) [u A (t ) uo (t )] R2
uo (t) 1 C2
i (t )dt
2
一般闭环控制系统的结构如下图所示
1)闭环系统的开环传递函数 将闭环控制系统主反馈 通道的输出断开,即 H(s)的输出通道断开 时,前向通道传递函数与反馈通道传递函数的乘积 G1(s)G2(s)H(s)称为该闭环控制系统的开环传递函数 ,记为GK(s)。
闭环系统的开环传递函数也可定义为反馈信 号B(s)和偏差信号ε(s)之间的传递函数,即:
X o ( s) G( s) G1 ( s)G2 ( s) ( s)
B( s) H ( s) X o (s)
4)输入信号作用下的闭环传递函数
令n(t)=0,此时在输入xi(t)作用下系统的闭环传 递函数为:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.5 信号流图与梅森公式2.5.1 信号流图信号流图是表示复杂的又一种图示方法.信号流图相对于结构图更简便明了,而且不必对图形进行简化,只要根据统一的公式,就能方便地求出系统的传递函数.1. 信号流图的组成及基本性质信号流图由节点和支路组成.一个节点代表系统中的一个变量,用小圆圈”Ο”表示;连接两个节点之间有箭头的定向线段为支路.支路相当于信号乘法器,乘法因子(或支路增益)表在支路上;信号只能沿箭头单方向传递,经支路传递的信号应乘以乘法因子;只有输出支路,无输入支路的节点称为输入节点,代表系统的输入变量;只有输入支路,无输出支路的节点称为输出节点,代表系统的输出变量;既有输入支路,也有输出支路的节点称为混合节点.信号流图的特征描述还需要以下专用术语:前向通路 信号从输入节点到输出节点传递时,对任何节点只通过一次的通路称为前向通路.而前向通路上各支路增益之积,为前向通路总增益.回路 如果信号传递通路的起点和终点在同一节点上,且通过任何一个节点不多于一次的闭合通路称为单独回路,简称回路.回路中各支炉增益的乘积称为回路增益.不接触回路 两个或两个以上回路之间没有任何公共节点,此种回路称为不接触回路. 由图2-31的信号流图可以说明以上的基本元素,即 74321X XX X X是节点;j h d c b a ,,,,, 为支路增益;4,1X X 为输入节点;7X 为输入节点;6532X X X X 为混合节点。
信号流图共有三条前向通道,第一条是765321XXXXXX →→→→→;第二条是76531X XXXX →→→→;第三条是765324X XXXXX→→→→→。
有两个单独回路,一个是565X X X →→,起点和终点是5X ;另一个起点、终点在3X 的自回路。
而且这两个回路无公共节点,是不接触回路。
图2-31 信号流图注意:对于确定的控制系统,其信号流图不是唯一的。
2.5.2 信号流图的绘制信号流图可以根据系统方框图的绘制,也可以根据数学表达式绘制。
1. 根据系统方框图绘制将方框图中比较点和引出点分别作为信号流图的节点,方框图中的方框变为信号流图中标有传递函数的线段,便得到支路。
从系统方框图绘制信号流图是时应尽量精简节点数目。
若在方框图的比较点之前没有引出点,但在比较点之后有引出点时,只需在比较点之后设置一个节点即可,如图2-32(a )所示;若方框图的比较点之前有引出点,就需要在比较点和引出点处各设一个节点,分别表示两个变量,两个节点之间的增益是1,如图2-32(b)所示。
图 2-32 比较点与节点对应关系系统结构图如图2-33所示,其对应的信号流图如图2-34所示。
图2-33 比较点与节点对应关系图2-34 系统信号流图2. 根据系统方程绘制信号流图 某线形系统由下方程组描述12aX X= 423eXbX X +=4324fX dX cX X ++=根据系统(2-55),首先确定接点 4,3,2,1X X X X ,然后绘制式(2-55)中各方程信号流图,如图2-35(a ),(b), (c), 所示;最后将各个图连接起来,即得到系统的信号流图,如图2-35(d )所示。
1X 为输入变量,4X 为输出变量。
图2-35 系统信号流图如果采用克莱姆法则求解,将输入变量 1X 留到方程右侧,其余移到方程左边经整理式(2-55)变为12aX X =0432=-+-eX X bX 0432=-+-eXX bX上述方程组的系数行列式为111400101111001X +X -=---X =∆-+-=-----=∆ac abd dcba fde f d c e b则有 1441)(X fde db c a X --+=∆∆=从上式求解过程可知,系数行列式与信号流图之间有一种巧妙的关系,首先作为传递函数分母的系数行列式∆ ,其中的两项恰巧与信号流图中的两各回路增益之和相对应,即)(de f +。
其次,作为传递函数分子系数行列式4∆ 的系数,其中的两项恰好与信号流图中的两个前向通道总增益之和相对应,即ac abd +。
这种对应关系,为我们直接从信号流图采用观察的方法,求区系统的传递函数提供了一般规律,这就是梅森公式的基本指导思想。
2.5.3 梅森公式由信号流图可以得到任意输入接点之间的传递函数,即任意两个节点之间的总增益。
任意两个节点之间传递函数的梅森增益公式为k nk P P ∆∆=∑=141式中:P 为从输入节点到输出节点的总增益(或传递函数);n 为从输入节点到输出节点的前向通道条数;∑∑∑+++-=∆f e d c b a L L L L L L 1 为系统特征式,其中∑aL为系统流图中所有单独回路的增益之和;c bL L∑为所有两个互不接触回路的回路增益乘积之和;∑fedLL L 为所有三个互不接触回路的回路增益乘积之和;k P 为第k 条的前向通道增益;k ∆为第k 条前向通道的余因子,即在信号流图中,把与第k 条前向通道相接触的回路除去以后的∆ 值。
例2-11 如图2-36所示信号流图,求输入节点到输出节点的传递函数。
图2-36 例2-11 的系统信号流图解 根据梅森增益公式,从输入节点到输出节点之间,只有一条前向通道,其增益为43211G G G G P =有三个单独回路,即1321H G G L -=,2432H G G L -=,343212H G G G G L -=其回路之和为34321243121H G G G G H G G H G G La---=∑这三个回路都有公共点,所以不存在互不接触电路。
于是特征式为3432124312111H G G G G H G G H G G L a +++=-=∆∑因为这三个回路都和前向通道 接触,所以其余因子式 ,最后得到输入节点到输出节点的总增益P 即系统传递函数为343212431214321111HG G G G H G G H G G G G G G P P +++=∆∆=例 2-12 求图2-37所示信号流图的传递函数。
图2-37例 2-12的系统信号流图解 由图2-37知,系统有4个单独回路,分别为eghf L ch L bg L af L ====4321,,,其回路之和为ehgf ch bg af L L L L La+++=+++=∑4321只有1L 与 3L 回路互不接触,所以两两互不接触回路增益乘积为afch L L =31于是特征式为afch ehgf ch bg af +----=∆1有两个前向通道,分别为abcd P =1,ed P =2第一条前向通道与所有回路都接触,第二条前向通道与回路bg L =2 不接触,因此bg -=∆=∆1,121系统的总增益即传递函数为afchehgf ch bg af bg ed abcd P P P +-----+=∆+∆∆=1)1()(12211例2-13 如图2-38 所示为一个交叉反馈系统,求其开环传递函数。
图 2-38 例 2-13 的系统结构图解 系统相应的信号流图如图2-39所示。
分析信号流图,克制有5个单独回路,分别为2211)1)(1(5ss K s K L ++=,2212)1)(1(5ss K s K L ++=2213)1)(1(5ss K s K L ++=ssK L 141+-= ss K L )1(525+-=图2-39 例2-13的系统信号流图其增益之和为54321L L L L L La++++=∑没有互不接触回路,系统特征式为221212212212212215)1(5)1()1)(1(15)1(51)1)(1(5)1)(1(5)1)(1(51ss K s s K s s K s K s ssK ss K ss K s K ss K s K ss K s K L ++++++-=++++++-++-++-=前向通道有4条,分别为ssK P 111+=,)1(522ssK P +=2213)1)(1(5ss K s K P ++-=,2214)1)(1(5ss K s K P ++-=4个前向提到与所有的单独回路都接触,因此1,1.1,14321=∆=∆=∆=∆由梅森公式得系统传递函数为)1)(1(15)1(5)1()1)(1(10)1(5)1()1)(1(10)1(5)1(1)(1)(2121221212212144332211s K s K s K s s K s s s K s K s K s s K s s s K s K s K s s K s P P P P P s ++-++++++-+++=⎥⎦⎤⎢⎣⎡++-+++∆=∆+∆+∆+∆∆==Φ 对于单位负反馈系统,有)(1)()(s G s G s +=Φ式中)(s G 为系统的开环传递函数,则[]5)(5)51(10)(106)105()1)(1(5)1)(1(10)1(5)1()(1)()(2122121221112122121-+---+-+-+=++-++-+++=Φ-Φ=s K K s K K s K K s K K K K s K s K s s K s K s K s s K s s s s G熟悉了梅森公式以后,根据它求取系统得增益,比利用结构图更简便有效,特别是复杂得多环系统和多输入,多输出系统效果更著。
因此,信号流图得到了广泛得使用,并常用于控制系统得计算和辅助设计。