短路电流计算及设备选型

合集下载

短路电流计算

短路电流计算

目录一、绪论 (2)(一)、原始资料 (2)(二)、设计内容 (2)(三)、原始资料分析 (3)二、电气主接线方案的拟定 (4)(一)电气主接线的基本要求和设计原则 (4)(二)主变压器的选择 (4)(三)确定各侧接线方式 (4)三、短路电流计算 (4)(一)短路电流计算的目的 (4)(二)短路电流计算的一般规定 (5)(三)计算步骤 (5)四、主要设备的选择 (5)五、主要设备的配置 (7)(一)、PT的配置 (7)(二)CT的配置 (8)(三)避雷器的配置 (8)六、所用电设计 (8)(一)用电电源数量及容量 (9)(二)所用电源引接方式 (9)(三)变压器低压侧接线 (9)七、配电装置设计 (9)八、主变保护的配置 (10)九、无功补偿装置 (10)一、绪论(一)、原始资料1、根据电力系统规划需新建一座220kv区域变电站,该站建成后与110kv 和220kv电网相连,并供给近区用户,按规划该站装设两台容量为120MVA主变压器。

2、按规划要求,该站有220kv、110kv和10kv三个电压等级,220kv出线6回(其中备用2回),110kv出线8回(其中备用2回),10kv出线12回(其中备用2回)。

变电站还安装4组5Mvar(共20Mvar)无功补偿电容器以满足系统调压要求。

3、110kv侧有两回出线供给远方大型冶炼厂(如:驻马店市南方钢铁公司),其容量为60000KVA,其它作为一些地区变电站进线,最大负荷与最小负荷之比0.6,10kv侧总负荷为30000KVA,Ⅰ、Ⅱ类用户占60%,最大一回负荷为2500KVA,最大负荷与最小负荷之比为0.65。

4、各级电压侧功率因数和最大负荷利用小时数为:220kv侧 cosφ=0.9 Tmax=3800小时/年110kv侧 cosφ=0.85 Tmax=4200小时/年10kv侧 cosφ=0.8 Tmax=4500小时/年5、220kv和110kv侧出线主保护为瞬时动作,后备保护时间为0.15秒,10kv 出线过流保护时间为2秒,断路器燃弧时间按0.05秒考虑。

设备选型计算书

设备选型计算书

设备选型计算书边界条件:工程容量50MW,25台风力发电机组,容量2MW。

新建一座110kV升压站,1台主变,容量50MV A,1回送出线路,长度30km。

110kV、35kV均采用单母线接线方式;25台箱变,容量2MV A,箱变与风机采用单元接线方式。

3回集电线路,长度分别6km(6台)、9km(10台)、24km(9台),采用电缆直埋敷设方式。

110kV变电站三相短路电流计算:一、基本参数:1、系统:系统短路电流40kA,线路长度30km。

X 系∗=1I∗=1II j=1400.5=0.013X 线∗=X架×S jj2×L=0.4×1002×30=0.09X系统∗=X系∗+X线∗=0.013+0.09=0.1032、风机:风机额定电流1.7kA。

X风机∗=1II j=11.779.637=46.8453、主变:容量50MV A,U d%=10.5。

X主变∗=U d%100×S jS=10.5100×10050=0.214、箱变:容量2MV A,U d%=6.5。

X箱变∗=U d%100×S jS=6.5100×1002=3.255、线路:X 缆=0.12Ω/km(35kV电缆),X架=0.4Ω/km(架空线)。

三回集电线路长度分别为L1=6km;L2=9km;L3=24km。

X L∗=X缆×S jj2=0.12×1002=0.009回路1(6台风机):X L1∗=16× X风机∗+X箱变∗+X L∗×L1=16×46.845+3.25+0.009×6 =8.403回路2(10台风机):X L2∗=110× X风机∗+X箱变∗+X L∗×L2=110×46.845+3.25+0.009×9 =5.091回路3(9台风机):X L3∗=19× X风机∗+X箱变∗+X L∗×L3=19×46.845+3.25+0.009×24 =5.782二、短路计算:1、110kV侧短路阻抗X L1∗//X L2∗=3.17 X L1∗//X L2∗//X L3∗=2.047X 110′=X L1∗//X L2∗//X L3∗+X 主变∗=2.257X 110′′=X 系统∗=0.103短路电流I 110=I j ×1110′+I j ×1110′′=0.5×1+0.5×1=5.076(kA )冲击电流i ch = 2×K ch ×I 110=12.919(kA ) [K ch =1.8]全电流I ch= 1+2×(K ch −1)2×I 110=7.665(kA )短路容量S = 3×I 110×U j =1015.433(MVA )2、35kV 侧短路阻抗X 35′=X L1∗//X L2∗//X L3∗=2.047 X 35′′=X 系统∗+X 主变∗=0.313短路电流I 35=I j ×135′+I j ×135′′=1.571×1+1.571×1=5.786(kA )冲击电流i ch = 2×K ch ×I 35=15.136(kA ) [K ch =1.85]全电流I ch = 1+2×(K ch −1)2×I 35=9.047(kA )短路容量S = 3×I 35×U j =368.285(MVA )3、0.69kV 侧短路 (1)回路1短路阻抗X L2∗//X L3∗=2.707X 35′′//X L2∗//X L3∗=0.2810.281+0.054=0.335 46.845+3.25 ÷5=10.019′=10.019//0.335+3.25=3.574X0.69′′=46.845X0.69(2)回路2短路阻抗X L1∗//X L3∗=3.425X35′′//X L1∗//X L3∗=0.2870.287+0.081=0.36846.845+3.25÷9=5.566′=5.566//0.368+3.25=3.595X0.69′′=46.845X0.69(3)回路3短路阻抗X L1∗//X L2∗=3.17X 35′′//X L1∗//X L3∗=0.2850.285+0.216=0.501 46.845+3.25 ÷8=6.262X 0.69′=6.262//0.501+3.25=3.714X 0.69′′=46.845通过对比可知,当回路1短路时,阻抗最小,短路电流最大,所以选择回路1短路作为0.69kV 侧短路计算的基准。

低压断路器的选择与低压短路电流计算

低压断路器的选择与低压短路电流计算

低压断路器的选择与低压短路电流计算低压断路器分断能⼒的选择和低压短路电流计算赵庆贤鞍⼭冶⾦设计研究院摘要:通过对影响低压主母线上短路电流的各种因素的分析与具体计算,找出影响短路电流的主要因素,进⽽得出简化计算办法。

同时根据计算得出的三相短路电流周期分量和短路冲击电流值,合理选择断路器的分断能⼒。

关键字:短路电流;分断能⼒;电⼒系统的短路电流计算是电⽓设计中的主要⽂件之⼀。

通过计算,获取系统的短路数据,为⾼压电⽓设备的选择:如,⾼压断路器、⾼压隔离开关、电流互感器选择等提供了依据。

同时,也是继电保护整定的主要依据。

⽽上述主要针对⾼压系统的短路计算书,因为对低压系统的特殊性质没有全⾯包含,因⽽不能直接⽤来选择低压断路器。

本⽂结合国外某矿⼭项⽬的设计,阐述低压短路电流计算在低压断路器选型上的应⽤。

1 低压短路电流的计算1.1依据某矿⼭项⽬的设计,截取其中⼀段线路的计算结果 (见表1)及计算⽤线路图(见图1),两者都表明,上述计算中对于415V的计算,指的是6.6KV/0.415KV 变压器的⼆次出⼝,⽽不是低压主母线。

换⾔之,影响低压主母线上短路电流的许多因素,上述计算中没有予以考虑。

例如:变压器⼆次出线电缆(或母线)阻抗,低压受电断路器的阻抗,低压隔离开关的阻抗、低压主母线阻抗,等。

图1: 计算电路图1.2 另外,在电⼒系统的⾼压短路电流计算中,通常不计及各种元件的电阻。

⽽在低压短路计算时,元件电阻的影响,不能忽略。

1.3 根据规范:验算电器在短路条件下的通断能⼒,应采⽤安装处预期短路电流周期分量的有效值,当短路点附近所接电动机额定电流之和超过短路电流的1%时,应计⼊电动机反馈电流的影响。

在⾼压短路电流计算中,⼀般没有考虑低压电动机反馈电流的影响。

1.4 低压短路电流的计算: 1)系统阻抗:Xx = Ue *Ue *1000/Sdx =1.12m Ω Xx=系统阻抗;Ue=0.433Kv ;Sdx=系统短路容量或变压器⾼压侧短路容量; Sdx =168MVA(根据短路电流计算结果)。

0.4kv短路电流简单计算方法

0.4kv短路电流简单计算方法

一、概述电力系统中,短路电流是一个非常重要的参数,它直接关系到电力设备的安全运行和系统的稳定性。

准确计算短路电流对于电力系统的设计和运行至关重要。

二、短路电流的定义短路电流是指在电气系统中,由于短路故障而流过短路点的电流。

当电气设备发生短路故障时,短路电流会迅速增大,可能引起设备损坏甚至火灾。

三、短路电流的计算方法在实际工程中,计算短路电流主要有以下几种方法:1. 阻抗法阻抗法是最常用的短路电流计算方法。

它通过建立电气系统的节点阻抗矩阵,采用节点电流法或戴维南电流法求解短路电流。

这种方法计算结果较为准确,但需要大量的手工计算和复杂的数学运算,适用于小型系统或理论研究。

2. 复等值法复等值法是一种简化的计算方法,它将电气设备抽象成等值阻抗或等值电动势源,将电气系统简化为等值电路进行计算。

这种方法适用于大规模电力系统的短路电流计算,能够快速得到较为准确的结果。

3. 解耦法解耦法是一种结合了阻抗法和复等值法的计算方法,它通过对电气系统进行逐步解耦,将复杂的系统简化为多个相互独立的子系统进行计算,最后将子系统的计算结果进行组合得到整个系统的短路电流。

这种方法在复杂系统的短路电流计算中有一定的优势。

四、0.4kv短路电流计算方法对于0.4kv低压电力系统,常见的短路电流计算方法是采用复等值法。

以下是简单的0.4kv短路电流计算步骤:1. 收集系统参数首先需要收集系统中各个电气设备的参数,包括变压器、发电机、配电柜等设备的额定容量、短路阻抗等信息。

2. 建立等值电路根据收集到的设备参数,建立0.4kv电力系统的等值电路模型,将各个设备抽象成等值阻抗或等值电动势源。

3. 进行短路计算利用等值电路模型进行短路电流的计算,得到系统各个节点的短路电流值。

4. 计算结果分析对于得到的短路电流值进行分析,评估系统的短路容量,确定保护装置的参数和动作时间。

五、结论0.4kv短路电流的计算是电力系统设计和运行中不可或缺的一步。

短路电流计算及设备选型

短路电流计算及设备选型

短路电流计算及设备选型短路电流是指电力系统出现故障时,在发生故障点处形成的最大电流。

这个电流流过系统的各个元件,包括变压器、电缆、断路器等。

短路电流计算和设备选型对于电力系统的设计和运行来说是非常重要的。

1.非恒流源的计算方法:根据电网各个部件的参数,采用节点法或者戴维南法进行计算。

其中节点法是基于电流守恒定律建立的,而戴维南法是基于电压守恒定律建立的。

2.恒流源的计算方法:恒流源是指电源电流保持恒定,电压可变的情况。

恒流源计算方法主要有物理法、数学法和电容电流法等。

设备选型:1.断路器选型:断路器是用来切断电路中的短路电流的电器设备。

正确选择断路器的额定电流和断电容量是十分重要的。

一般来说,断路器的额定电流应大于系统的短路电流。

同时,断路器的断电容量也应足够,能够在短路发生时快速切断电路。

2.电缆选型:电缆是电力系统中传输电能的重要设备。

对于电缆的选型,需要考虑其导体截面、导体材料、绝缘材料和电缆的敷地方式等。

根据短路电流的大小,选择合适的电缆规格和型号,以保证其能承受短路电流的冲击。

3.变压器选型:变压器是电力系统中用来改变电压的重要设备。

在变压器的选型中,需要考虑短路电流对变压器的冲击。

变压器的绕组和绝缘结构应能够承受短路电流的冲击,同时变压器的额定电流和短路电流的比值不能过小,否则容易引起变压器过热和烧毁等问题。

4.电力电容器选型:电力电容器主要用于补偿电力系统的无功功率,提高系统的功率因数。

在选型时,需要考虑电容器的电压等级和容量等因素。

同时,电力电容器的短路容量也需要符合短路电流的要求。

总之,短路电流计算和设备选型对于电力系统的安全运行和设备的正常工作具有重要意义。

通过准确计算短路电流,并选择合适的设备,可以提高电力系统的可靠性和安全性,防止电力设备的短路故障,保护设备和人员的安全。

电力系统稳态分析中的短路电流计算方法

电力系统稳态分析中的短路电流计算方法

电力系统稳态分析中的短路电流计算方法电力系统的稳态分析是确保电力系统稳定运行的重要任务之一。

其中,短路电流计算是电力系统稳态分析的核心内容之一。

短路电流是指在电力系统中出现故障时,电流途径变得有限,导致电流异常增大的现象。

1. 短路电流的定义和影响因素短路电流是指在电力系统中发生故障时,通过短路路径的电流。

它的计算对电力系统的设备选择、保护装置的设置和设备的运行具有重要意义。

短路电流的大小受到以下几个主要因素的影响:- 系统电压:电压越高,短路电流越大。

- 故障点位置:故障点越靠近电源侧,短路电流越大。

- 系统阻抗:系统的电抗和阻抗越小,短路电流越大。

- 发电机容量:发电机容量越大,短路电流越大。

2. 短路电流计算方法短路电流的计算方法主要包括以下两种常用方法:对称分量法和潮流法。

(1) 对称分量法:对称分量法基于对称分量的概念,将三相电流分解为正序、负序和零序三个对称分量。

其中,正序分量代表正常运行的三相电流,负序分量代表系统的不平衡现象,而零序分量代表系统的故障短路电流。

通过计算零序分量即可得到短路电流。

对于对称分量法的计算过程,需要先求得正序电压和正序电流,再根据正序电流和负序电流的关系,求得负序电流。

最后,通过负序电流和零序电流的关系,计算得到零序电流,即故障短路电流。

(2) 潮流法:潮流法是基于电力系统的潮流计算理论,通过建立系统的节点支路矩阵和节点电流潮流方程组,求解得到短路电流。

潮流法相对复杂,但更为准确,适用于复杂的电力系统。

潮流法计算短路电流的步骤包括:a. 建立节点支路矩阵,确定节点间的电压关系;b. 建立节点电流潮流方程组,包括潮流平衡方程和支路电流方程;c. 求解潮流方程组得到节点电压和支路电流;d. 根据支路电流计算短路电流。

3. 短路电流计算的应用和意义短路电流的计算结果对电力系统的设备选型、保护装置的设置和运行具有重要意义。

以下是短路电流计算结果的一些应用和意义:- 设备选型:短路电流计算可以确定设备在故障短路电流下的能力,从而指导设备选型。

短路计算的步骤

短路计算的步骤短路计算是电力系统设计和分析中的重要步骤,用于确定系统中短路电流的大小和分布,以确保电气设备和保护装置能够正常工作。

以下是短路计算的一般步骤:1. 收集系统数据:收集系统的拓扑结构、线路参数、设备数据以及电源数据等信息。

这些数据包括系统的电压等级、线路和设备的阻抗、变压器的参数等。

2. 确定短路点:根据系统的拓扑结构和设备安装位置,确定需要进行短路计算的节点或截面。

通常选择系统中的关键节点、重要负荷节点或保护装置安装位置作为短路点。

3. 建立等效网络模型:根据系统数据,在短路点处建立等效网络模型。

这个模型包括线路和设备的等效阻抗和电压源等。

可以使用复数阻抗或对称分量法来建立等效网络模型。

4. 进行短路计算:使用短路计算软件或手动计算方法,根据建立的等效网络模型,计算短路电流。

常用的短路计算方法包括对称分量法、直接法和迭代法等。

5. 分析短路电流:分析计算得到的短路电流的大小和分布情况。

根据系统要求和设备能力,评估短路电流对设备和保护装置的影响。

6. 设备选型和保护设置:根据短路计算结果,选取适当的电气设备和保护装置,以确保设备能够承受短路电流并提供适当的保护。

根据短路电流的大小和时间特性,设置适当的保护装置的动作特性和参数。

7. 编写短路计算报告:将短路计算的结果整理成报告,包括系统数据、计算方法、计算结果、设备选型和保护设置等内容。

报告可以作为设计和审查的依据,也可用于系统运行和维护。

以上是一般的短路计算步骤,具体的步骤和方法可能会因系统规模、复杂度和要求的不同而有所变化。

在进行短路计算时,需要谨慎处理数据和计算过程,确保结果的准确性和可靠性。

建筑电气常用数据

建造电气常用数据一、引言建造电气工程是指在建造物内部进行电气设备的安装、布线和调试,以及相关的电力供应、照明、通信、安全等系统的建设。

在进行建造电气工程设计和施工时,需要掌握一些常用的数据,以确保电气系统的安全性、可靠性和高效性。

本文将详细介绍建造电气常用数据的相关内容。

二、电气负荷计算1. 功率负荷计算建造电气负荷计算是指根据建造物的用途和功能,计算出所需的总功率负荷。

常用的计算公式为:总功率负荷 = 照明负荷 + 插座负荷 + 空调负荷 + 特殊负荷其中,照明负荷可根据建造物的面积、照明灯具的功率和照明等级进行计算;插座负荷可根据建造物的用途和插座的数量进行估算;空调负荷可根据建造物的面积、空调的功率和使用时间进行计算;特殊负荷包括电梯、消防设备等特殊设备的负荷。

2. 短路电流计算短路电流计算是指在电气系统中,当发生短路故障时,计算出短路电流的大小。

常用的计算方法有两种:对称短路电流计算和非对称短路电流计算。

对称短路电流计算是指假设系统中所有的电源都是对称的,计算出短路电流的最大值;非对称短路电流计算是指考虑系统中不同电源的不对称性,计算出各个电源的短路电流,并取其中最大值。

三、电气线缆选择1. 线缆截面选择在进行建造电气工程设计时,需要根据电气负荷和电缆的敷设长度,选择合适的线缆截面。

常用的选择方法是根据电缆的额定电流和敷设长度,查找电缆的载流量表,选择能够满足负荷要求的线缆截面。

2. 线缆敷设方式选择线缆的敷设方式根据建造物的结构和电气系统的布置进行选择。

常用的敷设方式有地下敷设、架空敷设和隐蔽敷设。

地下敷设适合于地下室、地下通道等场所;架空敷设适合于室外电气系统;隐蔽敷设适合于室内电气系统,如墙壁内部或者地板下敷设。

四、电气设备选型1. 开关设备选型在建造电气工程中,常用的开关设备有断路器、熔断器和隔离开关等。

选型时需要考虑负荷电流、短路电流和操作方式等因素。

根据负荷电流和短路电流,选择能够承受相应电流的开关设备;根据操作方式,选择手动操作或者自动操作的开关设备。

断路器选型 短路分断能力ka 计算方法

断路器选型及短路分断能力ka计算方法1.概述在电气系统中,断路器是一种非常重要的电气设备,它主要用于在电路发生短路故障时迅速切断电路,保护电气设备和人身安全。

选择合适的断路器并正确计算其短路分断能力ka至关重要。

本文将对断路器选型和短路分断能力ka的计算方法进行探讨。

2.断路器选型当选择断路器时,首先需要考虑的是电路的额定电流。

额定电流是断路器能够正常运行的最大电流值,通常以安培(A)为单位。

在选择断路器时,需要确保其额定电流大于或等于电路的最大负荷电流,以保证正常运行。

还需要考虑到负载类型、电气设备的特性和系统的工作环境等因素。

3.短路分断能力ka的重要性短路故障是指电路中出现的异常高电流,它可能导致设备的烧毁、电路的损坏甚至是火灾等严重后果。

断路器的短路分断能力ka成为了一个至关重要的指标。

短路分断能力ka是指断路器能够在一定时间内将短路电流迅速切断的能力,通常以千安(kA)为单位。

选择合适的断路器短路分断能力ka能够有效地避免因短路故障而导致的安全事故。

4.短路分断能力ka的计算方法短路分断能力ka的计算方法通常分为两种:理论计算和实验测试。

在理论计算中,需要考虑电路的参数、电气设备的特性以及故障电流的大小等因素,根据一定的公式和标准来进行计算。

而实验测试则是通过对断路器进行实际测试,以确定其短路分断能力ka的数值。

一般情况下,实验测试得到的结果更为准确可靠,但在一些特殊情况下,理论计算也可以作为参考依据。

5.个人观点和总结作为一名电气工程师,我个人认为断路器选型和短路分断能力ka 的计算方法对于电气系统的安全性和可靠性至关重要。

在实际工程中,我们需要根据具体的电路参数和要求来选择合适的断路器,并通过严格的短路分断能力ka计算,确保断路器能够有效地保护电气设备和人身安全。

我也建议在进行断路器选型和计算时,可以根据不同的应用场景和要求,进行一定程度的过载试验和短路试验,以验证其性能和可靠性。

短路电流计算及设备选择

短路电流计算及设备选择摘要进行短路电流计算,从三相短路计算中得到当短路发生在各电压等级的母线时,其短路稳态电流和冲击电流的值。

再根据计算结果及各电压等级的额定电压和最大持续工作电流进行主要电气设备选择及校验(包括断路器、隔离开关、电流互感器、电压互感器等)。

关键词:短路电流计算电气设备选择第一章短路电流计算1 .1 短路电流计算的步骤目前在电力变电站建设工程设计中,计算短路电流的方法通常是采用实用曲线法,其步骤如下:1、选择要计算短路电流的短路点位置;2、按选好的设计接线方式画出等值电路图网络图;1)在网络图中,首选去掉系统中所有负荷之路,线路电容,各元件电阻;2)选取基准容量和基准电压Ub(一般取各级的平均电压);3)将各元件电抗换算为同一基准值的标么电抗;4)由上面的推断绘出等值网络图;3、对网络进行化简,把供电系统看为无限大系统,不考虑短路电流周期分量的衰减求出电流对短路点的电抗标幺值,即转移电抗;4、求其计算电抗;5、由运算曲线查出短路电流的标么值;6、计算有名值和短路容量;7、计算短路电流的冲击值;1)对网络进行化简,把供电系统看为无限大系统,不考虑短路电流周期分量的衰减求出电流对短路点的电抗标幺值,并计算短路电流标幺值、有名值。

标幺值:有名值:2)计算短路容量,短路电流冲击值短路容量:短路电流冲击值:8、绘制短路电流计算结果表1.2 短路电流计算及计算结果等值网络制定及短路点选择:根据前述的步骤,针对本变电所的接线方式,把主接线图画成等值网络图如图4-1所示:F1-F3为选择的短路点,选取基准容量 =100MVA,由于在电力工程中,工程上习惯性标准一般选取基准电压 .基准电压(KV): 10.5 37 115基准电流 (KA): 5.50 1.56 0.50 1、主变电抗计算SFSZ7—31500/110的技术参数∴X12* =( Ud1%/100)*(Sj/SB) =(10.75/100) *(100/40)= 0.269X13* =( Ud2%/100)*(Sj/SB) =(0/100) *(100/40)= 0X14* =( Ud3%/100)*(Sj/SB) =(6.75/100) *(100/40)= 0.1692、三相短路计算简图,图4-23、三相短路计算(1)、110kV侧三相短路简图如下图4-3当 F1短路时,短路电流稳态短路电流的有名值冲击电流短路全电流最大有效值短路容量1.、35kV侧三相短路简图如下图4-4当F2短路时,短路电流稳态短路电流的有名值冲击电流I'ch2=2.55*4.58=11.68 kA短路全电流最大有效值I"ch2=1.51*4.58 = 6.92 kA短路容量S2〃= I"F2*SB=2.933*100=293.3 MVA1.、10kV侧三相短路简图如下图4-5当F3短路时,I'F3 = SB/( VB3)= 100/(1.732*10.5) =5.499 kA短路电流I"F3〃=1/(0.102+0.269+0.169)=1.852稳态短路电流的有名值IF3′= I'F3*I"F3〃= 5.499*1.852 =10.184 kA冲击电流I'ch3=2.55*10.184 = 25.97 kA短路全电流最大有效值I"ch3=1.51*10.184 =15.38 kA短路容量S3〃= I"F3*SB=1.852*100=185.2MVA短路电流计算结果见表4-1表4-1 短路电流计算结果短路点基准电压VaV稳态短路电流有名值I″KA短路电流冲击值短路全电流最大有效值短路容量S″( MVA)( KV )ich(KA)Ich(KA)F 1115 6.316.0659.51980F 237 4.5811.686.92293.3F 310.510.18425.9715.38185.2第二章导体和电气设备的选择2.1 断路器和隔离开关的选择1、110KV侧断路器和隔离开关的选择短路参数:ich =9.84(kA); I"=I∞=9.8(kA) Ue=110 KVIgmax =1.05Ie=1.05S/1.732*110=286.3(A)110KV侧断路器的选择:查设备手册试选LW14—110型六氟化硫断路器。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

短路电流计算及设备选择
一、基准
基准容量 Sjz =100 MVA
基准电压 UJZ 规定为8级. 230, 115, 37, 10.5, 6.3, 3.15 ,0.4, 0.23 KV ; 基准电流:
j j j S I =
j S I =
有了基准容量和电压,各级电压的基准电流即可计算出。

例: U jz (kV)为37 10.5 6.3 0.4,则I jz 分(kA )别为1.56,5.5,9.16,144。

二、标幺值计算
量作为系统容量.如已知供电部门出线开关为W-VAC 12KV 2000A 额定分断电流为40KA.则可认为系统容量S=1.73*40*10000V=692MVA。

b 、通过母线短路电流标幺值计算
1
s b
X I
电压的标幺值Ub=1, 所以Ib=1/Xb 。

电抗的基准值Xj=Uj^2/Sj
电抗的标幺值Xb=Xs/Xj=Xs*Sj/Uj^2, 所以Ib=1/Xb=Uj^2/Xs*Sj
2、变压器电抗
为变压器额定容量,短路阻抗U d %。

三绕组变压器需计算各绕组阻抗:
3、线路电抗
X为线路电抗,L为架空线路长度。

四、等值网络及短路电流计算
d1点短路时,短路电流周期分量有效值
短路电流冲击值,取冲击系数Kch=1.8,:
kA
短路电流全电流最大有效值:=1.52=25.8kA
五、设备选型
1、技术条件:
选择的高压电器,应能在长期工作条件下和发生过电压过电流的情况下保持正常运行。

1)长期工作条件
a.电压:选用的电器允许的最高工作电压Umax不得低于该回路的最高运行电压,即Umax>Ug,当额定电压在220KV及以下时为1.15U N。

额定电压与设备最高电压
受电设备或系统额定电压供电设备额定电压设备最高电压
1010.511.5
3538.540.5
110121126
b.电流:选用的电器额定电流Ie不得低于所在回路在各种可能运行方式下的持续工作电流Ig,即Ie≥Ig。

由于高压电器没有明显的过载能力,所以在选择
其额定电流时,应满足各种方式下回路持续工作电流。

c.机械负荷:所选电器端子的允许负荷,应大于电器引下线在正常运行和短路时的最大作用力。

2)短路稳定条件
①校验的一般原则
电器在选定后应按最大可能通过的短路电流进行动、热稳定检验,检验的短路电流,一般取三相短路时的短路电流。

②短路的热稳定条件:I t2t>Q dt
Q dt—在计算时间t js秒内,短路电流的热效应(KA2.S)
I t—t秒内设备允许通过的热稳定电流有效值(KA)
T—设备允许通过的热稳定电流时间(S)
③短路的动稳定条件
i ch≤i df I ch≥I df
i ch—短路冲击电流峰值(KA)
i df—短路全电流有效值
I ch—电器允许的极限通过电流峰值(KA)
I df—电器允许的极限通过电流有效值(KA)
④绝缘水平
在工作电压和过电压下,电气的内、外绝缘应保证必要的可靠性。

电器的绝缘水平,应按电网中出现的各种过电压和保护设备相应的保护水平来确定。

当所选电器的绝缘水平低于国家规定的标准数值时,应通过绝缘配合计算选用适当的电压保护设备。

2、环境条件
选择导体和电阻时,应按当地环境条件校核。

原始资料提供环境条件如下:
年最高温度+40℃,最低气温-20℃,当地雷暴日数40日/年。

如有侵权请联系告知删除,感谢你们的配合!。

相关文档
最新文档