第二十一章代数方程测试卷.doc
第二十一章 代数方程(综合能力提升卷)(原卷版)

【高效培优】2021—2022学年沪教版八年级数学下册轻松冲刺学神考霸必刷卷【单元测试】第二十一章 代数方程(综合能力提升卷)(考试时间:90分钟 试卷满分:100分)学校:___________姓名:___________班级:___________考号:___________本卷试题共三大题,共25小题,单选10题,填空8题,解答7题,限时90分钟,满分100分,本卷题型精选核心常考重难易错典题,具备举一反三之效,覆盖面积广,可充分考查学生双基综合能力!一、单选题:本题共10个小题,每小题2分,共20分。
在每小题给出的四个选项中只有一项是符合题目要求的。
1.(2022·福建福州·九年级期末)关于x 的一元二次方程(a ﹣1)x 2+2x ﹣1=0有两个实数根,则a 的取值范围为( ) A .a ≥0B .a <2C .a ≥0且a ≠1D .a ≤2且a ≠12.(2022·黑龙江道里·九年级期末)方程13151x x =+-的解为( ) A .x =1 B .x =2C .x =3D .x =43.(2022·四川凉山·八年级期末)已知关于x 的分式方程2-2124x mxx x -=+-无解,则m 的值为( ) A .0 B .0或-8 C .-8 D .0或-8或-44.(2022·河南·郑州市第三中学八年级期末)已知函数3y ax =-和y kx = 的图象交于点P (-2,-1),则关于x ,y 的二元一次方程组3y ax y kx =-⎧⎨=⎩的解是( )A .21x y =⎧⎨=-⎩B .21x y =-⎧⎨=-⎩C .21x y =⎧⎨=⎩D .21x y =-⎧⎨=⎩5.(2021·山东·日照港中学八年级期末)已知关于x 的分式方程3111m x x+=--的解是正数,则m 的取值范围是( ) A .2m >B .2m ≥C .2m ≥且3m ≠D .2m >且3m ≠6.(2021·上海市第四中学八年级期中)下列方程中,无理方程是( )A 0x =B .20x =C .20D 0=7.(2021·上海闵行·八年级期末)如果关于x x =有实数根1x =,那么m 的值是( )A .1-B .13C .0D .28.(2022·上海闵行·八年级期末)下列方程中,判断中错误的是( )A .方程20316x xx +-=+是分式方程 B .方程3210xy x ++=是二元二次方程C 20=是无理方程D .方程()()226x x +-=-是一元二次方程9.(2022·山东广饶·期末)某企业车间生产一种零件,3位工人同时生产,1位工人恰好能完成组装,若车间共有工人60人,如何分配工人才能使生产的零件及时组装好.设分配x 名工人生产,由题意列方程,下列选项错误的是( )A .x+3x=60B .1603x x -= C .6013x x -= D .x=3(60-x )10.(2022·陕西省汉阴县初级中学八年级期末)斑马线前“车让人”,不仅体现着一座城市对生命的尊重,也直接反映着城市的文明程度.如图,某路口的斑马线路段A —B —C 横穿双向行驶车道,其中AB=BC=12米,在绿灯亮时,小敏共用22秒通过AC 路段,其中通过BC 路段的速度是通过AB 路段速度的1.2倍,则小敏通过AB 路段时的速度是( )A .0.5米/秒B .1米/秒C .1.5米/秒D .2米/秒二、填空题:本题共8个小题,每题3分,共24分。
人教版九年级数学上册第二十一章《一元二次方程》测试卷(含答案)

人教版九年级数学上册第二十一章《一元二次方程》测试卷(含答案)一.选择题1.一元二次方程2x2﹣5x+1=0的根的情况是()A.没有实数根B.有两个相等的实数根C.有两个不相等的实数根D.无法确定2.若关于x的一元二次方程(k﹣2)x2+x+k2﹣4=0有一个根是0,则k的值是()A.﹣2B.2C.0D.﹣2或23.关于x的一元二次方程x2﹣2x﹣5=0有()A.两个相等的实数根B.两个不相等的正数根C.两个不相等的负数根D.一个正数根和一个负数根4.已知关于x的一元二次方程(m﹣1)x2+2x﹣3=0有实数根,则m的取值范围是()A.m≥B.m<C.m>且m≠1D.m≥且m≠1 5.关于x的多项式N=x﹣1,M=2x2﹣ax﹣2,a为任意实数,则下列结论中正确的有()个.①若M•N中不含x2项,则a=﹣2;②不论x取何值,总有M≥N;③若关于x的方程M=0的两个解分别为x1=t2,x2=2t﹣3,则实数a的最小值为﹣8;④不论a取何值,关于x的方程(M+N)2﹣(M+N)=6始终有4个不相同的实数解.A.1B.2C.3D.46.下列配方中,变形正确的是()A.x2+2x=(x+1)2B.x2﹣4x﹣3=(x﹣2)2+1C.2x2+4x+3=2(x+1)2+1D.﹣x2+2x=﹣(x+1)2﹣17.某公司今年10月的营业额为2500万元,按计划第四季度的总营业额要达到9100万元,求该公司11、12两个月营业额的月均增长率,设该公司11、12两个月营业额的月均增长率为x,则根据题意可列的方程为()A.2500(1+x)2=9100B.2500[1+(1+x)+(1+x)2]=9100C.2500[(1+x)+(1+x)2]=9100D.9100(1+x)2=25008.已知A=x2+6x+n2,B=2x2+4x+2n2+3,下列结论正确的个数为()①若A=x2+6x+n2是完全平方式,则n=±3;②B﹣A的最小值是2;③若n是A+B=0的一个根,则4n2+=;④若(2022﹣A)(A﹣2019)=2,则(2022﹣A)2+(A﹣2019)2=4.A.1个B.2个C.3个D.4个9.已知关于x的方程x2+(k+3)x+k+2=0,则下列说法正确的是()A.不存在k的值,使得方程有两个相等的实数解B.至少存在一个k的值,使得方程没有实数解C.无论k为何值,方程总有一个固定不变的实数根D.无论k为何值,方程有两个不相等的实数根10.满足(x﹣3)2+(y﹣3)2=6的所有实数对(x,y),使取最小值,此最小值为()A.B.C.D.二.填空题11.对于实数m,n,先定义一种运算“⊗”如下:,若x⊗(﹣2)=10,则实数x的值为.12.德尔塔(Delta)是一种全球流行的新冠病毒变异毒株,其传染性极强.某地有1人感染了德尔塔,因为没有及时隔离治疗,经过两轮传染后,一共有144人感染了德尔塔病毒,如果不及时控制,照这样的传染速度,经过三轮传染后,一共有人感染德尔塔病毒.13.已知m,n是方程x2﹣3x=2的两个根,则式子的值是.14.如图,某生物兴趣小组要在长40米、宽30米的矩形园地种植蔬菜,为便于管理,要在中间开辟一横两纵共三条等宽小路,若蔬菜种植面积为1008平方米,则小路的宽为米.15.欧几里得在《几何原本》中,记载了用图解法解方程x2+ax=b2的方法,类似地我们可以用折纸的方法求方程x2+x﹣1=0的一个正根.如图,一张边长为1的正方形的纸片ABCD,先折出AD,BC的中点E,F,再沿过点A的直线折叠使AD落在线段AF上,点D 的对应点为点H,折痕为AG,点G在边CD上,连接GH,GF,线段BF、DG、CG和GF 中,长度恰好是方程x2+x﹣1=0的一个正根的线段为.三.解答题16.已知a是方程x2﹣2020x+1=0的一个根.求:(1)2a2﹣4040a﹣3的值;(2)代数式a2﹣2019a+的值.17.解方程:(1)2x2﹣4x﹣1=0;(2)3x(x﹣1)=2﹣2x.18.在理解例题的基础上,完成下列两个问题:例题:若m2+2mn+2n2﹣4n+4=0,求m和n的值;解:由题意得:(m2+2mn+n2)+(n2﹣4n+4)=0,∴(m+n)2+(n﹣2)2=0∴,解得.请解决以下问题:(1)若x2+4xy+5y2﹣4y+4=0,求y x的值;(2)若a,b,c是△ABC的边长,满足a2+b2=12a+8b﹣52,c是△ABC的最长边,且c为偶数,则c可能是哪几个数?19.【阅读材料】“我们把多项式a2+2ab+b2及a2﹣2ab+b2叫做完全平方式”.如果一个多项式不是完全平方式,我们常做如下变形:先添加一个适当的项,使式中出现完全平方式,再减去这个项,使整个式的值不变,这种方法叫做配方法,配方法是一种重要的解决问题的数学方法.例如:求当a取何值,代数式a2+6a+8有最小值?最小值是多少?解:a2+6a+8=a2+6a+32﹣32+8=(a+3)2﹣1因为(a+3)2≥0,所以a2+6a+8≥﹣1,因此,当a=﹣3时,代数式a2+6a+8有最小值,最小值是﹣1.【问题解决】利用配方法解决下列问题:(1)当x取何值时,代数式x2﹣2x﹣1有最小值?最小值是多少?(2)当x=时,代数式2x2+8x+12有最小值,最小值为.20.近几年,全社会对空气污染问题越来越重视,空气净化器的销量也在逐年增加.某商场从厂家购进了A,B两种型号的空气净化器,两种净化器的销售相关信息如表:A型销售数量(台)B型销售数量(台)总利润(元)51025001052750(1)每台A型空气净化器的销售利润是元;每台B型空气净化器的销售利润是元;(2)该商场计划一次购进两种型号的空气净化器共80台,其中B型空气净化器的进货量不少于A型空气净化器的2倍,为使该商场销售完这80台空气净化器后的总利润最大,那么应该购进A型空气净化器台;B型空气净化器台.(3)已知A型空气净化器的净化能力为300m3/小时,B型空气净化器的净化能力为200m3/小时.某长方体室内活动场地的总面积为300m2,室内墙高3m.该场地负责人计划购买7台空气净化器,每天花费30分钟将室内空气净化一新,如不考虑空气对流等因素,他至少要购买A型空气净化器多少台?参考答案一.选择题1.【解答】解:∵Δ=(﹣5)2﹣4×2×1=25﹣8=17>0,∴一元二次方程2x2﹣5x+1=0有两个不相等的实数根,故选:C.2.【解答】解:把x=0代入(k﹣2)x2+x+k2﹣4=0得:k2﹣4=0,解得k1=2,k2=﹣2,而k﹣2≠0,所以k=﹣2.故选:A.3.【解答】解:x2﹣2x﹣5=0,Δ=b2﹣4ac=(﹣2)2﹣4×1×(﹣5)=24>0,所以方程有两个不相等的实数根,设方程x2﹣2x﹣5=0的两个根为e、f,则ef=﹣5<0,则e和f异号,即方程有一个正数根和一个负数根,故选:D.4.【解答】解:∵关于x的一元二次方程(m﹣1)x2+2x﹣3=0有实数根,∴,解得:m≥且m≠1.故选:D.5.【解答】解:M•N=(x﹣1)(2x2﹣ax﹣2)=2x3﹣(a+2)x2+(a﹣2)x+2,若M•N中不含x2项,则a+2=0,∴a=﹣2,故①正确;当x=0时,N=﹣1,M=﹣2,此时M<N,故②错误;若关于x的方程2x2﹣ax﹣2=0的两个解分别为x1=t2,x2=2t﹣3,则t2+2t﹣3=,∴a=2(t+1)2﹣8,∴当t=﹣1时,a的最小值是﹣8,故③正确;由(M+N)2﹣(M+N)=6得(M+N﹣3)(M+N+2)=0,∴M+N﹣3=0或M+N+2=0,由M+N﹣3=0得2x2+(1﹣a)x﹣6=0,Δ=(1﹣a)2+48>0,∴M+N﹣3=0有两个不相同的实数根,由M+N+2=0得2x2+(1﹣a)x﹣1=0,Δ=(1﹣a)2+8>0,∴M+N+2=0有两个不同的实数根,∴(M+N)2﹣(M+N)=6始终有4个不相同的实数解,故④正确,∴正确的有①③④,共3个,故选:C.6.【解答】解:x2+2x=x2+2x+1﹣1=(x+1)2﹣1,A错误.x2﹣4x﹣3=x2﹣4x+4﹣4﹣3=(x2﹣4x+4)+(﹣4﹣3)=(x﹣2)2﹣7.B错误.2x2+4x+3=2(x2+2x)+3=2(x2+2x+1﹣1)+3=2(x2+2x+1)﹣2×1+3=2(x+1)2﹣2+3=2(x+1)2+1.C正确.﹣x2+2x=﹣(x2﹣2x+1﹣1)=﹣(x2﹣2x+1)+1=﹣(x+1)2+1D错误.故选:C.7.【解答】解:设该公司11、12两个月营业额的月均增长率为x,则可列方程为2500[1+(1+x)+(1+x)2]=9100,故选:B.8.【解答】解:①∵A=x2+6x+n2是完全平方式,∴n=±3,故结论正确;②∵B﹣A=2x2+4x+2n2+3﹣(x2+6x+n2)=x2﹣2x+n2+3=(x﹣1)2+n2+2,而(x﹣1)2+n2≥0,∴B﹣A≥2,∴B﹣A的最小值是2,故结论正确;③∵A+B=x2+6x+n2+2x2+4x+2n2+3=3x2+10x+3n2+3,把x=n代入3x2+10x+3n2+3=0,得3n2+10n+3n2+3=0,即6n2+10n+3=0,解得n=,当n=时,2n+=+=﹣,∴4n2+=(2n+)2﹣4=﹣4=;当n=时,2n+=+=﹣,∴4n2+=(2n+)2﹣4=﹣4=;故结论错误;④∵(2022﹣A+A﹣2019)2=(2022﹣2019)2=(2022﹣A)2+(A﹣2019)2+2(2022﹣A)(A﹣2019)=(2022﹣A)2+(A﹣2019)2+2×2=9,∴(2022﹣A)2+(A﹣2018)2=5;故结论错误;故选B.9.【解答】解:关于x的方程x2+(k+3)x+k+2=0,Δ=(k+3)2﹣4×1×(k+2)=k2+2k+1=(k+1)2≥0,A、当k=﹣1时,Δ=0,此时方程有两个相等的实数解,故此选项错误;B、因为Δ≥0,所以不存在k的值,使得方程没有实数解.故此选项错误;C、解方程得:x1=﹣1,x2=﹣k﹣2,所以无论k为何值,方程总有一个固定不变的实数根﹣1,故此选项正确;D、当k≠﹣1时,方程有两个不相等的实数解,故此选项错误;故选:C.10.【解答】解:令=t,则(x﹣3)2+(y﹣3)2=6可变形为:(x﹣3)2+(tx﹣3)2=6,整理得:(t2+1)x2﹣6(t+1)x+12=0,则Δ=[﹣6(t+1)]2﹣4×(t2+1)×12=36(t+1)2﹣48(t2+1)≥0,t2﹣6t+1≤0,由t2﹣6t+1=[t﹣(3﹣2)][t﹣(3+2)]知t2﹣6t+1≤0的解集为3﹣2≤t≤3+2,故取最小值,此最小值为3﹣2;故选:A.二.填空题11.【解答】解:分两种情况:当x≥﹣2时,∵x⊗(﹣2)=10,∴x2+x﹣2=10,x2+x﹣12=0,(x+4)(x﹣3)=0,x+4=0或x﹣3=0,x1=﹣4(舍去),x2=3,当x<﹣2时,∵x⊗(﹣2)=10,∴(﹣2)2+x﹣2=10,x=8(舍去),综上所述:x=3,故答案为:3.12.【解答】解:设每轮传染中平均一个人传染了x个人,依题意得:1+x+x(1+x)=144,整理得:x2+2x﹣143=0,解得:x1=11,x2=﹣13(不合题意,舍去).144+11×144=1728(人).答:经过三轮传染后,一共有1728人感染德尔塔病毒.故答案为:1728.13.【解答】解:∵m,n是方程x2﹣3x=2的两个根,∴m2=3m+2,n2﹣2=3n,m+n=3,∴m3﹣10m+n=m(3m+2)﹣10m+n=3m2﹣8m+n=3(3m+2)﹣8m+n=m+n+6=3+6=9,n﹣===3,原式=9×3=27.故答案为:27.14.【解答】解:小路的宽为x米.由题意可得:(40﹣2x)(30﹣x)=1008,解得:x1=2,x2=48(不合题意,舍去),答:小路的宽为2米,故答案为:2.15.【解答】解:设DG=m,则GC=1﹣m.由题意可知:△ADG≌△AHG,F是BC的中点,∴DG=GH=m,FC=0.5,根据勾股定理得AF=.∵S正方形=S△ABF+S△ADG+S△CGF+S△AGF,∴1×1=×1×+×1×m+××(1﹣m)+××m,∴m=.∵x2+x﹣1=0的解为:x=,∴取正值为x=.∴这条线段是线段DG.故答案为:DG.三.解答题16.【解答】解:(1)∵a是方程x2﹣2020x+1=0的一个根,∴a2=2020a﹣1,∴a2=2020a﹣1,∴2a2﹣4040a﹣3=2(2020a﹣1)﹣4040a﹣3=4040a﹣2﹣4040a﹣3=﹣5;(2)原式=2020a﹣1﹣2019a+=a+﹣1=﹣1=﹣1=2020﹣1=2019.17.【解答】解:(1)2x2﹣4x﹣1=0,x2﹣2x﹣=0,x2﹣2x=,x2﹣2x+1=,(x﹣1)2=,x﹣1=,∴x1=1+,x2=1﹣;(2)3x(x﹣1)=2﹣2x,3x(x﹣1)+2(x﹣1)=0,(x﹣1)(3x+2)=0,∴x﹣1=0或3x+2=0,∴x1=1,x2=﹣.18.【解答】解:(1)∵x2+4xy+5y2﹣4y+4=0,∴x2+4xy+4y2+y2﹣4y+4=0,∴(x+2y)2+(y﹣2)2=0,∴x+2y=0,y﹣2=0,解得x=﹣4,y=2,∴y x=2﹣4=;(2)已知等式整理得:(a﹣6)2+(b﹣4)2=0,解得:a=6,b=4,由△ABC中最长的边是c,∴6≤c<10,∵c为偶数,∴c可能是6或8.19.【解答】解:(1)x2﹣2x﹣1=x2﹣2x+1﹣1﹣1=(x﹣1)2﹣2,因为(x﹣1)2≥0,所以x2﹣2x﹣1≥﹣2,因此,当x=1时,代数式x2﹣2x﹣1有最小值,最小值是﹣2;(2)2x2+8x+12=2(x2+4x)+12=2(x2+4x+4﹣4)+12=2[(x+2)2﹣4]+12=2(x+2)2﹣8+12=2(x+2)2+4,因为(x+2)2≥0,所以2x2+8x+12≥4,因此,当x=﹣2时,代数式2x2+8x+12有最小值,最小值是4;故答案为:﹣2;4.20.【解答】解:(1)设每台A型空气净化器的销售利润是x元,每台B型空气净化器的销售利润是y元,根据题意得:,解得:故答案为:200,150;(2)设购进a台A型空气净化器,总利润为w元,则:w=200a+150(80﹣a)=50a+12000,∵80﹣a≥2a,∴a≤26,∴a的最大值为:26,∵w随a的增大而增大,∴当a=26时,w有最大值,此时.80﹣a=54,故答案为:26,54;(3)设要购买A型空气净化器a台,由题意得:150a+100(7﹣a)≥300×3,解得:a≥4,所以a的最小值为:4,答:至少要购买A型空气净化器4台.。
人教版九年级上册数学第二十一章 一元二次方程含答案

人教版九年级上册数学第二十一章一元二次方程含答案一、单选题(共15题,共计45分)1、若x=﹣1是关于x的一元二次方程x2+3x+m+1=0的一个解,则m的值为()A.-1B.0C.1D.2、以和为根的一元二次方程是()A. B. C. D.3、若关于x的方程x2﹣4x+m=0没有实数根,则实数m的取值范围是( )A.m<﹣4B.m>﹣4C.m<4D.m>44、在元旦庆祝活动中,参加活动的同学互赠贺卡,共送贺卡90张,则参加活动的有()人.A.9B.10C.12D.155、一元二次方程x2-9=0的根是()A.x=3B.x=4C.x1=3,x2=-3 D.x1= ,x2=-6、方程x2﹣2x﹣3=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实根 D.有一个实根7、一元二次方程(1﹣k)x2﹣2x﹣1=0有两个不相等的实数根,则k的取值范围是()A.k<2且k≠1B.k>2且k≠1C.k>2D.k<28、如果关于的一元二次方程有下列说法:①若,则;②若方程两根为-1和2,则;③若方程有两个不相等的实根,则方程必有两个不相等的实根;④若,则方程有两个不相等的实根,其中结论正确的是有()个。
A.1B.2C.3D.49、用配方法将方程变形为,则m的值是()A.4B.5C.6D.710、下列方程是一元二次方程的是( )A.2x+1=0B.y 2+x=1C.x 2+1=0D. +x 2=111、三角形的两边长分别为2和6,第三边是方程X2-10X+21=0的解,则第三边的长为( )A.7B.3C.7或3D.无法确定12、用配方法解方程,配方正确的是( )A. B. C. D.13、用配方法解方程y2-6y+7=0,得(y+m)2=n,则( )A.m=3,n=2B.m=-3,n=2C.m=3,n=9D.m=-3,n=-714、如果关于x的一元二次方程x2﹣kx+2=0中,k是投掷骰子所得的数字(1,2,3,4,5,6),则该二次方程有两个不等实数根的概率为()A. B. C. D.15、如果一个等腰三角形的两边长分别为方程x2﹣5x+4=0的两根,则这个等腰三角形的周长为()A.6B.9C.6或9D.以上都不正确二、填空题(共10题,共计30分)16、把方程通过配方化成的形式为________.17、已知m、n是关于x的方程的两根,则代数式的值为________.18、若2(x2+3)的值与3(1- x2)的值互为相反数,则x值为________19、方程(x+2)(x﹣3)=x+2的解是________.20、用配方法解方程3x2﹣6x+1=0,则方程可变形为(x﹣________)2=________.21、关于m的一元二次方程nm2﹣n2m﹣2=0的一个根为2,则n2+n﹣2=________ .22、若关于x的一元二次方程x2+ax+3b=0有一个根是3,则a+b的值为________.23、如果2是一元二次方程x2+bx+2=0的一个根,那么常数b的值为________.24、已知a≠0,a≠b,x=1是方程ax2+bx﹣10=0的一个解,则的值是________.25、用配方法解方程x2﹣2x﹣7=0时,配方后的形式为________.三、解答题(共5题,共计25分)26、解方程:.27、小林准备进行如下操作实验:把一根长为40cm的铁丝剪成两段,并把每一段各围成一个正方形.(1)要使这两个正方形的面积之和等于52cm2,小林该怎么剪?(2)小峰对小林说:“这两个正方形的面积之和不可能等于44cm2.”他的说法对吗?请说明理由.28、某商场购进一种新商品,每件进价是120元,在试销期间发现,当每件商品售价130元时,每天可销售70件,当每件商品售高(或低)于130元时,每涨(或降)价1元,日销售量就减少(或增加)1件.据此规律,请回答:⑴当每件商品售价定为170元时,每天可销售多少件商品?商场获得的日盈利是多少?⑵在上述条件不变,商品销售正常的情况下,每件商品的销售价定为多少元时,商场日盈利可达到1600元?(提示:盈利=售价—进价)29、若方程(m﹣1)+2mx﹣3=0是关于x的一元二次方程,求m的值.30、小明在一幅长为80cm,宽为50cm的矩形风景画的四周镶一条相同宽度的金色纸边,制成一幅矩形挂图,如图所示,如果要使整个挂图的面积是5400cm2,求金色纸边的宽度.参考答案一、单选题(共15题,共计45分)1、C2、B3、D4、B5、C6、A7、A8、D9、B10、C11、A12、A13、B14、A15、B二、填空题(共10题,共计30分)16、17、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)26、27、29、30、。
A4版打印人教版九年级上册数学第二十一章 一元二次方程含答案

人教版九年级上册数学第二十一章一元二次方程含答案一、单选题(共15题,共计45分)1、用配方法解方程,方程应变形为().A. B. C. D.2、方程(3x﹣1)(2x+4)=1的解是()A. 或B.C.D.3、已知两圆的半径是方程x2-7x=12=0两实数根,圆心距为8,那么这两个圆的位置关系是()A.内切B.相交C.外离D.外切4、方程9x2=16的解是()A. B. C.± D.±5、方程的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.有一个实数根 D.没有实数根6、下列命题中:①如果a>b,那么a2>b2②一组对边平行,另一组对边相等的四边形是平行四边形③从圆外一点可以引圆的两条切线,它们的切线长相等④关于x的一元二次方程ax2+2x+1=0有实数根,则a的取值范围是a≤1其中真命题的个数是()A.1B.2C.3D.47、已知方程x2+bx+a=0有一个根是-a(a≠0),则下列代数式的值恒为常数的是()A.abB.C.a+bD.a-b8、将一元二次方程2(x﹣3)=x2+x﹣1化成一般形式后,一次项系数和常数项分别为()A.1,﹣4B.﹣1,5C.﹣1,﹣5D.1,﹣69、下列方程中,有两个不相等实数根的是().A.x 2-4x+4=0B.x 2+3x-1=0C.x 2+x+1=0D.x 2-2x+3=010、用长4米的铝材制成一个矩形窗框,使它的面积为米2,若设它的一边长为x米,根据题意列出关于x的方程为()A.x(4-x)=B.2x(2-x)=C.x(4-2x)=D.x(2-x)=11、等腰三角形边长分别为a,b,2,且a,b是关于x的一元二次方程x2﹣6x+n﹣1=0的两根,则n的值为()A.9B.1C.9或10D.8或1012、若关于x的方程x2-2x+m=0没有实数根,则m的取值范围是()A.m>1B.m<1C.m≥1D.m=013、方程2x2﹣4x+1=0化成(x+m)2=n(n≥0)的形式是()A.(x﹣1)2=B.(2x﹣1)2=C.(x﹣1)2=0D.(x ﹣2)2=314、下列各未知数的值是方程的解的是()A. B. C. D.15、已知x1, x2是方程的两根,则x12+x22的值为()A.3B.5C.7D.4二、填空题(共10题,共计30分)16、已知关于x的方程x2﹣3x+m=0的一个根是1,则m=________,另一个根为________.17、若把代数式化成的形式,其中为常数,则________.18、已知a、b是一元二次方程x2+x-2021=0的两个不相等的实数根,则a2+2a+b的值为________.19、已知α,β是方程x2﹣3x﹣4=0的两个实数根,则α2+αβ﹣3α的值为________.20、若方程x2﹣4x+1=0的两根是x1, x2,则x1(1+x2)+x2的值为________.21、方程x2﹣5x=0的解是________.22、若关于x的一元二次方程没有实数根,则m的取值范围为________.23、将一元二次方程x2﹣6x+5=0化成(x﹣a)2=b的形式,则ab=________.24、若x=2是方程x2+x﹣a=0的一个根,则a的值为________.25、关于x的一元二次方程(a-1)x2-2x+3=0有实数根,则整数a的最大值是________.三、解答题(共5题,共计25分)26、x2﹣x﹣1=0.27、阅读以下证明过程:已知:在△ABC中,∠C≠90°,设AB=c,AC=b,BC=a.求证:a2+b2≠c2.证明:假设a2+b2=c2,则由勾股定理逆定理可知∠C=90°,这与已知中的∠C≠90°矛盾,故假设不成立,所以a2+b2≠c2.请用类似的方法证明以下问题:已知:关于x的一元二次方程x2﹣(m+1)x+2m-3=0 有两个实根x1和x2.求证:x1≠x2.28、百货商店服装柜在销售中发现:某品牌童装平均每天可售出20件,每件盈利40元.为了迎接“六一”国际儿童节,商场决定采取适当的降价措施,扩大销售量,增加盈利,减少库存.经市场调查发现:如果每件童装降价1元,那么平均每天就可多售出2件.要想平均每天销售这种童装盈利1200元,那么每件童装应降价多少元?29、已知:实数x满足(x2+x)2﹣(x2+x)﹣6=0,求:代数式x2+x+5的值.30、若0是关于x的方程(m﹣2)x2+3x+m2+2m﹣8=0的解,求实数m的值,并讨论此方程解的情况.参考答案一、单选题(共15题,共计45分)1、D2、C3、C4、C5、A6、A7、D8、B9、B10、D11、B12、A14、B15、A二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)26、28、29、。
九年级数学上册《第二十一章一元二次方程》单元测试卷-带答案(人教版)

九年级数学上册《第二十一章一元二次方程》单元测试卷-带答案(人教版)一、选择题1.方程x 2=4的解是( ) A .x=2 B .x=-2 C .x 1=1,x 2=4 D .x 1=2,x 2=-22.用配方法解方程2250x x +-=时,原方程应变形为( )A .()216x +=B .()216x -=C .()229x +=D .()229x -= 3.关于x 的方程3x 2﹣2x+1=0的根的情况是( )A .有两个相等的实数根B .有两个不相等的实数根C .没有实数根D .不能确定4.方程x 2=x 的根是( ) A .x=1B .x=0C .x 1=1,x 2=0D .x 1=1,x 2=-15.若1x =是方程230x mx ++=的一个根,则方程的另一个根是( )A .3B .4C .﹣3D .-4 6.若关于x 的方程()22310m x x +-+=是一元二次方程,则m 的取值范围是( )A .0m ≠B .2m >-C .2m ≠-D .0m > 7.若关于x 的一元二次方程()22210k x x -+-=有实数根,则k 的取值范围是( )A .1k ≤B .1k ≤且2k ≠C .1k ≥且2k ≠D .2k ≥8.菱形的一条对角线长为8,其边长是方程29200x x -+=的一个根,则该菱形的周长为( )A .40B .16C .16或20D .209.设 a b ,是方程220200x x +-=的两个实数根,则(1)(1)a b --的值为( )A .2022-B .2018C .2018-D .202210.要组织一次排球邀请赛,参赛的每两个各队之间都要比赛一场,根据场地和时间等条件,赛程计划安排共计28场比赛,比赛组织者应邀请多少个队参赛?若设应邀请x 个队参赛,可列出的方程为( )A .(1)28x x +=B .(1)28x x -=C .1(1)282x x += D .1(1)282x x -=11.若()22250a a x ---=是一元二次方程,则a = .12.小华在解方程28x x =时,只得出一个根是8x =,则被他漏掉的一个根是x = .13.若1x ,2x 是关于x 的方程2250x x --=的两个实数根,则代数式211234x x x --+的值是 .14.某航空公司有若干个飞机场,每两个飞机场之间都开辟一条航线,一共开辟了10条航线,则这个航空公司共有 个飞机场三、解答题15.若关于x 的一元二次方程(m-1) 2x +2x+2m -1=0的常数项为0,求m 的值是多少?16.用配方法解一元二次方程: 210x x +-= .17.解方程:()222y y y +-=.18.已知关于x 的一元二次方程210x mx m -+-=.求证:方程总有两个实数根.19.已知关于x 的一元二次方程2210x kx --=有一个根是-3,求另一个根及k 值.四、综合题20.已知关于x 的一元二次方程x 2−(m+1)x+m+6=0的其中一个根为3.(1)求m 的值及方程的另一个根;(2)若该方程的两根的值为一直角三角形的两边长,求此直角三角形的第三边长.21.已知关于x 的方程23360x ax a ---=(1)求证:方程恒有两不等实根;(2)若x 1,x 2是该方程的两个实数根,且12(1)(1)1x x --=,求a 的值.22.如图,Rt ABC 中是方程()()2140x m x m --++=的两根.(2)P ,Q 两点分别从A ,C 出发,分别以每秒2个单位,1个单位的速度沿边AC ,BC 向终点C ,B 运动,(有一个点达到终点则停止运动),求经过多长时间后2PQ =?参考答案与解析1.【答案】D【解析】【解答】x 2=4x 1=2,x 2=-2故答案为:D【分析】正数的平方根有两个2.【答案】A【解析】【解答】解:移项,得225x x +=配方,得22151x x ++=+即()216x +=故答案为:A【分析】根据配方法的步骤“把常数项移到等号的右边,在方程两边同时加上一次项系数一半的平方,左边配成完全平方式,再两边开平方”即可求解.3.【答案】C【解析】【解答】解:∵a=3,b=﹣2,c=1 ∴△=b 2﹣4ac=4﹣12=﹣8<0∴关于x 的方程3x 2﹣2x+1=0没有实数根.故答案为:C.【分析】先计算根的判别式△=b 2-4ac 的值,当△>0时,方程由有个不相等的实数根,当△=0时,方程有两个相等的实数根,当△<0时,方程无实数根,据此判断即可.4.【答案】C【解析】【解答】∵x 2=x ∴x 2﹣x =0则x (x ﹣1)=0解得x 1=0,x 2=1故答案为:C.【分析】先移项,把原方程化为一元二次方程的一般式,再利用因式分解法解一元二次方程即可.5.【答案】A【解析】【解答】解: 1x =是方程230x mx ++=的一个根,设另一根为1x ,113x ∴⨯=,13x ∴=,即方程的另一个根是 3.x =故答案为:A【分析】根据根与系数的关系进行解答即可.6.【答案】C【解析】【解答】解:∵方程()22310m x x +-+=是关于x 的一元二次方程 ∴20m +≠.∴2m ≠-.故答案为:C .【分析】利用一元二次方程的定义可得20m +≠,再求出m 的取值范围即可。
沪教版(上海)八年级数学第二学期第二十一章代数方程达标测试试题(精选)

八年级数学第二学期第二十一章代数方程达标测试考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、用换元法解分式方程2211x x x x+-++1=0时,如果设21x x +=y ,那么原方程可以变形为整式方程( )A .y 2﹣3y ﹣1=0B .y 2+3y ﹣1=0C .y 2﹣y ﹣1=0D .y 2+y ﹣1=02、若整数a 使关于x 的不等式组2062x a x x->⎧⎨->⎩有解,且最多有2个整数解,且使关于y 的分式方程2ay y +-412y=-的解为整数,则符合条件的所有整数a 的和为( ) A .4- B .4 C .2- D .23、斑马线前“车让人”,不仅体现着一座城市对生命的尊重,也直接反映着城市的文明程度.如图,某路口的斑马线路段A —B —C 横穿双向行驶车道,其中AB =BC =12米,在绿灯亮时,小敏共用22秒通过AC 路段,其中通过BC 路段的速度是通过AB 路段速度的1.2倍,则小敏通过AB 路段时的速度是( )A .0.5米/秒B .1米/秒C .1.5米/秒D .2米/秒4、体育课上,20人一组进行足球比赛,每人射点球5次,已知某一组的进球总数为49个,进球情况记录如下表,其中进2个球的有x 人,进3个球的有y 人,若(x ,y )恰好是两条直线的交点坐标,则这两条直线的解析式是( )A .222933y x y x =+=+, B .222933y x y x =-+=+, C .222933y x y x =-+=-+, D .222933y x y x =+=-+, 5、下列方程中:(1)410x +=;(2)0n ax b +=;(3)40x x +=;(4)51x x +=;是二项方程的有( )个.A .1B .2C .3D .46、如图,已知函数y ax b =+和y kx =的图象交于点P ,则根据图象可得,关于x 、y 的二元一次方程组y ax b y kx =+⎧⎨=⎩的解是( ).A .31x y =⎧⎨=-⎩B .31x y =-⎧⎨=-⎩C .31x y =-⎧⎨=⎩D .31x y =⎧⎨=⎩ 7、如图,已知直线y =kx +b 和y =mx +n 交于点A (﹣2,3),与x 轴分别交于点B (﹣1,0)、C (3,0),则方程组kx y b mx y n -=-⎧⎨-=-⎩的解为( )A .23x y =-⎧⎨=⎩B .10x y =-⎧⎨=⎩C .30x y =⎧⎨=⎩D .无法确定8、某人往返于A ,B 两地,去时先步行2公里再乘汽车10公里;回来时骑自行车,来去所用时间恰好一样,已知汽车每小时比步行多走16公里,汽车比骑自行车每小时多走8公里,若步行速度为x 公里/小时,则可列出方程( )A .21210816x x x +=++ B .10122168x x x -=++ C .21012168x x x +=++ D .10122168x x x +=++ 9、若直线y x m =-+与直线24y x =+的交点在第一象限,则m 的取值范围是( ).A .4m ≥B .1m ≥-C .4m >D .1m >-10、若关于x 的一元一次不等式组313221x x x a -⎧≤-⎪⎨⎪-<-⎩的解集为5x ≤-,且关于y 的分式方程11422ay y y -+=--有正整数解,则满足条件的所有整数a 的和为( )A .4B .5C .6D .7第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、已知,一次函数1y x =-+与反比例函数2y x=-的图象交于点A 、B ,在x 轴上存在点P (n ,0),使△ABP 为直角三角形,则P 点的坐标是______.2、若m 、n 为全体实数,那么任意给定m 、n ,两个一次函数1y mx n =+和2y nx m =+(m ≠n )的图象的交点组成的图象方程是_________.3、若关于x 的分式方程211x a x +=-的解为正数,则a 的取值范围为________.4、如图,直线:4AB y x =+与直线:22BC y x =--相交于点B ,直线AB 与y 轴交于点A ,直线BC 与x 轴交于点D 与y 轴交于点C ,AE BC ∥交x 轴于点E .直线AB 上有一点P (P 在x 轴上方)且DEP ABC S S =,则点P 的坐标为_______.5、某小区为了排污,需铺设一段全长为720米的排污管道,为减少施工对居民生活的影响,需缩短施工时间,实际施工时每天的工作效率比原计划提高20%,结果提前2天完成任务.设原计划每天铺设x 米,则所列方程是____________________.三、解答题(5小题,每小题10分,共计50分)1、虎林西苑社区在扎实开展党史学习教育期间,开展“我为群众办实事”活动,为某小区铺设一段全长为720米的排污管道,为减少施工对居民生活的影响,须缩短施工时间,实际施工时每天铺设管道的长度是原计划的1.2倍,结果提前2天完成任务,求原计划每天铺设管道的长度.2、观察下列等式:111122=-⨯,1112323=-⨯,1113434=-⨯,将以上三个等式两边分别相加得:1111111113111223342233444++=-+-+-=-=⨯⨯⨯.解答下面的问题: (1)猜想并写()11n n =+ . (2)求111112233420202021+++⋅⋅⋅⋅⋅⋅+⨯⨯⨯⨯的值. (3)探究并解方程:()()()()()211133366918x x x x x x x ++=++++++. 3、2020年7月24号,四川省人民政府正式批复成立南充临江新区,新区某绿化工程由甲、乙两个工程队共同参加.已知甲,乙工程队在单独完成面积为600m 2绿化时,乙队比甲队多用3天,且甲队每天完成绿化的面积是乙队每天完成面积的2倍.(1)求甲,乙两队每天各完成的绿化面积;(2)因工程进度要求在30天内完成7200m 2绿化,甲、乙两个工程队至少有多少天必须共同参加施工?4、一粥一饭当思来之不易,半丝半缕恒念物力维艰.开展“光盘行动”,拒绝“舌尖上的浪费”,已经成为一种时尚. 某学校食堂为了鼓励同学们做到光盘不浪费,针对每餐后光盘的学生奖励苹果或砂糖橘一份.近日,学校食堂花了1500 元和1800元分别采购了砂糖橘和苹果,采购的砂糖橘比苹果多50千克,砂糖橘每千克的价格比苹果每千克的价格低40%.求苹果每千克的价格.5、解分式方程:2111x x x -=-+.-参考答案-一、单选题1、D【分析】 根据换元法,把21x x +换成y ,然后整理即可得解. 【详解】解:∵21x x +=y , ∴原方程化为110y y -+=. 整理得:y 2+y ﹣1=0.故选D .【点睛】本题考查的是换元法解分式方程,换元的实质是转化,关键是构造元和设元,理论依据是等量代换,目的是变换研究对象,将问题移至新对象的知识背景中去研究,从而使非标准型问题标准化、复杂问题简单化,变得容易处理.2、D【分析】根据题意先解不等式,确定a 的范围,进而根据分式方程的解为整数,确定a 的值,再求其和即可.【详解】解:2062x a x x ->⎧⎨->⎩①② 解不等式①得:2ax >解不等式②得:2x < 不等式组有解,则22a x <<且最多有2个整数解,则122a -≤< 解得24a -≤<2,1,0,1,2,3a ∴=--分式方程去分母得:42ay y -=-解得21y a =- 分式方程2ay y +-412y =-的解为整数, 21a ∴-是整数,且2,10y a ≠-≠ 2,1,2a ∴≠-1,0,3a ∴=-1032∴-++=即符合条件的所有整数a 的和为2,故选D【点睛】此题考查了分式方程的解,以及一元一次不等式组的整数解,熟练掌握运算法则是解本题的关键.3、B【分析】设通过AB 的速度是x m/s ,则根据题意可列分式方程,解出x 即可.【详解】设通过AB 的速度是x m/s , 根据题意可列方程:1212221.2x x+= , 解得x =1,经检验:x =1是原方程的解且符合题意.所以通过AB 时的速度是1m/s .故选B .【点睛】本题考查分式方程的实际应用,根据题意找出等量关系并列出分式方程是解答本题的关键.4、C【分析】根据根据进球总数为49个,总共20人,分别列出,x y 的关系式即可.【详解】根据进球总数为49个得:23495342522x y +=⨯⨯=﹣﹣﹣, 整理得:22233y x =-+, ∵20人一组进行足球比赛,∴153220x y +++++=,整理得:9y x =-+. ∴222933y x y x =-+=-+,. 故选C .【点睛】本题考查了两直线交点与二元一次方程组,理解题意列出关系式是解题的关键.5、A【分析】根据两项方程的定义直接判断得结论.【详解】解:(1)410x +=,符合二项方程的定义;(2)0n ax b +=,当a =0时,不符合二项方程的定义;(3)40x x +=,两项都含有未知数,不符合二项方程的定义;(4)51x x +=,有三项,不具备二项方程的定义,综上,只有(1)符合二项方程的条件,共1个.故选:A .【点睛】本题考查了二项方程的定义,二项方程需满足以下几个基本条件:(1)整式方程,(2)方程共两项,(3)两项中一项含有未知数,一项是常数项.6、C【分析】由图可知:两个一次函数的交点坐标为(3,1)-;那么交点坐标同时满足两个函数的解析式,而所求的方程组正好是由两个函数的解析式所构成,因此两函数的交点坐标即为方程组的解.【详解】解:根据函数图可知,函数y ax b =+和y kx =的图象交于点P 的坐标是(3,1)-,故y ax b y kx =+⎧⎨=⎩的解是31x y =-⎧⎨=⎩, 故选:C .【点睛】本题考查了一次函数与二元一次方程组,方程组的解就是使方程组中两个方程同时成立的一对未知数的值,而这一对未知数的值也同时满足两个相应的一次函数解析式,因此方程组的解就是两个相应的一次函数图象的交点坐标.7、A【分析】根据二元一次方程组的解的定义知,该方程组的解就是组成方程组的两个二元一次方程的图象的交点.【详解】解:由图象及题意得:∵直线y=kx+b和y=mx+n交于点A(﹣2,3),∴方程组kx y bmx y n-=-⎧⎨-=-⎩的解为23xy=-⎧⎨=⎩.故选:A.【点睛】本题主要考查一次函数与二元一次方程组的解,熟练掌握一次函数的图象与性质是解题的关键.8、C【分析】本题未知量是速度,已知路程,一定是根据时间来列等量关系的.关键描述语是:“来去所用时间恰好一样”;等量关系为:步行时间+乘车时间=骑自行车时间.【详解】解:步行所用时间为:2x,乘汽车所用时间为:1016x+,骑自行车所用时间为:128x+.所列方程为:21012168x x x+=++.故选C.【点睛】找到关键描述语,等量关系是解决问题的关键.9、C【分析】联立两直线解析式求出交点坐标,再根据交点在第一象限列出不等式组求解即可.【详解】解:根据题意,联立方程组24y x m y x =-+⎧⎨=+⎩, 解得:43243m x m y -⎧=⎪⎪⎨+⎪=⎪⎩, 则两直线交点坐标为4(3m -,24)3m +, 两直线交点在第一象限, ∴4032403m m -⎧>⎪⎪⎨+⎪>⎪⎩, 解得:4m >,故选:C .【点睛】本题考查了两直线相交的问题,解二元一次方程组和一元一次不等式组,联立两函数解析式求交点坐标是常用的方法.10、B【分析】解关于x 的不等式组,然后根据不等式组的解集确定a 的取值范围,解分式方程并根据分式方程解的情况结合a 为整数,取所有符合题意的整数a ,即可得到答案.【详解】 解:313221x x x a -⎧≤-⎪⎨⎪-<-⎩①②, 解不等式①得:5x ≤-,解不等式②得:21x a <-,∵该不等式组的解集为5x ≤-,∴215a ->-,∴2a >-,分式方程去分母得:14(2)1ay y -+-=-, 解得:64y a=-, ∵分式方程有正整数解,且2y ≠,∴满足条件的整数a 可以取:2、3,∴235+=,故选:B .【点睛】本题考查了解分式方程和一元一次不等式组的整数解,正确掌握解分式方程的步骤和解一元一次不等式组的方法是解本题的关键.二、填空题1、(3,0)或(-3,0)或⎫⎪⎪⎝⎭或⎫⎪⎪⎝⎭ 【分析】先根据函数的性质,求出A 、B 的坐标,再分三种情况分析,利用勾股定理的逆定理建立方程即可得出结论.【详解】解:∵一次函数y =−x +1与反比例函数y =2-x的图象交于点A 、B , ∴1y x y x =-+⎧⎪⎨=-⎪⎩2的解是点A 、B 的坐标,解这个方程组得:111 2x y =-⎧⎨=⎩,2221xy=⎧⎨=-⎩,∴A(-1,2),B(2,-1),设P(n,0),∵A(-1,2),B(2,-1),P(n,0),∴AB2=(2+1)2+(1+2)2=18,BP2=(n-2)2+1,AP2=(n+1)2+4,∵△ABP为直角三角形,∴①当∠ABP=90°AB2+BP2=AP2∴18+(n-2)2+1=(n+1)2 +4,∴n= 3,∴ P(3, 0),②当∠BAP= 90°时,AB2+ AP2= BP2,∴18+(n+1)2 +4=(n-2)2+1,∴n= -3,∴P(-3,0),③当∠APB= 90°时,AP2+ BP2= AB2,∴(n+1)2+4+(n-2)2+1= 18,∴n=∴P0)或P0),故答案为:P点的坐标(3,0)、 (-3,0)、,0)或0).【点睛】此题是反比例函数综合题,主要考查了分式方程的解法,勾股定理的逆定理,利用方程的思想解决问题是解本题的关键.2、x=1【分析】根据两个一次函数的图象的交点求法,得到y1=y2,求出交点,即可得出两函数图象的交点组成的图象方程.【详解】解:∵当两个一次函数y1=mx+n和y2=nx+m(m≠n)的图象的有交点时,∴y1=y2,∴mx+n=nx+m,mx-nx=m-n,(m-n)x=m-n,∵m≠n,∴x=1,故答案为:x=1.【点睛】本题考查了一次函数与二元一次方程组,利用方程组的解就是两个一次函数相应的交点坐标得到y1=y2,进而求出x是解决问题的关键.3、1a <-且【分析】分式方程去分母转化为整式方程,由分式方程的解为正数确定出a 的范围即可.【详解】解:去分母得:21x a x +=- ,解得:1x a =-- ,由分式方程的解为正数,得到10a --> ,且11a --≠ ,解得:a <-1且a ≠-2,故答案为:1a <-且2a ≠-.【点睛】此题考查了分式方程的解,以及解一元一次不等式,熟练掌握运算法则是解本题的关键.4、(-3,4)【分析】先求出A (0,4),D (-1,0),C (0,-2),得到AC =6,再求出B 点坐标,从而求出△ABC 的面积;然后求出直线AE 的解析式得到E 点坐标即可求出DE 的长,再由162DEP P ABC SDE y S △进行求解即可.【详解】解:∵A 是直线4y x =+与y 轴的交点,C 、D 是直线22y x =--与y 轴、x 轴的交点,∴A (0,4),D (-1,0),C (0,-2),∴AC =6;联立422y x y x =+⎧⎨=--⎩ ,解得22x y =-⎧⎨=⎩, ∴点B 的坐标为(-2,2), ∴()1==62ABC B S AC x ⋅-△, ∵AE BC ∥,∴可设直线AE 的解析式为2y x b =-+,∴4b =,∴直线AE 的解析式为24y x =-+,∵E 是直线AE 与x 轴的交点,∴点E 坐标为(2,0),∴DE =3, ∴162DEPP ABC S DE y S △, ∴=4P y ,∴=3P x ,∴点P 的坐标为(-3,4),故答案为:(-3,4).【点睛】本题主要考查了一次函数综合,求一次函数与坐标轴的交点,两直线的交点坐标,三角形面积,解题的关键在于能够熟练掌握一次函数的相关知识.5、7207202(120%)x x-=+【详解】略三、解答题1、60米【分析】设原计划每天铺设管道x米,根据题中等量关系原计划完成时间-实际完成时间=2列分式方程,然后求解即可解答.【详解】解:设原计划每天铺设管道x米,由题意,得72072021.2x x-=,解得x=60,经检验,x=60是原方程的解.且符合题意,答:原计划每天铺设管道60米. -【点睛】本题考查分式方程的应用,理解题意,找准等量关系,正确列出方程是解答的关键.2、(1)111n n ⎛⎫-⎪+⎝⎭;(2)20202021;(3)2x = 【分析】(1)根据材料可直接得出答案;(2)根据(1)的规律,将算式写出差的形式,计算即可;(3)先按照(1)的结论进行化简,再解分式方程,即可得到答案.【详解】解:(1)根据题意,可知:()11111n n n n =-++; 故答案为:111n n ⎛⎫-⎪+⎝⎭; (2)由(1)可知,111112233420202021+++⋅⋅⋅⋅⋅⋅+⨯⨯⨯⨯ =1111111(1)()()()2233420202021-+-+-+⋅⋅⋅⋅⋅⋅+- =111111112233420202021-+-+-+⋅⋅⋅⋅⋅⋅+- =112021-=20202021; (3)由(1)可知,()()()()()211133366918x x x x x x x ++=++++++, ∴211111113()33366918x x x x x x x -+-+-=++++++, ∴21113()3918xx x -=++, ∴2119918x x x -=++, ∴299(9)18x x x =++, ∴22918x x x +=+,∴2x =;经检验,2x =是原分式方程的解.∴2x =.【点睛】本题考查了解分式方程以及有理数的混合运算,掌握分式方程的解法是解题的关键.3、(1)甲队每天完成的绿化面积为200m 2,乙队每天完成的绿化面积为100m 2;(2)12天【分析】(1)设乙队每天完成的绿化面积为x m 2,则甲队每天完成的绿化面积为2x m 2,利用工作时间=工作总量÷工作效率,结合甲,乙工程队在单独完成面积为600m 2绿化时乙队比甲队多用3天,即可得出关于x 的分式方程,解之经检验后即可得出乙队每天完成的绿化面积,再将其代入2x 中即可求出甲队每天完成的绿化面积;(2)设甲、乙两个工程队有m 天共同参加施工,则甲工程队单独施工(30﹣m )天,利用工作总量=工作效率×工作时间,结合30天内至少完成7200m 2绿化,即可得出关于m 的一元一次不等式,解之取其中的最小值即可得出结论.【详解】解:(1)设乙队每天完成的绿化面积为x m 2,则甲队每天完成的绿化面积为2x m 2,依题意得:600x﹣6002x=3,解得:x=100,经检验,x=100是原方程的解,且符合题意,∴2x=2×100=200.答:甲队每天完成的绿化面积为200m2,乙队每天完成的绿化面积为100m2.(2)设甲、乙两个工程队有m天共同参加施工,则甲工程队单独施工(30﹣m)天,依题意得:(200+100)m+200(30﹣m)≥7200,解得:m≥12.答:甲、乙两个工程队至少有12天必须共同参加施工.【点睛】本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量之间的关系,正确列出一元一次不等式.4、14元【分析】设苹果每千克的价格为x元,则砂糖橘每千克的价格为(140%)x-元.根据“学校食堂花了1500 元和1800元分别采购了砂糖橘和苹果,采购的砂糖橘比苹果多50千克,”列出方程,即可求解.【详解】解:设苹果每千克的价格为x元,则砂糖橘每千克的价格为(140%)x-元.根据题意,得1500180050 (140%)x x-=-解得14x=经检验:14x=是原分式方程的解,且符合题意,∴苹果每千克的价格为14元.【点睛】本题主要考查了分式方程的应用,明确题意,准确得到等量关系是解题的关键.5、3x =【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【详解】解:去分母得:()()()()12111x x x x x +--=+-去括号得:22221x x x x +-+=-,解得:3x =,检验:当3x =时,最简公分母()()110x x +-≠,∴原方程的解是3x =.【点睛】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.。
上海市八年级(下)数学第二十一章代数方程练习卷一

八年级(下)数学第二十一章代数方程练习卷一一.选择题(每题3分,共18分)1.下列关于x 的方程中,高次方程是 ( )(A )210(0)ax a ; (B )3250x x ; (C )3512x x ; (D )250x .2.如果关于x 的方程(3)6m x 有解,那么m 的取值范围是 ( )(A )3m ; (B )3m ; (C )3m ; (D )任意实数.[来3.下列方程中,有实数根的是 ( ) [来(A )2x x ;(B )210x ;(C )530x x ;(D )23x x .4.用换元法解方程2213521x x x x ,设21x y x ,则得到关于y 的整式方程为 ( )(A )22530y y ; (B )261010y y ;(C )23520y y ; (D )21060y y .5.下列方程组,82xy x y ;12xz y xy y x ;2326x xy ;21.315xy x y 其中,二元二次方程组的个数是( )(A ) 1;(B ) 2;(C ) 3;(D ) 4.6.方程组22223062x xy y x y 的解的个数是 ( ) (A ) 1 ; (B ) 2 ; (C ) 3 ; (D ) 4.二、填空(每空2分,共24分)7.方程310x 的根是 .8.方程422740x x 的根是 .9.方程233x 的解是 .10.把二次方程22964x xy y 化成两个一次方程,这两个一次方程是_____________________.11.已知关于x 的方程2230x mx 是二项方程,那么m = .12.当m 时,关于x 的方程2(2)4m x m 的根是2x m .13.方程2()65()11x xx x 的整数解是 .14.方程组45x y xy 的解是 .15.若关于x 的方程3321ax x x 有增根1x ,则a 的值是 .16.已知一个直角三角形的周长为26,斜边上的中线长为1,那么这个直角三角形的面积是 .17.如果某工厂三月份生产总值比一月份增加0044,那么二、三月份平均每月生产总值的增长率是__________. 18.如果方程1x k 有实数解,那么k 的取值范围是 . 三、解答题:(19、20、21、24、25每题5分,22题10分,23题10分, 266分,27每题7分)19.解方程:22321011x x x x x . 20.解方程:x x 2141.21.当m 取什么值时,方程组224x y mx y 有两个相同的实数解?并求出此时方程组的解.22.解关于x 或y 的方程:(1)3(3)ax x (2)22210by y (2b )23.解方程组:(1)22560;8x xy y x y (2)10351521x y x y x y x y 24. A 做90个零件所需要的时间和B 做120个零件所用的时间相同,又知每小时A 、B 两人共做35个机器零件。
第二十一章 代数方程(提升卷)(解析版)

《阳光测评》2020-2021学年下学期八年级数学单元基础卷【沪教版】第二十一章代数方程(提升卷)姓名:__________________ 班级:______________ 得分:_________________注意事项:本试卷满分100分,考试时间90分钟,试题共25题.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共6小题,每小题2分,共12分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.下列方程中有实数解的是()A.x4+16=0 B.x2﹣x+1=0C.D.【答案】C【解答】解:A中△=02﹣4×1×16=﹣64<0,方程无实数根;B中△=(﹣1)2﹣4×1×1=﹣3<0,方程无实数根;Cx=﹣1是方程的根;D中分子不为零的分式方程不可能为0,无实数根.故选:C.【知识点】分式方程的解、高次方程、无理方程、根的判别式2.设a、b为不超过10的自然数,那么,使方程ax=b的解大于且小于的a、b的组数是()A.2 B.3 C.4 D.1【答案】A【解答】解:∵a、b是自然数,∴由方程ax=b,得x=;又∵<<,a、b为不超过10的自然数,∴满足条件的a、b的值分别是:或.∴使方程ax=b的解大于且小于的a、b的组数是2组;故选:A.【知识点】含字母系数的一元一次方程3.若关于x的方程产生增根,则增根是()A.﹣1B.1C.﹣2D.因为含有m,所以无法确定【答案】B【解答】解:由分式方程有增根,得到x﹣1=0,解得:x=1,故选:B.【知识点】分式方程的增根4.若关于x的分式方程有增根,则a的值是()A.0 B.1 C.2 D.0或2【答案】C【解答】解:去分母得:2﹣a=x﹣1,由分式方程有增根,得到x﹣1=0,即x=1,代入整式方程得:a=2,故选:C.【知识点】分式方程的增根5.在单元考试中,某班同学解答“由一个二元一次方程和一个二元二次方程组成的方程组的解为,,试写出这样的一个方程组题目,出现了下面四种答案,其中正确的答案是()A.B.C.D.【答案】C【解答】解:A、第二个解不符合方程组中的第一个方程,所以方程组不符合,故本选项不符合题意;B、第一个解不符合方程组中的第一个方程,所以方程组不符合,故本选项不符合题意;C、两个解都是方程组的解,方程组也满足由一个二元一次方程和一个二元二次方程组成的,故本选项符合题意;D、方程组不是由一个二元一次方程和一个二元二次方程组成的,故本选项不符合题意;故选:C.【知识点】二元一次方程的解、高次方程6.甲、乙两港口相距48千米,一艘轮船从甲港口顺流航行至乙港口,又立即从乙港口逆流返回甲港口,共用去9小时,已知水流速度为4千米/时,若设该轮船在静水中的速度为x千米/时,则可列方程()A.=9 B.=9C.=9 D.+4=9【答案】B【解答】解:顺流时间为:;逆流时间为:.所列方程为:+=9.故选:B.【知识点】由实际问题抽象出分式方程二、填空题(本大题共12小题,每小题2分,共24分.不需写出解答过程,请把答案直接填写在横线上)7.方程=的解是﹣.【答案】x1=2,x2=-1【解答】解:方程两边平方得,x2﹣x=2,整理得,x2﹣x﹣2=0,解得x1=2,x2=﹣1,经检验,x1=2,x2=﹣1都是原方程的根,所以,方程的解是x1=2,x2=﹣1.故答案为:x1=2,x2=﹣1.【知识点】无理方程8.方程的根是﹣.【答案】x=-4【解答】解:因为算术平方根的被开方数是非负数,根据题意可得,5﹣x=9,解得:x=﹣4.故本题答案为:x=﹣4.【知识点】无理方程9.已知=2,那么x=.【答案】1【解答】解:∵=2,∴x+3=4,∴x=1,经检验x=1是方程的解.故答案为1.【知识点】无理方程10.若关于x的分式方程=2a有增根,则a的值为.【答案】3【解答】解:=2a,去分母得:﹣a+x=2a(x﹣3),由分式方程有增根,得到x﹣3=0,即x=3,代入整式方程得:﹣a+3=0,解得:a=3.故答案为:3.【知识点】分式方程的增根11.若关于x的分式方程=+1有增根,增根是,m=.【答案】【第1空】x=3【第2空】2【解答】解:去分母得:m=2+x﹣3,由分式方程有增根,得到x﹣3=0,即x=3,把x=3代入整式方程得:m=2,故答案为:x=3,2【知识点】分式方程的增根12.当m﹣时,方程=0会产生增根.【答案】=-8【解答】解:方程两边都乘(x﹣4),得2x+m=0∵原方程增根为x=4,∴把x=2代入整式方程,得m=﹣8,故答案为:=﹣8.【知识点】分式方程的增根13.将方程组:转化成两个二元二次方程组分别是和.【解答】解:由方程x2﹣5xy+6y2=0得(x﹣2y)(x﹣3y)=0,即x﹣2y=0或x﹣3y=0,所以,原方程组可化为,,故答案为:,.【知识点】二元二次方程组14.已知关于x的方程2x2+mx﹣1=0是二项方程,那么m=.【答案】0【解答】解:由题意,得m=0.故答案为:0.【知识点】高次方程15.把二元二次方程x2﹣5xy+6y2=0化成两个一次方程,那么这两个一次方程是﹣﹣.【答案】x-2y=0或x-3y=0【解答】解:∵x2﹣5xy+6y2=0,∴(x﹣2y)(x﹣3y)=0,∴x﹣2y=0或x﹣3y=0.故答案为:x﹣2y=0或x﹣3y=0【知识点】高次方程16.参加足球联赛的每两个队之间都进行一次比赛,共要比赛36场,共有个队参加比赛.【答案】9【解答】解:设有n个队参加比赛,,解得n1=﹣8(舍去),n2=9.答:有9个队参加比赛.【知识点】一元二次方程的应用17.A,B两市相距200千米,甲车从A市到B市,乙车从B市到A市,两车同时出发,已知甲车速度比乙车速度快15千米/小时,且甲车比乙车早半小时到达目的地.若设乙车的速度是x千米/小时,则根据题意,可列方程﹣.【解答】解:设乙车的速度是x千米/小时,则根据题意,可列方程:﹣=.故答案为:﹣=.【知识点】由实际问题抽象出分式方程18.A、B两地相距60km,甲骑自行车从A地到B地,出发1h后,乙骑摩托车从A地到B地,且乙比甲早到3h,已知甲、乙的速度之比为1:3,则甲的速度是.【答案】10km/h【解答】解:设甲的速度为xkm/h,则乙的速度为3xkm/h,依题意,有+4,解这个方程,得x=10,经检验,x=10是原方程的解,当x=10时,3x=30.答:甲的速度为10km/h,乙的速度为30km/h.故答案为:10km/h【知识点】分式方程的应用三、解答题(本大题共7小题,共64分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19.解方程:=1+.【解答】解:去分母得:y+2=y2﹣4+4,…(2分)∴y2﹣y﹣2=0,…(1分)∴y1=2,y2=﹣1,…(2分)经检验知:y1=2是增根,舍去,y2=﹣1是原方程的根,…(1分)∴原方程的根是y=﹣1.【知识点】分式方程的增根20.解方程:x4+3x2﹣10=0.【解答】解:∵(x2﹣2)(x2+5)=0,∴x2﹣2=0或x2+5=0,解x2﹣2=0得x1=,x2=﹣;方程x2+5=0无解,∴原方程的解为x1=,x2=﹣.【知识点】高次方程21..【解答】解:设y2﹣4y﹣5=0y1=5,y2=﹣1当y=5时,,解得:当y=﹣1时,此方程无解经检验是原方程的根【知识点】无理方程22.解方程组:【解答】解:由②得:(x﹣2y)(x+y)=0,x﹣2y=0或x+y=0…………………………………………(2分)原方程组可化为,………………………………(2分)解得原方程组的解为,…………………………………(5分)∴原方程组的解是为,……………………………………(6分)【知识点】二元二次方程组23.“绿水青山就是金山银山”,为加快城乡绿化建设,某市2020年绿化面积约1000万平方米,预计2022年绿化面积约为1210万平方米.假设每年绿化面积的平均增长率相同.(1)求每年绿化面积的平均增长率;(2)已知每平方米绿化面积的投资成本为60元,若2023年的绿化面积继续保持相同的增长率,那么2023年的绿化投资成本需要多少元?【解答】解:(1)设每年绿化面积的平均增长率为x.可列方程:1000(1+x)2=1210.解方程,得x1=0.1 x2=﹣2.1(不合题意,舍去).所以每年绿化面积的平均增长率为10%.(2)1210×(1+10%)=1331(万平方米)1331000×60=798600000(元)答:2021年的绿化投资成本需要798600000元.【知识点】一元二次方程的应用24.为了帮助遭受自然灾害的地区重建家园,某学校号召同学们自愿捐款.已知第一次捐款总额为4800元,第二次捐款为5000元,第二次捐款人数比第一次多20人,而且两次人均捐款额相等,如果设第一次捐款人数x人,那么x应满足怎样的方程?【解答】解:设第一次捐款人数x人,第二次捐款人数(x+20)人,由第一次人均捐款额=第二次两次人均捐款额,故可得:.【知识点】由实际问题抽象出分式方程25.某小型工厂9月份生产的A、B两种产品数量分别为200件和100件,A、B两种产品出厂单价之比为2:1,由于订单的增加,工厂提高了A、B两种产品的生产数量和出厂单价,10月份A产品生产数量的增长率和A产品出厂单价的增长率相等,B产品生产数量的增长率是A产品生产数量的增长率的一半,B 产品出厂单价的增长率是A产品出厂单价的增长率的2倍.设B产品生产数量的增长率为x(x>0).(1)用含有x的代数式填表(不需化简):9月份生产数量生产数量的增长率10月份生产数量产品A200产品B100x(2)若9月份两种产品出厂单价的和为90元,10月份该工厂的总收入增加了4.4x,求x的值.【答案】【第1空】2x【第2空】200(1+2x)【第3空】100(1+x)【解答】解:(1)由题意,得:9月份生产数量生产数量的增长率10月份生产数量产品A2002x200(1+2x)产品B100x100(1+x)故答案是:2x;200(1+2x);100(1+x);(2)90×=60(元)90×=30(元)60×200(1+2x)2+30×100(1+x)(1+4x)=(60×200+30×100)(1+4.4x)解得x1=0(舍去),x2=.即x的值是.【知识点】分式方程的应用、一元二次方程的应用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二十一章 代数方程测试卷
一、选择题
1.方程2x
x2-4 -1=1
x +2 的解是( )
(A )-1 (B )2或-1 (C )-2或3 (D )3
2.用换元法解分式方程3x
x2-1 +x2-13x =3时,设3x
x2-1 =y,原方程变形为( )
(A )y 2-3y +1=0 (B )y 2+3y +1=0 (C )y 2+3y -1=0 (D )y 2-y +3=0
3.用换元法解方程x 2+8x +x2+8x -11 =23,若设y =x2+8x -11 ,则原方程可化为( )
(A )y 2+y +12=0 (B )y 2+y -23=0 (C )y 2+y -12=0 (D )y 2+y -34=0
4.若解分式方程2x
x -1 -m +1
x2+x =x +1x 产生增根,则m 的值是( )
(A )-1或-2 (B )-1或2 (C )1或2 (D )1或-2
5.解方程4x -1
x -1 =1时,需将方程两边都乘以同一个整式(各分母的最简公分母),约去分母,所乘的这个整式为( )
(A )x -1 (B )x (x -1) (C )x (D )x +1
6. 某车间原计划 x 天内生产零件 50 个,由于采用新技术,每天多生产零件 5 个,因此提前3 天完成任务,则可列出的方程为
( )
(A )50
x -3=50
x -5 (B )50
x =50
x -3-5 (C )50x -3=50x -5 (D )50x =50
x -3-5
二、填空:
7. 如果424x x --的值与5
4x x --的值相等,则x =___________.
8.方程2x -3 -x +1 =0的解是_________。
9. 已知3
2x
y =,则x y
x y -=+______________.
10. 能使(x -5)x -7 =0成立的x 是______。
11. 关于x 的方程m(m -1)x +3 =2x -15是根式方程,则m 的取值范围是_____。
12. 一项工程,甲、乙两人合做需t 小时完成,甲独做需s 小时完成,那么乙独做需____________小时完成.
13. 当 x =____时,分式x +1
x +2的值等于4
5。
14.学校举行乒乓球女子单打比赛,采用单循环赛制,共比赛21场,则参加比赛的选手有 名.
15.两个连续正偶数的和的平方是36,则这两个数是 .
16.某件商品先降价10%之后,再提价10%,现价是99元,则商品的原价是 元.
17.已知直角三角形的两条直角边的差是3cm,其面积是20cm 2,则其两条直角边长为 .
18.写出一个双二次方程,这个方程可以是 .
三、简答题:
19.解方程2
3
7
3227x x +=++
20. 解方程 2x 2-4x -3x2-2x -4 =10
21. 解方程组:2222x -2xy+y =4
x +xy-2y =0⎧⎪⎨⎪⎩
22.若关于x 的方程x x-2 - m+1x2+2 = x+1x
+1产生增根,求m 的值。
23. 当a 为何值时,方程x-1x - 8x+a 2x(x-1) + x x-1
=0只有一个实数根。
四、解答题
24. 电力局的维修工要到30千米远的郊区进行电力抢修,技术工人骑摩托车先走,15分钟后,抢修车装载所需的材料出发,结果他们同时到达,已知抢修车的速度是摩托车的1.5倍,求这两种车的速度
25. 如图,矩形ABCD 中,AB =6cm,BC =12cm,点P从A 开始沿AB 边向点B 以1厘米/秒的速度移动,点Q 从点B 开始沿BC 边向点C 以2厘米/秒的速度移动,如果P 、Q 分别是从A 、B 同时出发,求经过几秒时,
①△PBQ 的面积等于 8 平方厘米?
②五边形APQCD 的面积最小?最小值是多少?
知识改变命运
Q B。