七段数码管的动态显示

合集下载

八位七段数码管动态显示电路设计

八位七段数码管动态显示电路设计

八位七段数码管动态显示电路的设计一七段显示器介绍七段显示器,在许多产品或场合上经常可见。

其内部结构是由八个发光二极管所组成,为七个笔画与一个小数点,依顺时针方向为A、B、C、D、E、F、G与DP等八组发光二极管之排列,可用以显示0~9数字及英文数A、b、C、d、E、F。

目前常用的七段显示器通常附有小数点,如此使其得以显示阿拉伯数之小数点部份。

七段显示器的脚位和线路图如下图4.1所示( 其第一支接脚位于俯视图之左上角)。

图4.1、七段显示器俯视图由于发光二极管只有在顺向偏压的时候才会发光。

因此,七段显示器依其结构不同的应用需求,区分为低电位动作与高电位动作的两种型态的组件,另一种常见的说法则是共阳极( 低电位动作)与共阴极( 高电位动作)七段显示器,如下图4.2所示。

( 共阳极) ( 共阴极)图4.2、共阳极(低电位动作)与共阴极(高电位动作)要如何使七段显示器发光呢?对于共阴极规格的七段显示器来说,必须使用“ Sink Current ”方式,亦即是共同接脚COM为VCC,并由Cyclone II FPGA使接脚成为高电位,进而使外部电源将流经七段显示器,再流入Cyclone II FPGA的一种方式本实验平台之七段显示器模块接线图如下图4.5所示。

此平台配置了八组共阳极之七段显示器,亦即是每一组七段显示器之COM接脚,均接连至VCC电源。

而每一段发光二极管,其脚位亦均与Cyclone II FPGA接连。

四位一体的七段数码管在单个静态数码管的基础上加入了用于选择哪一位数码管的位选信号端口。

八个数码管的a、b、c、d、e、f、g、h、dp都连在了一起,8个数码管分别由各自的位选信号来控制,被选通的数码管显示数据,其余关闭。

图4.5、七段显示器模块接线图七段显示器之常见应用如下➢可作为与数值显示相关之设计。

⏹电子时钟应用显示⏹倒数定时器⏹秒表⏹计数器、定时器⏹算数运算之数值显示器二七段显示器显示原理七段显示器可用来显示单一的十进制或十六进制的数字,它是由八个发光二极管所构成的( 每一个二极管依位置不同而赋予不同的名称,请参见图4.1 ) 。

(完整word版)八位七段数码管动态显示电路设计

(完整word版)八位七段数码管动态显示电路设计

八位七段数码管动态显示电路的设计一七段显示器介绍七段显示器,在许多产品或场合上经常可见。

其内部结构是由八个发光二极管所组成,为七个笔画与一个小数点,依顺时针方向为A、B、C、D、E、F、G与DP等八组发光二极管之排列,可用以显示0~9数字及英文数A、b、C、d、E、F。

目前常用的七段显示器通常附有小数点,如此使其得以显示阿拉伯数之小数点部份。

七段显示器的脚位和线路图如下图4.1所示( 其第一支接脚位于俯视图之左上角)。

图4.1、七段显示器俯视图由于发光二极管只有在顺向偏压的时候才会发光。

因此,七段显示器依其结构不同的应用需求,区分为低电位动作与高电位动作的两种型态的组件,另一种常见的说法则是共阳极( 低电位动作)与共阴极( 高电位动作)七段显示器,如下图4.2所示。

( 共阳极) ( 共阴极)图4.2、共阳极(低电位动作)与共阴极(高电位动作)要如何使七段显示器发光呢?对于共阴极规格的七段显示器来说,必须使用“ Sink Current ”方式,亦即是共同接脚COM为VCC,并由Cyclone II FPGA使接脚成为高电位,进而使外部电源将流经七段显示器,再流入Cyclone II FPGA的一种方式本实验平台之七段显示器模块接线图如下图4.5所示。

此平台配置了八组共阳极之七段显示器,亦即是每一组七段显示器之COM接脚,均接连至VCC电源。

而每一段发光二极管,其脚位亦均与Cyclone II FPGA接连。

四位一体的七段数码管在单个静态数码管的基础上加入了用于选择哪一位数码管的位选信号端口。

八个数码管的a、b、c、d、e、f、g、h、dp都连在了一起,8个数码管分别由各自的位选信号来控制,被选通的数码管显示数据,其余关闭。

图4.5、七段显示器模块接线图七段显示器之常见应用如下可作为与数值显示相关之设计。

⏹电子时钟应用显示⏹倒数定时器⏹秒表⏹计数器、定时器⏹算数运算之数值显示器二七段显示器显示原理七段显示器可用来显示单一的十进制或十六进制的数字,它是由八个发光二极管所构成的( 每一个二极管依位置不同而赋予不同的名称,请参见图4.1 ) 。

数码管 动态显示原理

数码管 动态显示原理

数码管动态显示原理
数码管的动态显示原理是通过快速地切换数字的显示段来实现连续的数字显示。

数码管通常由7个显示段构成,分别代表数字0-9的不同显示形式。

这些段也被称为a、b、c、d、e、f和
g段。

在动态显示过程中,每个数字被逐个切换显示的时间非常短,通常为几毫秒。

这个时间非常短,以至于人眼无法察觉数字的切换。

因此,当多个数码管以高速切换显示数字时,人眼会感觉到所有数码管上的数字同时显示。

要实现动态显示,需要使用一个计数器来控制切换显示的时间。

这个计数器通常是一个定时器,它会以一定的频率触发中断,每次中断时触发一次显示切换。

通过不断增加计数值,可以控制不同数字的显示时间。

为了显示一个多位数,需要使用多个数码管并连接到控制器上。

控制器会根据待显示的数字,将适当的段信号发送到对应的数码管上。

通过在不同的数码管上切换显示,就可以实现多位数的动态显示。

动态显示的基本原理如下:
1. 设置初始的数码管选择位,使其对应第一个数码管。

2. 将第一个数码管对应的段信号置为显示的数字。

3. 延时一段时间,使人眼无法察觉到数字的切换。

4. 将第一个数码管的段信号置为低电平(或不显示的状态)。

5. 设置下一个数码管的选择位,使其对应下一个数码管。

6. 重复2-5步骤,直至所有数码管都完成一轮显示。

7. 返回第一步,重复整个过程,以实现连续的动态显示。

通过以上步骤的循环,不断切换显示的数字会给人一种连续而平滑的显示效果。

这就是数码管动态显示的基本原理。

七段数码管显示原理

七段数码管显示原理

七段数码管显示原理七段数码管是一种常见的数字显示器件,它由七个LED数码管组成,用来显示0-9的数字。

在数字电子技术中,七段数码管广泛应用于各种计数器、时钟、温度计、电子秤等设备中。

那么,七段数码管是如何实现数字显示的呢?接下来,我们将详细介绍七段数码管的显示原理。

首先,七段数码管由七个LED数码管组成,分别是a、b、c、d、e、f、g。

每个LED数码管代表一个固定的数字段,通过控制这些LED的亮灭,就可以显示出不同的数字。

比如,要显示数字0,就需要点亮a、b、c、d、e、f,而g不需要点亮;要显示数字1,就只需要点亮b、c;以此类推,通过控制这七个LED的亮灭组合,就可以显示出0-9的数字。

其次,七段数码管的显示原理是通过控制电流来控制LED的亮灭。

当给定一个数字时,通过数码管的控制电路,将相应的LED数码管接通,使得其发光,从而显示出对应的数字。

这个控制电路通常由数字信号转换为LED的控制信号,通过逻辑门、译码器等电子元件来实现。

当输入不同的数字信号时,控制电路会根据预设的真值表,输出相应的LED控制信号,从而实现数字的显示。

另外,七段数码管的显示原理还涉及到了多路复用技术。

在一些需要同时显示多个数字或者进行动态显示的场合,就需要用到多路复用技术。

通过多路复用技术,可以在同一个七段数码管上依次显示不同的数字,从而实现多个数字的显示或者动态显示。

多路复用技术通过快速切换不同的数字,使得人眼无法感知到数字的变化,从而实现了多个数字的显示或者动态显示。

总的来说,七段数码管的显示原理是通过控制LED的亮灭来显示数字,其中涉及到了控制电路、多路复用技术等内容。

七段数码管作为一种常见的数字显示器件,其显示原理的了解对于数字电子技术的学习和应用具有重要意义。

希望通过本文的介绍,读者能够更加深入地了解七段数码管的显示原理,为今后的学习和工作提供帮助。

FPGA实验三七段数码管静态与动态显示实验报告

FPGA实验三七段数码管静态与动态显示实验报告

FPGA实验三七段数码管静态与动态显示实验报告实验目的:通过FPGA实现七段数码管的静态与动态显示,在FPGA上可实现对任意数字的显示和计数功能。

实验原理:七段数码管是一种能够显示数字的晶体管数字显示器件,它由七个LED数码管组成,每个数码管分别由a、b、c、d、e、f、g七个LED组成。

通过控制每个LED的亮灭情况,可以对任意数字进行显示。

七段数码管的静态显示是指每个数字的显示都是固定的,而动态显示则是通过快速地刷新七段数码管的显示,使得数字像是在变化。

在FPGA 中,可以通过时钟信号和计数器实现刷新,从而实现数字的动态显示。

实验过程:首先,将FPGA和七段数码管连接,在FPGA上选择适当的引脚连接到a、b、c、d、e、f、g七个数码管。

在FPGA中创建工程,并添加适当的引脚约束,以实现与七段数码管的连接。

然后,根据需要选择静态或动态显示。

静态显示:静态显示的原理是通过直接控制每个LED的亮灭情况,使得每个数字都可以被显示出来。

首先,需要定义每个数字对应的LED的状态(亮灭),例如数字0对应的LED状态可能为(1,1,1,1,1,1,0)等。

然后,通过FPGA的逻辑电路实现对应数字的显示。

动态显示:动态显示的原理是通过快速地刷新显示,使得数字在若干个数码管中切换,从而造成数字变化的视觉效果。

这里需要使用时钟信号和计数器来控制刷新。

首先,需要设计一个计数器,它的计数范围应该与显示数字的个数相同。

然后,通过时钟信号让计数器开始计数,并根据计数器的值选择对应的数字显示在七段数码管上。

通过控制计数器的计数速度和刷新频率,可以实现数字的动态显示。

实验结果:经过实验,我们成功地实现了七段数码管的静态显示和动态显示。

在静态显示中,我们可以通过FPGA的逻辑电路对七段数码管的每个LED进行控制,从而实现任意数字的显示。

在动态显示中,我们通过时钟信号和计数器实现了刷新功能,使得数字在七段数码管中快速地切换,从而呈现出动态的显示效果。

实验报告 实验七 八段数码管显示实验

实验报告      实验七   八段数码管显示实验

实验报告实验七八段数码管显示实验----b46086b6-6eaf-11ec-8071-7cb59b590d7d实验报告--实验七-八段数码管显示实验EDA实验报告七段或八段数码管显示实验1、实验目的1)了解数码管动态显示的原理。

2)了解如何通过总线控制数码管显示器2、实验要求:利用实验仪提供的显示电路,动态显示一行数据.提示:显示显示缓冲区的内容(例如,可以使用60H~65h作为缓冲区)。

修改显示缓冲区的内容时,可以显示修改后的内容(为键盘扫描和显示实验做准备)。

3、实验说明实验仪器提供了一个6位8段编码的LED显示电路。

学生可以控制显示,只要他们根据地址输出相应的数据。

显示器共有6位,以动态方式显示。

8位段码和6位码由两个74ls374芯片输出。

位代码由mc1413或uln2022反相驱动后,选择相应的显示位。

本实验仪中8位段码输出地址为0x004h,位码输出地址为0x002h。

此处x是由key/ledcs决定,参见地址译码。

在进行键盘和led实验时,需要将按键/LEDC连接到相应的地址解码。

以便使用相应的地址进行访问。

例如,如果钥匙/ledcs连接到CS0,则段代码地址为08004h,位代码地址为08002h。

七段数码管的字型代码表如下表:a-----f | | b | |------| g | e | c-----d。

h显示字体gfedcba段代码001111113FH100011006H210110115BH3100111114FH41100111066H51016DH61111017DH70000 1107H81111117FH911011116fha111011177hb11111007chc011100139hd10111105ehe111100179hf111000171h4.原理图和接线5、实验内容1)使用仪器和仪表开发平台模型本实验用到了wave6000软件平台,电脑一台,lab6000实验箱,示波器,若干连线,串行数据线。

简述七段数码管动态扫描显示原理

简述七段数码管动态扫描显示原理

简述七段数码管动态扫描显示原理
七段数码管动态扫描显示原理是指通过对七段数码管的各段进行逐个刷新,以实现数字、字母和符号等信息的显示。

七段数码管由7个LED灯组成,分别代表数字0~9和字母A~F等,可以通过控制各个LED的亮灭状态来显示不同的字符。

动态扫描显示原理是通过快速地在各个数码管之间切换显示内容,使得人眼无法察觉到切换的过程,从而产生连续的显示效果。

具体实现过程如下:
1. 将需要显示的数字或字符转换为相应的LED点亮状态,通过控制各个数码管的引脚来实现。

2. 通过控制锁存器的输入使得数据在锁存器中存储。

3. 通过控制锁存器的输出使得数据从锁存器输出到数码管的控制引脚上。

4. 通过控制位选锁存器的输出,选择显示的数码管。

5. 通过控制位选锁存器的使能引脚,控制数码管的亮灭状态。

6. 循环执行上述步骤,不断刷新各个数码管的显示内容,使得整个显示效果连续而流畅。

7. 根据需要的显示速度和亮度,可以调整刷新频率和亮灭时间的设置。

通过这种动态扫描的方式,只需要控制一部分引脚,就能够实现多
个七段数码管的显示,从而减少了所需的引脚数量和控制复杂度,提高了显示的效率和可靠性。

动态数码管显示原理

动态数码管显示原理

动态数码管显示原理
动态数码管显示原理是通过在特定的时间序列下,逐个刷新数码管的每一位来显示数字的。

数码管由七段LED组成,包括a、b、c、d、e、f、g七段。

根据7段LED的不同亮灭组合方式,可以显示0~9的数字,
以及一些字母和符号。

每一位数码管的显示由控制信号控制。

动态数码管的显示原理是,通过快速地逐个刷新每一位数码管的显示,给人造成多个数码管同时显示的错觉。

这需要两个关键信号:位选信号和段选信号。

位选信号是用于选择要显示的数码管的信号。

它连接到数码管的选择引脚,通过逐个地将相应的数码管的选择引脚置为低电平,来选择要显示的数码管。

段选信号是用于控制每一位要显示的数字的信号。

它连接到数码管的a、b、c、d、e、f、g七个引脚,通过对应的引脚组合,可以控制每一位显示相应的数字。

在动态数码管显示中,根据显示的需要,以一定的时间间隔连续切换不同的位选信号,同时通过段选信号控制每一位显示相应的数字。

这样,在切换速度较快的情况下,人眼会觉得多个数码管配合闪烁,呈现出完整的数字显示效果。

通过这种原理,可以实现在有限的数码管上显示多位数字,例如时钟、计时器等。

但需要注意的是,由于刷新速率较快,人
眼感觉到的是同时显示,因此要确保刷新频率足够高,以避免出现闪烁或者模糊的现象。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

七段数码管的动态显示1、实验内容:数码管的动态显示利用实验板上的某四位数码管依次显示16 进制的0000~FFFF。

为实现功能重用的目的,我们仍然将系统划分为几个部分:(1)时钟分频模块:将开发板上的50MHz 高速时钟进行分频产生一个5Hz 的时钟用于计数。

(2)计数模块:实现从0000~FFFF 的计数功能。

用4位十六进制数来实现,其中15‐12 位表示十六进制数的最高位,11‐8 位表示次高位,7‐4 位表示次低位,3‐0位表示最低位(3)数码管动态显示模块:将计数模块的输出作为显示字符的输入值,分时送出相应段码,实现数码管的动态显示效果。

2、参考程序:module SegDynamicDisp(CLK,rst_n,SEG0,SEG1,SEG2,SEG3);//数码管动态显示模块? input CLK;input rst_n;output [7:0]SEG0;//定义输出数码管0的段码带output [7:0]SEG1;//定义输出数码管1的段码带output [7:0]SEG2;//定义输出数码管2的段码带output [7:0]SEG3;//定义输出数码管3的段码带//..............................................................reg [7:0]SEG0;//定义输出数码管0的段码带reg [7:0]SEG1;//定义输出数码管1的段码带reg [7:0]SEG2;//定义输出数码管2的段码带reg [7:0]SEG3;//定义输出数码管3的段码带//..................................................................parameter seg0=8'hC0,seg1=8'hF9,seg2=8'hA4,seg3=8'hB0,seg4=8'h99,seg5=8'h92,seg6=8'h82,seg7=8'hF8,seg8=8'h80,seg9=8'h90,sega=8'h88,segb=8'h83,segc=8'hC6,segd=8'hA1,sege=8'h86,segf=8'h8E;//....................................................................reg[23:0] cnt;//定义计数寄存器,用来实现定时的功能reg [15:0]counter;//定义计数寄存器,用于实现显示的数值always @(posedge CLK or negedge rst_n)//计数过程,记录当前显示的位选序号if(!rst_n)begincnt<=24'D0;//复位时cnt初始化为0counter<=2'b00;//复位时counter初始化为0endelsebegincnt<=cnt+1'b1;//实现计数的功能if(cnt==24'D1*******)begincnt<=0;//当达到计数值以后回复初始值counter<=counter+1;//当达到计时时间以后显示的数值也相应的+1endend//....................................................always @(posedge CLK or negedge rst_n)if(!rst_n)beginSEG0<=0;SEG1<=0;SEG2<=0;SEG3<=0;endelsealways @(counter)begincase(counter[3:0])4'h0: sm_dbr <= seg0;4'h1: sm_dbr <= seg1;4'h2: sm_dbr <= seg2;4'h4: sm_dbr <= seg4;4'h5: sm_dbr <= seg5;4'h6: sm_dbr <= seg6;4'h7: sm_dbr <= seg7;4'h8: sm_dbr <= seg8;4'h9: sm_dbr <= seg9; 4'ha: sm_dbr <= sega;4'hb: sm_dbr <= segb;4'hc: sm_dbr <= segc;4'hd: sm_dbr <= segd;4'he: sm_dbr <= sege;4'hf: sm_dbr <= segf;default: ;endcasecase(counter[7:4])4'h0: sm_dbr <= seg0;4'h1: sm_dbr <= seg1;4'h2: sm_dbr <= seg2;4'h3: sm_dbr <= seg3;4'h4: sm_dbr <= seg4;4'h5: sm_dbr <= seg5;4'h6: sm_dbr <= seg6;4'h7: sm_dbr <= seg7;4'h8: sm_dbr <= seg8;4'h9: sm_dbr <= seg9;4'ha: sm_dbr <= sega;4'hb: sm_dbr <= segb;4'hc: sm_dbr <= segc;4'hd: sm_dbr <= segd;4'he: sm_dbr <= sege;4'hf: sm_dbr <= segf;default: ;endcasecase(counter[11:8])4'h0: sm_dbr <= seg0;4'h1: sm_dbr <= seg1;4'h2: sm_dbr <= seg2;4'h3: sm_dbr <= seg3;4'h4: sm_dbr <= seg4;4'h6: sm_dbr <= seg6; 4'h7: sm_dbr <= seg7; 4'h8: sm_dbr <= seg8; 4'h9: sm_dbr <= seg9; 4'ha: sm_dbr <= sega; 4'hb: sm_dbr <= segb; 4'hc: sm_dbr <= segc; 4'hd: sm_dbr <= segd; 4'he: sm_dbr <= sege; 4'hf: sm_dbr <= segf; default: ;endcasecase(counter[15:12])4'h0: sm_dbr <= seg0; 4'h1: sm_dbr <= seg1; 4'h2: sm_dbr <= seg2; 4'h3: sm_dbr <= seg3; 4'h4: sm_dbr <= seg4; 4'h5: sm_dbr <= seg5; 4'h6: sm_dbr <= seg6; 4'h7: sm_dbr <= seg7; 4'h8: sm_dbr <= seg8; 4'h9: sm_dbr <= seg9; 4'ha: sm_dbr <= sega; 4'hb: sm_dbr <= segb; 4'hc: sm_dbr <= segc; 4'hd: sm_dbr <= segd; 4'he: sm_dbr <= sege; 4'hf: sm_dbr <= segf; default: ;endcaseendendmodule3、接口:clk--PIN_N2rst_n--PIN_N25SEG0[0]--PIN_AF10SEG0[1]--PIN_AB12SEG0[2]--PIN_AC12SEG0[3]--PIN_AD11SEG0[4]--PIN_AE11SEG0[5]--PIN_V14SEG0[6]--PIN_V13SEG1[0]--PIN_V20SEG1[1]--PIN_V21SEG1[2]--PIN_W21SEG1[3]--PIN_Y22SEG1[4]--PIN_AA24SEG1[5]--PIN_AA23SEG1[6]--PIN_AB24SEG2[0]--PIN_AB23SEG2[1]--PIN_V22SEG2[2]--PIN_AC25SEG2[3]--PIN_AC26SEG2[4]--PIN_AB26SEG2[5]--PIN_AB25SEG2[6]--PIN_Y24SEG3[0]--PIN_Y23SEG3[1]--PIN_AA25SEG3[2]--PIN_AA26SEG3[3]--PIN_Y26SEG3[4]--PIN_Y25SEG3[5]--PIN_U22SEG3[6]--PIN_W244、上机程序module SegDynamicDisp(CLK,rst_n,SEG0,SEG1,SEG2,SEG3); input CLK;input rst_n;output [6:0]SEG0;output [6:0]SEG1;output [6:0]SEG2;output [6:0]SEG3;reg [6:0]SEG0;reg [6:0]SEG1;reg [6:0]SEG2;reg [6:0]SEG3;//........以上是定义的一些输入输出接口.......................... parameter seg0=7'hC0,seg1=7'hF9,seg2=7'hA4,seg3=7'hB0,seg4=7'h99,seg5=7'h92,seg6=7'h82,seg7=7'hF8,seg8=7'h80,seg9=7'h90,sega=7'h88,segb=7'h83,segc=7'hC6,segd=7'hA1,sege=7'h86,segf=7'h8E;//..............以上是定义的参数,用来标记段代码................... reg[23:0] cnt;reg [15:0]counter;always @(posedge CLK or negedge rst_n)if(!rst_n)begincnt<=24'D0;counter<=2'b00;endelsebegincnt<=cnt+1'b1;if(cnt==24'D1*******)begincnt<=0;counter<=counter+1;endend//..........用来实现计数功能和控制数字递增的速度.................... always @(counter)begincase(counter[3:0])4'h0: SEG0 <= seg0; 4'h1: SEG0 <= seg1; 4'h2: SEG0 <= seg2; 4'h3: SEG0 <= seg3; 4'h4: SEG0 <= seg4; 4'h5: SEG0 <= seg5; 4'h6: SEG0 <= seg6; 4'h7: SEG0 <= seg7; 4'h8: SEG0 <= seg8; 4'h9: SEG0 <= seg9; 4'ha: SEG0 <= sega; 4'hb: SEG0 <= segb; 4'hc: SEG0 <= segc; 4'hd: SEG0 <= segd; 4'he: SEG0 <= sege; 4'hf: SEG0 <= segf; default: ;endcasecase(counter[7:4])4'h0: SEG1 <= seg0; 4'h1: SEG1 <= seg1; 4'h2: SEG1 <= seg2; 4'h3: SEG1 <= seg3; 4'h4: SEG1 <= seg4; 4'h5: SEG1 <= seg5; 4'h6: SEG1 <= seg6; 4'h7: SEG1 <= seg7; 4'h8: SEG1 <= seg8; 4'h9: SEG1 <= seg9; 4'ha: SEG1 <= sega; 4'hb: SEG1 <= segb; 4'hc: SEG1 <= segc; 4'hd: SEG1 <= segd; 4'he: SEG1 <= sege; 4'hf: SEG1 <= segf; default: ;endcasecase(counter[11:8])4'h0: SEG2 <= seg0; 4'h1: SEG2 <= seg1; 4'h2: SEG2 <= seg2; 4'h3: SEG2 <= seg3;4'h4: SEG2 <= seg4;4'h5: SEG2 <= seg5;4'h6: SEG2 <= seg6;4'h7: SEG2 <= seg7;4'h8: SEG2 <= seg8;4'h9: SEG2 <= seg9;4'ha: SEG2 <= sega;4'hb: SEG2 <= segb;4'hc: SEG2 <= segc;4'hd: SEG2 <= segd;4'he: SEG2 <= sege;4'hf: SEG2 <= segf;default: ;endcasecase(counter[15:12])4'h0: SEG3 <= seg0;4'h1: SEG3 <= seg1;4'h2: SEG3 <= seg2;4'h3: SEG3 <= seg3;4'h4: SEG3 <= seg4;4'h5: SEG3 <= seg5;4'h6: SEG3 <= seg6;4'h7: SEG3 <= seg7;4'h8: SEG3 <= seg8;4'h9: SEG3 <= seg9;4'ha: SEG3 <= sega;4'hb: SEG3 <= segb;4'hc: SEG3 <= segc;4'hd: SEG3 <= segd;4'he: SEG3 <= sege;4'hf: SEG3 <= segf;default: ;endcaseend//...................用来实现显示功能..................... endmodule5、实验结果复位按键为0时:HEX3HEX2 HEX1 HEX0 显示的为0000;复位按键为1时:HEX3 HEX2 HEX1 HEX0 显示的依次为:0000——FFFF。

相关文档
最新文档