高一下学期解三角形数列综合测试题

合集下载

高一数学必修五测试题(解三角形及数列(精华版)

高一数学必修五测试题(解三角形及数列(精华版)

⎧n⎫ ⎬ 的前 n 和 Tn a ⎩ n⎭
认真就是能力,扎实就是水平,落实才是成绩。
2 高一数学试卷
��� � ��� � ��� � ��� � BA + BC = 2 ,求 BAi BC 的取值范围
2 2an ,且对任意的 n ∈ N * 都有 an +1 = . 3 an + 1
19、在数列 {an } 中, a1 =
(1)求证: {
1 − 1} 是等比数列; an
(2)若对任意的 n ∈ N * 都有 an+1 < pan ,求实数 p 的取值范围. (3)求数列 ⎨
)
(理科) 数学试题 数学试题(理科)
第Ⅰ卷(选择题,共50分)
一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项 是符合题目要求的. 1 、 在 △ ABC 中 , 角 A,B,C 的 对 边 分 别 为 a,b,c , 若
� � � � � � � � � 9、设 a, b, c 是单位向量,且 a ⋅ b = 0, 则 a − b i b − c 的最小值为 (
��� �
����
排列成一个数列,则该数列的通项公式为 (
A. a n =
n(n − 1) 2
B. a n = n( n − 1)

C. a n = n − 1
D. a n = 2 n − 2
���� ��� � AD ⋅ AB =
.
4、在 △ ABC 中,角 A,B,C 的对边分别为 a,b,c ,若 S表示∆ABC的面积 ,若
20 、 已 知 f ( x) 在 ( −1,1) 上 有 定 义 , f ( 1 ) = 1 且 满 足 x, y ∈ ( −1,1) 时 有 15、�函数 y =

解三角形、数列综合练习 含答案

解三角形、数列综合练习 含答案

解三角形、数列综合练习1.在△ABC 中,若a =18,b =24,A =45°,则此三角形( )A .无解B .有两解C .有一解D .解的个数不确定解析:选B.∵a sin A =b sin B,∴sin B =b a sin A =2418sin 45°,∴sin B =223.又∵a <b ,∴B 有两个.2(2015·昆明三中、玉溪一中统考)等比数列{a n }中,a 1=1,q =2,则T n =1a 1a 2+1a 2a 3+…+1a n a n +1的结果可化为( )A .1-14nB .1-12nC.23⎝⎛⎭⎫1-14nD.23⎝⎛⎭⎫1-12n 3.(2015·山西省第三次四校联考)等比数列{a n }满足a n >0,n ∈N *,且a 3·a 2n -3=22n (n ≥2),则当n ≥1时,log 2a 1+log 2a 2+…+log 2a 2n -1=( )A .n (2n -1)B .(n +1)2C .n 2D .(n -1)2[解析] (1)依题意,a n =2n -1,1a n a n +1=12n -1·2n =122n -1=12×14n -1,所以T n =12⎣⎡⎦⎤1-⎝⎛⎭⎫14n 1-14=23⎣⎡⎦⎤1-⎝⎛⎭⎫14n,故选C.(2)由等比数列的性质,得a 3·a 2n -3=a 2n =22n ,从而得a n =2n. log 2a 1+log 2a 2+…+log 2a 2n -1=log 2[(a 1a 2n -1)·(a 2a 2n -2)…(a n -1a n +1)a n ]=log 22n (2n -1)=n (2n -1). 5.已知数列{a n },则有( )A .若a 2n =4n ,n ∈N *,则{a n }为等比数列B .若a n ·a n +2=a 2n +1,n ∈N *,则{a n }为等比数列C .若a m ·a n =2m +n ,m ,n ∈N *,则{a n }为等比数列 D .若a n ·a n +3=a n +1·a n +2,n ∈N *,则{a n }为等比数列解析:选C.若a 1=-2,a 2=4,a 3=8,满足a 2n =4n ,n ∈N *,但{a n }不是等比数列,故A 错;若a n =0,满足a n ·a n +2=a 2n +1,n ∈N *,但{a n }不是等比数列,故B 错;若a n =0,满足a n ·a n +3=a n +1·a n +2,n ∈N *,但{a n }不是等比数列,故D 错;若a m ·a n =2m +n ,m ,n∈N *,则有a m ·a n +1a m ·a n =a n +1a n =2m +n +12m +n =2,则{a n }是等比数列.4.(2015·河北冀州中学期中)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,点(a ,b )在直线x (sin A -sin B )+y sin B =c sin C 上,则角C 的值为( )A.π6 B.π3 C.π4D.5π6解析:选B.因为点(a ,b )在直线x (sin A -sin B )+y sin B =c sin C 上,所以a (sin A -sin B )+b sin B =c sin C ,由正弦定理得a 2-ab +b 2=c 2,又c 2=a 2+b 2-2ab cos C ,故cos C =12,所以C =π3.5如图所示,△ABC 中,已知点D 在边BC 上,AD ⊥AC ,sin ∠BAC =223,AB =32,AD=3,则BD 的长为________.(2)∵sin ∠BAC =sin ⎝⎛⎭⎫∠BAD +π2=cos ∠BAD =223,∴根据余弦定理可得cos ∠BAD =AB 2+AD 2-BD 22AB ·AD =(32)2+32-BD 22×32×3=223,∴BD = 3.6.(2015·山西省第二次四校联考)若等比数列{a n }的前n 项和为S n ,且S 4S 2=5,则S 8S 4=________.(3)设数列{a n }的公比为q ,由已知得S 4S 2=1+a 3+a 4a 1+a 2=5,1+q 2=5,所以q 2=4,S 8S 4=1+a 5+a 6+a 7+a 8a 1+a 2+a 3+a 4=1+q 4=1+16=17. [答案] (1)C (2)A (3)177.(2013·江苏卷)在正项等比数列{a n }中,a 5=12,a 6+a 7=3.则满足a 1+a 2+…+a n >a 1a 2…a n 的最大正整数n 的值为________.解析 由已知条件得12q +12q 2=3,即q 2+q -6=0,解得q =2或q =-3(舍去), a n =a 5qn -5=12×2n -5=2n -6,a 1+a 2+…+a n =132(2n -1),a 1a 2…a n =2-52-42-3…2n -6=,由a 1+a 2+…+a n >a 1a 2…a n ,可知2n -5-2-5>,可求得n 的最大值为12,而当n =13时,28-2-5<213,所以n 的最大值为12. 答案 128.(2015·山西省第二次四校联考)若等比数列{a n }的前n 项和为S n ,且S 4S 2=5,则S 8S 4=________. (3)设数列{a n }的公比为q ,由已知得S 4S 2=1+a 3+a 4a 1+a 2=5,1+q 2=5,所以q 2=4,S 8S 4=1+a 5+a 6+a 7+a 8a 1+a 2+a 3+a 4=1+q 4=1+16=17. 9.等比数列{a n }的首项a 1=-1,前n 项和为S n ,若S 10S 5=3132,则公比q =________.(2)由S 10S 5=3132,a 1=-1知公比q ≠1,则S 10-S 5S 5=-132.由等比数列前n 项和的性质知S 5,S 10-S 5,S 15-S 10成等比数列,且公比为q 5,故q 5=-132,q =-12.9.在锐角三角形ABC 中,a ,b ,c 分别为内角A ,B ,C 所对的边,且满足3a -2b sin A =0.①求角B 的大小;②若a +c =5,且a >c ,b =7,求AB →·AC →的值. 答案:(1)D (2) 3(3)解:①因为3a -2b sin A =0, 所以3sin A -2sin B sin A =0. 因为sin A ≠0,所以sin B =32. 又B 为锐角,则B =π3.②由①可知,B =π3,因为b =7,根据余弦定理得7=a 2+c 2-2ac cos π3, 整理得(a +c )2-3ac =7. 由已知a +c =5,则ac =6. 又a >c ,可得a =3,c =2.于是cos A =b 2+c 2-a 22bc =7+4-947=714,所以AB →·AC →=|AB →|·|AC →|cos A =cb cos A =2×7×714=1.10.在△ABC 中,a ,b ,c 分别为内角A ,B ,C 的对边,2a sin A =(2b -c )sin B +(2c -b )sin C .且sin B +sin C =3,试判断△ABC 的形状.解:∵2a sin A =(2b -c )sin B +(2c -b )sin C , 得2a 2=(2b -c )b +(2c -b )c , 即bc =b 2+c 2-a 2,∴cos A =b 2+c 2-a 22bc =12,∴A =60°.∵A +B +C =180°,∴B +C =180°-60°=120°.由sin B +sin C =3,得sin B +sin(120°-B )=3,∴sin B +sin 120°cos B -cos 120°sin B = 3. ∴32sin B +32cos B =3, 即sin(B +30°)=1.又∵0°<B <120°,30°<B +30°<150°, ∴B +30°=90°, 即B =60°.∴A =B =C =60°, ∴△ABC 为正三角形.[规律方法] 判断三角形的形状,主要有如下两种途径:(1)利用正、余弦定理把已知条件转化为边边关系,通过因式分解、配方等得出边的相应关系,从而判断三角形的形状;(2)利用正、余弦定理把已知条件转化为内角三角函数间的关系,通过三角函数恒等变换,得出内角的关系,从而判断出三角形的形状,此时要注意应用A +B +C =π这个结论,在两种解法的等式变形中,一般两边不要约去公因式,应移项提取公因式,以免漏解.11.(2015·洛阳市统考)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,cos 2C +22cos C +2=0.(1)求角C 的大小;(2)若b =2a ,△ABC 的面积为22sin A sin B ,求sin A 及c 的值. 解:(1)∵cos 2C +22cos C +2=0, ∴2cos 2C +22cos C +1=0, 即(2cos C +1)2=0,∴cos C =-22. 又C ∈(0,π),∴C =3π4.(2)∵c 2=a 2+b 2-2ab cos C =3a 2+2a 2=5a 2, ∴c =5a ,即sin C =5sin A ,∴sin A =15sin C =1010.∵S △ABC =12ab sin C ,且S △ABC =22sin A sin B ,∴12ab sin C =22sin A sin B , ∴ab sin A sin B sin C =2,由正弦定理得:⎝⎛⎭⎫c sin C 2sin C =2,解得c =1. 12.(2015·东北三校联考)已知数列{a n }的前n 项和S n 满足S n =2a n +(-1)n (n ∈N *).(1)求数列{a n }的前三项a 1,a 2,a 3;(2)求证:数列{a n +23(-1)n }为等比数列,并求出{a n }的通项公式.[解] (1)在S n =2a n +(-1)n (n ∈N *)中分别令n =1,2,3得: ⎩⎪⎨⎪⎧a 1=2a 1-1a 1+a 2=2a 2+1a 1+a 2+a 3=2a 3-1,解得⎩⎪⎨⎪⎧a 1=1a 2=0.a 3=2(2)证明:由S n =2a n +(-1)n (n ∈N *),得S n -1=2a n -1+(-1)n -1(n ≥2),两式相减得: a n =2a n -1-2(-1)n (n ≥2),a n =2a n -1-43(-1)n -23(-1)n =2a n -1+43(-1)n -1-23(-1)n (n ≥2),∴a n +23(-1)n =2[a n -1+23(-1)n -1](n ≥2).故数列{a n +23(-1)n }是以a 1-23=13为首项,公比为2的等比数列.∴a n +23(-1)n =13×2n -1,a n =13×2n -1-23(-1)n=2n -13-23(-1)n .13.(2014·高考山东卷)在等差数列{a n }中,已知公差d =2,a 2是a 1与a 4的等比中项.(1)求数列{a n }的通项公式;(2)设b n =a n (n +1)2,记T n =-b 1+b 2-b 3+b 4-…+(-1)n b n ,求T n .解:(1)由题意知(a 1+d )2=a 1(a 1+3d ), 即(a 1+2)2=a 1(a 1+6),解得a 1=2, 所以数列{a n }的通项公式为a n =2n . (2)由题意知b n =a n (n +1)2=n (n +1),所以T n =-1×2+2×3-3×4+…+(-1)n n ·(n +1). 因为b n +1-b n =2(n +1),可得当n 为偶数时, T n =(-b 1+b 2)+(-b 3+b 4)+…+(-b n -1+b n )=4+8+12+…+2n =n2(4+2n )2=n (n +2)2,当n 为奇数时,T n =T n -1+(-b n )=(n -1)(n +1)2-n (n +1)=-(n +1)22.所以T n =⎩⎨⎧-(n +1)22,n 为奇数,n (n +2)2, n 为偶数.14.已知首项为32的等比数列{a n }不是递减数列,其前n 项和为S n (n ∈N *),且S 3+a 3,S 5+a 5,S 4+a 4成等差数列. (1)求数列{a n }的通项公式;(2)设T n =S n -1S n(n ∈N *),求数列{T n }的最大项的值与最小项的值.解 (1)设等比数列{a n }的公比为q , 因为S 3+a 3,S 5+a 5,S 4+a 4成等差数列, 所以S 5+a 5-S 3-a 3=S 4+a 4-S 5-a 5, 即4a 5=a 3,于是q 2=a 5a 3=14.又{a n }不是递减数列且a 1=32,所以q =-12. 故等比数列{a n }的通项公式为 a n =32×⎝ ⎛⎭⎪⎫-12n -1=(-1)n -1·32n .(2)由(1)得S n =1-⎝ ⎛⎭⎪⎫-12n =⎩⎪⎨⎪⎧1+12n ,n 为奇数,1-12n ,n 为偶数.当n 为奇数时,S n 随n 的增大而减小, 所以1<S n ≤S 1=32,故0<S n -1S n≤S 1-1S 1=32-23=56.当n 为偶数时,S n 随n 的增大而增大,所以34=S 2≤S n <1,故0>S n -1S n ≥S 2-1S 2=34-43=-712.综上,对于n ∈N *,总有-712≤S n -1S n≤56.所以数列{T n }最大项的值为56,最小项的值为-712.。

解三角形小题综合 原卷版--高一下学期备战期末专题训练

解三角形小题综合 原卷版--高一下学期备战期末专题训练

期末专题04 解三角形小题综合一、单选题1.(2022春·江苏常州·高一校联考期末)在ABC 中,5AB =,6BC =,8AC =,则ABC的形状是( ) A .锐角三角形B .直角三角形C .钝角三角形D .无法判断2.(2022春·江苏连云港·高一统考期末)在锐角三角形ABC 中,2sin a b A =,则B =( )A .6πB .4π C .3πD .712π 3.(2022春·江苏泰州·高一统考期末)在ABC 中,角A ,B ,C 所对的边分别为a ,b ,csin A =,则sin B =( )A B C D .134.(2022春·江苏淮安·高一统考期末)在ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,若cos a c B =,则ABC 的形状( ) A .锐角三角形B .直角三角形C .钝角三角形D .不能确定5.(2022春·江苏淮安·高一统考期末)在ABC 中,45B =°,点D 是边BC 上一点,5AD =,7AC =,3DC =,则边AB 的长是( )A .BCD .6.(2022秋·江苏南京·高一南京市第九中学校考期末)中国早在八千多年前就有了玉器,古人视玉为宝,玉佩不再是简单的装饰,而有着表达身份、感情、风度以及语言交流的作用.不同形状、不同图案的玉佩又代表不同的寓意.如图1所示的扇形玉佩,其形状具体说来应该是扇形的一部分(如图2),经测量知4ABCD ==,3BC =,7AD =,则该玉佩的面积为( )A .496πB .493πC .496πD .493π7.(2022秋·江苏南通·高一统考期末)图1是南北方向、水平放置的圭表(一种度量日影长的天文仪器,由“圭”和“表”两个部件组成)示意图,其中表高为h ,日影长为l .图2是地球轴截面的示意图,虚线表示点A 处的水平面.已知某测绘兴趣小组在冬至日正午时刻(太阳直射点的纬度为南纬2326′°)在某地利用一表高为2dm 的圭表按图1方式放置后,测得日影长为2.98dm ,则该地的纬度约为北纬( )(参考数据:tan 340.67°≈,tan 56 1.49°≈)A .2326′°B .3234′°C .34°D .56°8.(2022春·江苏镇江·高一扬中市第二高级中学校考期末)设()2πsin cos cos 4f x x x x =−+,在锐角ABC 中,角A ,B ,C 的对边分别为a ,b ,c .若02A f=,1a =,则ABC 面积的最大值为( )A BC D 9.(2022春·江苏扬州·在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,下列各组条件中,使得ABC 恰有一个解的是( )A .π2,4,3ab A == B .π4,3a b A=C .2π4,3a b A === D .2π4,3a b A === 10.(2022春·江苏南通·高一统考期末)已知ABC 为锐角三角形,2AC =,π6A =,则BC 的取值范围为( )A .()1,+∞B .()1,2C .D .211.(2022春·江苏镇江·高一统考期末)已知A ,B 两地的距离为10km ,B ,C 两地的距离为20km ,且测得点B 对点A 和点C 的张角为120°,则点B 到AC 的距离为( )km .A B C D 12.(2022春·江苏无锡·高一统考期末)设ABC 内角A ,B ,C 所对的边分别为a ,b ,c .若2b =,2sin 6sin a C A =,则ABC 面积的最大值为( )AB C D .313.(2022春·江苏南通·高一金沙中学校考期末)ABC 中,,,A B C 的对边分别为a b c ,,,则( )A .若a b c <<,则cos sinBC < B .,A B ∃使得sin()sin sin A B A B +=+ C .,B C ∀都有tan tan tan()1tan tan B CB C B C++=−⋅D .若sin cos A A +A 是钝角 14.(2022春·江苏南通·高一统考期末)在ABC 中,角A ,B ,C 所对应的边分别为a ,b ,c ,若8,sin 2sin cos 0ac B C A =+=,则ABC 面积的最大值为( ) A .1 B .3 C .2 D .415.(2022春·江苏扬州·高一期末)△ABC 的三内角A 、B 、C 所对边的长分别是a 、b 、c ,设向量()()p a c b q b a c a =+=−−,,,,若p q ∥,则角C 的大小为( )A .π6B .π3C .π2D .2π316.(2022春·江苏苏州·高一校考期末)如图所示,为了测量A ,B 处岛屿的距离,小明在D 处观测,A ,B 分别在D 处的北偏西15°、北偏东45°方向,再往正东方向行驶40海里至C 处,观测B 在C A 在C 处的北偏西60°方向,则A ,B 两处岛屿间的距离为 ( )A .B .C .20(1+海里D .40海里17.(2022春·江苏苏州·高一统考期末)已知锐角三角形ABC 中,角,,A B C 所对的边分别为,,,a b c ABC 的面积为S ,且()22sin 2b c B S −⋅=,若a kc =,则k 的取值范围是( ) A .()1,2 B .()0,3 C .()1,3 D .()0,2二、多选题18.(2022春·江苏南京·高一南京市中华中学校考期末)在ABC 中,下列结论中,正确的是( )A .若cos2cos2AB =,则ABC 是等腰三角形B .若sin sin A B >,则A B >C .若222AB AC BC +<,则ABC 为钝角三角形D .若60A = ,4AC =,且结合BC 的长解三角形,有两解,则BC 长的取值范围是)+∞19.(2022春·江苏南京·高一统考期末)在ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知45,2A c =°=,下列说法正确的是( )A .若a ABC = 有两解B .若3,a ABC = 有两解C .若ABC 为锐角三角形,则b 的取值范围是D .若ABC 为钝角三角形,则b 的取值范围是20.(2022春·江苏宿迁·高一沭阳县修远中学校考期末)在三角形ABC 中,π3A ∠=,若三角形有两解,则ca的可能取值为( )A B .1.1 C D .1.0121.(2022春·江苏南通·高一统考期末)设ABC 的内角A ,B ,C 的对边分别为a ,b ,.c若c =,30B = ,则角A 可能为( )A .135B .105C .45D .1522.(2022春·江苏苏州·高一校联考期末)在ABC 中,角,,A B C 对边分别为,,a b c ,设向量()(),,,m c a b n a c =+= ,且//m n,则下列选项正确的是( ) A .2A B =B .2C A =C .12ca<<D .若ABC 的面积为24c ,则2C π=23.(2022春·江苏泰州·高一统考期末)在ABC 中,角A 、B 、C 所对的边分别为a 、b 、c .若b =2c =cos 2cos 33A AC +=,则下列说法正确的有( )A .3A C π+=B .sinC =C .2a =D .ABC S =24.(2022春·江苏扬州·高一统考期末)如图所示,ABC 中,324AB AC BC ===,,,点M 为线段AB 中点,P 为线段CM 的中点,延长AP 交边BC 于点N ,则下列结论正确的有( ).A .1142AP AB AC =+ B .3BN NC =C .||AN =D .AP 与AC 25.(2022春·江苏徐州·高一统考期末)已知ABC 内角A ,B ,C 所对的边分别为a ,b ,c ,以下结论中正确的是( )A .若AB >,则sin sin A B >B .若2a =,b =3B π=,则该三角形有两解 C .若cos cos a A b B =,则ABC 一定为等腰三角形 D .若222sin sin sin C A B >+,则ABC 一定为钝角三角形26.(2022春·江苏无锡·高一统考期末)ABC 的内角A ,B ,C 所对边分别为a ,b ,c ,下列说法中正确的是( )A .若sin sin AB >,则A B >B .若2220a b c +−>,则ABC 是锐角三角形 C .若cos cos a B b A a +=,则ABC 是等腰三角形D .若sin cos cos a b c A B C==,则ABC 是等边三角形27.(2022春·江苏苏州·高一江苏省昆山中学校考期末)在ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,则下列说法正确的是( ) A .cos cos ca Bb A +B .若cos cos a A b B =,则ABC 为等腰或直角三角形 C .若22tan tan a B b A =,则a b =D .若333a b c +=,则ABC 为锐角三角形28.(2022春·江苏苏州·高一校考期末)在△ABC 中,角,,A B C 所对的边分别是,,a b c ,下列说法正确的是( )A .若acosA=bcosB ,则ABC 是等腰三角形B .若45,3AB B AC °==,则满足条件的三角形有且只有一个C .若ABC 不是直角三角形,则tan tan tan tan tan tan A B C A B C ++=D .若0BC AB ⋅<,则ABC 为钝角三角形三、填空题29.(2022春·江苏连云港·高一统考期末)曲柄连杆机构的示意图如图所示,当曲柄OA 在水平位置OB 时,连杆端点P 在Q 的位置,当OA 自OB 按顺时针方向旋转角α时,P 和Q 之间的距离是cm x ,若3cm OA =,7cm AP =,120α°=,则x 的值是_________.30.(2022春·江苏南京·高一江苏省江浦高级中学校联考期末)已知轮船A 和轮船B 同时离开C 岛,A 船沿北偏东30°的方向航行,B 船沿正北方向航行(如图).若A 船的航行速度为40n mile /h ,1小时后,B 船测得A 船位于B 船的北偏东45°的方向上,则此时A ,B 两船相距_______________n mile .31.(2022春·江苏无锡·高一统考期末)ABC 的内角A ,B ,C 所对边分别为a ,b ,c,已知60C =°,1a =,c =b =___________.32.(2022春·江苏扬州·高一期末)《后汉书·张衡传》:“阳嘉元年,复造候风地动仪.以精铜铸成,员径八尺,合盖隆起,形似酒尊,饰以篆文山龟鸟兽之形.中有都柱,傍行八道,施关发机.外有八龙,首衔铜丸,下有蟾蜍,张口承之.其牙机巧制,皆隐在尊中,覆盖周密无际.如有地动,尊则振龙,机发吐丸,而蟾蜍衔之.振声激扬,伺者因此觉知.虽一龙发机,而七首不动,寻其方面,乃知震之所在.验之以事,合契若神.”如图为张衡地动仪的结构图,现在相距120km 的A ,B 两地各放置一个地动仪,B 在A 的东偏北75°方向,若A 地地动仪正东方向的铜丸落下,B 地地动仪东南方向的铜丸落下,则地震的位置距离B 地______km33.(2022春·江苏泰州·高一统考期末)如图所示,该图由三个全等的BAD 、ACF △、CBE △构成,其中DEF 和ABC 都为等边三角形.若2DF =,12DAB π∠=,则AB =_______.34.(2022春·江苏常州·高一统考期末)在ABC 中,AB =3BC =,45B =°,点D 在边BC 上,且cos ADC ∠tan DAC ∠的值为___________.35.(2022春·江苏南通·高一统考期末)设ABC 的内角A ,B ,C 的对边分别为a ,b ,.c 已知6a =,2b =,要使ABC 则c 的大小可取__________(取整数值,答案不唯一).36.(2022春·江苏南京·高一南京市中华中学校考期末)拿破仑是十九世纪法国伟大的军事家、政治家,对数学也很有兴趣,他发现并证明了著名的拿破仑定理:“以任意三角形的三条边为边向外构造三个等边三角形,则这三个等边三角形的中心恰为另一个等边三角形的顶点”,在△ABC 中,以AB ,BC ,CA 为边向外构造的三个等边三角形的中心依次为D ,E ,F ,若30,4BACDF ∠== ,利用拿破仑定理可求得AB +AC 的最大值为___.。

高一数学解三角形试题

高一数学解三角形试题

高一数学解三角形试题1.△ABC的内角、、的所对的边、、成等比数列,且公比为,则的取值范围为()A.B.C.D.【答案】B.【解析】∵,,成等比数列,∴,,再由正弦定理可得,又∵,根据二次函数的相关知识,可知的取值范围是.【考点】三角形与二次函数一元二次不等式综合.2.在△ABC中,若最大角的正弦值是,则△ABC必是()A.等边三角形B.直角三角形C.钝角三角形D.锐角三角形【答案】【解析】根据题意,因为是最大角,所以角只能是,所以是钝角三角形.【考点】特殊函数值;三角形的判断.3.两地相距,且地在地的正东方。

一人在地测得建筑在正北方,建筑在北偏西;在地测得建筑在北偏东,建筑在北偏西,则两建筑和之间的距离为()A.B.C.D.【答案】C【解析】在△ABD中又∴点A、B、C、D四点共园,圆心是BC的中点(在同园或等圆中,同弧所对的圆周角相等) ,同理在Rt△ABC中,在Rt△BCD中【考点】解三角形4.在中,角所对的边分别为,若,且,则下列关系一定不成立的是()A.B.C.D.【答案】B【解析】将代入可得,所以或,当时有有.【考点】解三角形.5.在某次测量中,A在B的北偏东,则B在A的方向.【答案】南偏东【解析】根据题意,由于在某次测量中,A在B的北偏东,则可知B在A的南偏东方向.可知答案为南偏东【考点】方位角点评:主要是考查了方位角的求解,属于基础题。

6.对于,有如下命题:①一定有成立.②若, 则一定为等腰三角形;③若的面积为,BC=2,,则此三角形是正三角形;则其中正确命题的序号是 . (把所有正确的命题序号都填上)【答案】①②③【解析】根据题意,由于①结合投影的定义可知,一定有成立.②若, 则一定为等腰三角形;利用解三角形方程可成立③若的面积为,BC=2,,则此三角形是正三角形;利用解三角形可知成立,故可知答案为①②③【考点】解三角形点评:考查了解三角形的运用,属于基础题。

7.如图,在△中,已知,D是BC边上一点,AD=10,AC=14,DC=6,求AB的长.【答案】【解析】解:在△中,∵AD=10,AC=14,DC=6∴, 5分∴, ∴ 7分∴在△中,∵,∴, 11分∴ 15分【考点】解三角形点评:主要是考查了正弦定理的运用,属于基础题。

三角函数向量解三角形数列综合测试含答案

三角函数向量解三角形数列综合测试含答案

三角函数、向量、解三角形、数列综合测试含答案大冶一中 孙雷一、选择题每题只有一个正确选项,共60分1.若向量===BAC CB AB ∠),0,1-(),23,21(则 A.30° B.60° C. 120° D. 150°2.已知34,4,8===AC BC AB ABC Rt 中,△,则对于ABC △所在平面内的一点P ,)(PC PB PA +•的最小值是A.-8B. -14C.-26D.-303.已知在正方形ABCD 中,点E 为CD 的中点,点F 为CB 上靠近点B 的三等分点,O 为AC 与BD 的交点,则=DB A.OF AE 51858-+ B.OF AE 74718-+ C.OF AE 58518-+ D. OF AE 71874-+ 4.已知)2π-απ-(523-αsin -αcos <<=,则=+αααtan -1)tan 1(2sin A.7528- B.7528 C.7556- D. 7556 5.若函数m x x x f -2cos 2-sin 4)(=在R 上的最小值是3,则实数=mA.6-B.5-C.3-D.2-6.已知α为锐角,且2)8π-α(tan =,则=α2sin A.102 B.1023 C.1027 D. 4237.已知向量)sin 41-(α,=a ,)4πα0)(1-α(cos <<=,b ,且b a //,则=)4π-αcos( A.21- B.21 C.23- D.23 8.在ABC △中,3:2:1::=A B C ,则=a b c ::A.1:2:3B.3:2:1C.1:3:2D. 2: 3:19.在ABC △中,c b a ,,分别为内角C B A ,,的对边,若B A C sin sin sin 3+=,53cos =C ,且4=ABC S △,则=c A.364 B.4 C.362 D.5 10.在ABC △中,°=60C ,322==AC BC ,点D 在边BC 上,且772sin =∠BAD ,则CD =A. 334B.43 C.33 D.332 11.我国古代数学巨著九章算术中,有如下问题:“今有女善织,日自倍,五日织五尺,问日织几何”这个问题用今天的白话叙述为:“有一位善于织布的女子,每天织的布都是前一天的2倍,已知她5天共织布5尺,问这位女子每天分别织布多少”根据上述问题的已知条件,若该女子共织布3135尺,则这位女子织布的天数是 A.2 B.3 C.4 D.112.数列}{n a 中,01=a ,且)2(2-1-1-≥+=+n a a n a a n n n n ,则数列})1-(1{2n a 前2019项和为A.20194036B.10102019C.20194037D.20204039 二、填空题共20分13.已知等差数列}{n a 的前n 项和n S 有最大值,且1-20192020<a a ,则当0<n S 时n 的最小值为_____________. 14.已知数列}{n a 满足2321)2(+=n a a a a n ,则该数列的通项公式为______________.15.已知数列}{n a 满足),2(1)13()1-(*1-1N n n a a n n n ∈≥++=+,且121==a a ,则数列}{n a 的前2020项的和为_______________.16.ABC △中,Ab B a B Ac C B A cos cos sin sin sin -sin sin 222+=+,若1=+b a ,则c 的取值范围是___________.三、解答题共70分17.已知n S 为等差数列}{n a 的前n 项和,81=a ,10-10=S1求n a ,n S ;2设||||||21n n a a a T +++= ,求n T .18.在ABC △中,c b a ,,分别为内角C B A ,,的对边,且552sin =B ,6=•BC BA 1求ABC △的面积;2若8=+c a ,求b 的值.19.已知函数)(|2||-|)(R a x a x x f ∈++=1当1=a 时,求不等式5≥)(x f 的解集;2当]1,0[∈x 时,不等式|4|≤)(+x x f 恒成立,求实数a 的取值范围.20.已知函数)0(23-sin 3cos sin )(2>+=ωωωωx x x x f 的最小正周期为π,将函数)(x f 的图象向左平移6π个单位长度,再向下平移21个单位长度,得到函数=y )(x g 的图象 1求函数)(x f 的单调递减区间;2在锐角ABC △中,角C B A ,,的对边为c b a ,,,若2,0)2(==a A g ,求ABC △面积的最大值.21.已知关于x 的函数1-2-2π3cos(cos 2)(2)x x x f += 1求不等式0)(>x f 的解集;2若关于x 的不等式x a x x f sin ≥|2sin )(|+在区间]4π3,3π[上有解,求实数a 的取值范围.22.已知数列}{n a 的前n 项和为n S ,且31-34n n a S =,等差数列}{n b 各项均为正数,223b a =,4246b b a += 1求数列}{n a ,}{n b 的通项公式;2设数列}{n c 的前n 项和为n T ,对一切*N n ∈有n n n b na c a c a c =++ 22112成立,求n T .。

数学北师大版高中必修5高一数学数列解三角形试题

数学北师大版高中必修5高一数学数列解三角形试题

高一数学周练命题人:黄平一、选择题(每题5分) 1、数列{}n a 中,11a =,12,()2nn n a a n N a ++=∈+,则5a =( ) A . 25B .13C . 23D . 122、已知数列{}a n 中,a 13=-且a a n n =+-211,则此数列的通项公式为( )A . 123-⋅-nB . n 2-C . 52-nD .12--n3、已知数列{}n a 的前n 项和12n n s n +=+,则4a 等于()A.130B.134C.120D.1324、若数列{}n a 的前n 项和为2n S n =-,则这个数列( )A .是等差数列,且21n a n =-B .不是等差数列,但21n a n =-C .是等差数列,且21n a n =-+D .不是等差数列,但21n a n =-+ 5、在ABC ∆中,已知a=52,c=10,∠A =30o,则∠B 等于( )A.105oB. 60oC. 15oD.105o或15o6、在ΔABC 中,∠A=450,∠B=600,a=2,则b=( ) A .6 B .26 C .36 D .467、 在△ABC 中,sin 2A =sin 2B +sin 2C ,则△ABC 是( )A .等边三角形B .等腰三角形C .直角三角形D .锐角三角形8、不解三角形,下列判断正确的是( )A. a=7,b=14,A=30o,有两解. B. a=30,b=25,A=150o,有一解.C. a=6,b=9,A=45o,有两解. D. a=9,b=10,A=60o,无解.9、 数列{}n a 中,11a =,121,(2)n n a a n n -=+-≥,其通项公式n a = 10、在ΔABC 中,a=8, ∠B=1050, ∠C=150,则此三角形的最大边的长为11、已知△ABC 的三个内角比为A ∶B ∶C =3∶2∶1,那对应的三边比为a ∶b ∶c 为________12、已知a b c d ,,,成等比数列,且曲线223y x x =-+顶点是()b c ,,则ad 等于_______班级________ 姓名__________ 座号_______得分__________ 一、选择题 题号 12345678答案二、填空题9. __________ 10. __________ 11. __________ 12. __________三、解答题(第13题12分,第14题13分) 13.已知数列}{n a 满足1111,3(2)n n n a a a n --==+≥ (Ⅰ)求23,a a ; (Ⅱ)求n a .14.已知△ABC 中,A =60°,a =6,b =2,解三角形。

高一数学解三角形、数列同步检测 试题

高一数学解三角形、数列同步检测 试题

2021年第一中学高一数学解三角形、数列同步检测一、选择题(5′×6=30′)1.数列:2,0,2,0,2,0,….前六项不合适...以下哪个通项公式 〔 〕 A .a n =1+(―1)n +1B .a n =2|sinn π2| C .a n =1-(―1)nD .a n =2sinn π22.在△ABC 中,假设A =60°,a =2 3 ,那么a +b +csinA +sinB +sinC等于〔 〕A .1B .2 3C .4D .4 3 3.假设锐角三角形三边长为2,3,x ,那么x 的取值范围是〔 〕A .1<x <5B .x <13C .5<x <13D .1<x <5 4.在△ABC 中,设,,CB AC ==a b 且|a |=2,|b |= 3 ,•=-a b 3 ,那么AB 的长为〔 〕A . C D .7-5.在等比数列}{n a 中,假设93-=a ,17-=a ,那么5a 的值是 〔 〕A .-3B .3C .3或者-3D .不存在6.在等差数列}{n a 中,3a 、8a 是方程0532=--x x 的两个根,那么10S 是 〔 〕A .15B .30C .50D .15+1229 二、填空题(4′×6=24′)7.△ABC 中,a =4,A =45°,B =60°,那么c = . 8.△ABC 中,a =6,b =6 3 ,A =30°,那么c = . 9.△ABC 中,a =2,b =2 2 ,A =30°,那么B = .10.假设a ,G ,b 成等比数列,那么称G 为a 和b 的等比中项,那么18和50的等比中项是 .11.在等差数列{a n }中,假如a 10=100,a 100=10,那么a 110= . 12.{a n }是等差数列,且公差d ≠0,又a 1,a 4,a 16依次成等比数列,那么a 1+a 4+a 16a 2+a 5+a 8= .三、解答题(本大题一一共6小题,满分是46分)13.在△ABC 中,cosA a =cosB b =sinCc,试判断△ABC 的形状.(6′)14.根据以下条件解三角形:a =2, b = 6 ,B =60°.(6′)15.如图,我炮兵阵地位于A 处,两观察所分别设于C ,D ,△ACD 为边长等于a 的正三角形.当目的出现于B 时,测得∠CDB =45°∠BCD =75°,试求炮击目的的间隔 AB .〔结果保存根式形式〕(8′)16.在等比数列{}n a 中,首项为a 1,公比为q ,有以下三个命题: 〔1〕数列{}1n n a a +是等比数列;BC AD〔2〕数列{}lg n a 是等差数列;〔3〕假设正整数m 、p 、n 成等差数列,那么a m 、a p 、a n 成等比数列.这些命题中,真命题的序号是 ,并选取其中一个真命题给出证明(8′)17.某企业利用银行无息贷款,HY400万元引进一条高科技消费流水线,预计每年可获产品利润100万元.但还另需用于此流水线的保养、维修费用第一年10万元,以后每年递增5万元,问至少几年可收回该项HY ?(8′)18.数列}{n a 是首项为1的等差数列,数列}{n b 是首项为1的等比数列,设n n n c a b =*()n ∈N ,且数列}{n c 的前三项依次为1,4,12, 〔1〕求数列}{n a 、}{n b 的通项公式;〔2〕〔只文科做....〕假设等差数列}{n a 的公差d >0,它的前n 项和为S n ,求数列n S n ⎧⎫⎨⎬⎩⎭的前n 项的和T n .〔2’〕〔只理科做....〕假设等差数列}{n a 的公差d >0, 求数列}{n c 的前n 项的和.(10′)参考答案选择题1D2C3C4B5A6A填空题7.2 3 +2;8.12或者6;9.135°或者45°;10.±30;11.0;12.75;解答题13.等腰直角三角形; 14.A =45°C =75°c = 3 +1;15; 16.〔1〕〔2〕〔3〕证明略;17.5≤n ≤32,答:至少5年.18.〔1〕11,1,32;26.n n n a n d d q b q -⎧==-⎧=⎧⎪⎪⇒⎨⎨⎨==⎪⎩=⎩⎪⎩或者1436n n nn a b --⎧=⎪⎨⎪=⎩ 〔2〕234n n n T +=〔2′〕(1)21nn -+励志赠言经典语录精选句;挥动**,放飞梦想。

高一数学必修5月考试卷《解三角形》与《数列》

高一数学必修5月考试卷《解三角形》与《数列》

高二数学(《解三角形》与《数列》)(满分:150分 时间:120分钟)一、选择题:(本大题共12小题,每小题5分,共60分)1、数列1,-3,5,-7,9,…的一个通项公式为 ( )A 12-=n a nB )21()1(n a nn --= C )12()1(--=n a nn D )12()1(+-=n a nn 2.已知{}n a 是等比数列,41252==a a ,,则公比q =( )A .21-B .2-C .2D .213.若∆ABC 中,sin A :sin B :sin C =2:3:4,那么cos C =( )A. 14-B.14C. 23-D.234.设数}{n a 是单调递增的等差数列,前三项的和为12,前三项的积为48,则它的首项是( )A .1B .2C .2±D .45.在各项均为正数的等比数列{}n b 中,若783b b ⋅=,则3132log log b b ++……314log b +等于( ) (A) 5 (B) 6 (C)7 (D)86.在ABC ∆中,根据下列条件解三角形,其中有两个解的是( )A. b=10, A=450, C=600B. a=6, c=5, B=60C. a=7, b=5, A=600D. a=14, b=16, A=4507.在数列{}n a 中,12a =, 11ln (1)n n a a n+=++,则n a =( )A .2ln n +B .2(1)ln n n +-C .2ln n n +D .1ln n n ++ 8.在ABC ∆中,若cos cos a B b A =,则ABC ∆的形状一定是( ) A .锐角三角形 B .钝角三角形 C .直角三角形 D .等腰三角形9.在200m 高的山顶上,测得山下一塔顶与塔底的俯角分别是30°,60°,则塔高为( ) AB3C3Dm10.等差数列{a n }和{b n }的前n 项和分别为S n 和T n ,且132+=n n T S nn ,则55b a ( )A 32 B 149 C 3120 D9711.已知{}n a 为公比q >1的等比数列,若20052006a a 和是方程24830x x -+=的两根,则20072008a a +的值是( )A 18B 19C 20D 2112.已知数列{}n a 中,11,a =前n 项和为n S ,且点*1(,)()n n P a a n N +∈在直线10x y -+=上,则1231111nS S S S ++++=( )A.(1)2n n + B.2(1)n n + C.21n n + D.2(1)n n +二、填空题:(本大题共4小题,每小题4分,共16分)13.已知{}n a 为等差数列,3822a a +=,67a =,则5a =____________ 14. 已知数列{a n }的前n 项和是21n S n n =++, 则数列的通项a n =__15.在△ABC 中,若a 2+b 2<c 2,且sin C =23,则∠C =16.△ABC 中,a 、b 、c 成等差数列,∠B=30°,ABC S ∆=23,那么b =三、解答题:(本大题分6小题共74分) 17.(本小题满分12分) 在△ABC 中,已知3=a ,2=b ,B=45︒ 求A 、C 及c18.(本小题满分12分)等比数列{}n a 中, 72=S ,916=S ,求4S .19. (本小题满分12分)在A B C △中,内角A B C ,,对边的边长分别是a b c ,,,已知2c =,3C π=.(Ⅰ)若A B C △,求a b ,;(Ⅱ)若sin 2sin B A =,求A B C △的面积.20.(12分)已知{}n a 是等差数列,其中1425,16a a ==(1)求{}n a 的通项;(2)求n a a a a ++++ 321的值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、选择题
的值为则,,中,已知在c C b a ABC ,12046.1︒===∆
76.A 76.B 28.C 28.D
应等于的规律,,,,,,,,,,观察数列x x 553421853211.2
11.A 12.B 13.C 14.D
的值为,则,中,已知在A c C a ABC 3,606.3=︒==∆
︒45.A ︒135.B ︒︒13545.或C ︒︒12060.或D
的值为,则,中,已知等差数列124115116}{..4a a a a a n ==+
15.A 30.B 31.C 64.D
离为
向,这时船与灯塔的距后,看见灯塔在正西方海里的方向航行方向,后来船沿南偏东偏东某船开始看见灯塔在南906030.5︒︒
海里230.A 海里330.B 海里345.C 海里245.D
的值为,则,中,已知等差数列158431204}{..6a a a a a a n =+=+
26.A 30.B 28.C 36.D
的值为,则且项和是其前为等差数列,已知611tan 3
22,}{..7a S n S a n n π
=
3.A 3
3
.
B 3.±
C 3.-
D 等于时,的面积等于当,中,已知在C ABC B a ABC sin 32,3
24.8∆=
=∆π
147.
A 1414.
B 714.
C 14
21
.D
9.在ABC ∆中,若7,3,8,a b c ===则面积为( )
A 12 B
21
2
.28C D
为取最小值的则使,若项和为的前等差数列n S a a a S n a n n n ,14,5}{..101041=+-=
3.A
4.B
5.C
6.D
则最大角正弦值等于,,中,已知在,14
13
cos 87.11=
==∆C b a ABC 73.
A 732.
B 733.
C 73
4.
D
12.等比数列===302010,10,20,}{M M M M n a n n 则若项乘积记为前
( )
A .1000
B .40
C .
4
25 D .
8
1 13.某人朝正东方向走x km 后,向右转150°,然后朝新方向走3km ,结果他离出发点恰 好3km ,那么x 的值为( ) A .
3 B . 23 C . 23或3
D . 3
14.在等差数列{a n }中,前n 项和为S n ,若S 16—S 5=165,则1698a a a ++的值是( ) A .90
B .90-
C .45
D .45-
15.设数列{}n a 的前n 项和为n S ,令12n
n S S S T n
+++=
L ,称n T 为数列1a ,2a ,……,
n a 的“理想数”,已知数列1a ,2a ,……,500a 的“理想数”为2004,那么数列2, 1a ,2a ,……,500a 的“理想数”为
( )
A .2002
B .2004
C .2006
D .2008
二、填空题
20. 已知△ABC 的三边分别是a, b ,c ,且面积S =4
2
22c b a -+,则角C =___ __
21.若a 、b 、c 成等比数列,a 、x 、b 成等差数列,b 、y 、c 成等差数列,则=+y
c
x a
三.解答题
{ } { } -
- - - -
-
- - - - - - - - -
∆ - - - - - - - - - - - - - - = = + + ∆ ∆ = ∆ = ∆ = = + - = = = C ab a x x a a a S S S n a S n n
n sin , 0 2 3c - 3b 3a c; b, a, ABC 19 ABC 3
3 7 R ABC 3 10 S 60 B ABC . 18 ___ 0 7 18 7 , . 17 , 2
4 , 3 . . 16 2 2 2 ABC 7 2 9
5 9
6 3 则 且 的三边分别为 已知 的周长为 ,则 外接圆半径 , = , 中, 在 的两个根,则 是方程 中, 在等比数列 则 若 项和 的前 为等差数列 设 a. A 4. c 2, b sinBsinC C sin B sin A sin ABC . 22 2 2 2 及 求 , 中,若 在 = = + + = ∆
. A , 2 B tan A tan ABC
. 23 的值 求 中,若 在 b
b
c - = ∆
24.(12分)有四个数:前三个成等差数列,后三个成等比数列。

首末两数和为16,中间两数和为12.求这四个数.
25.设{}n a 是公比为正数的等比数列,12a =,324a a =+.
(Ⅰ)求{}n a 的通项公式; (Ⅱ)求数列{(21)}n n a +的前n 项和S n .
数学答案
一.选择题
BCAABC 61- 7-15 DDBAC DCCA
二.填空题
16.63. 17. 1 18. 20 19.322
20、450 21、2
三.解答题
24.(12分)有四个数:前三个成等差数列,后三个成等比数列。

首末两数和为16,中间两数和为12.求这四个数.
解:设此四数为:x ,y ,12-y ,16-x 。

所以2y=x+12-y 且(12-y )2
= y (16-x ). ……6分
把x=3y-12代入,得y= 4或9.解得四数为15,9,3,1或0,4,8,16 . …………12分
25. 设{}n a 是公比为正数的等比数列,12a =,324a a =+. (Ⅰ)求{}n a 的通项公式;
.
7 2 . 28 8 16 4 120 cos 2 . 120 , 2
1
2 cos , , sin sin sin sin sin ABC . 22 2 2 2 2 2 2 2 2 2 2 2 2 2 2 = = + + = - + = = - = - + =
- = - + + + = + + = ∆
a bc
c b a A bc a c b A bc
a c
b b
c c b a C B C B A 所以 由余弦定理得 所以 所以 即 由正弦定理得 中,若 解:在 ☐ ☐ ☐

60 , 2
1
cos cos sin 2 sin , cos sin 2 ) sin( cos sin 2 cos sin cos sin sin sin sin 2 cos sin cos sin 2 tan tan . 23 = = ∴ = ∴ = + ∴ = + ∴ - = - = A A A
C C A C B A A C A B B A B
B
C A B B A b
b c B A 所以 根据正弦定理,得
解:
(Ⅱ)求数列{(21)}n n a +的前n 项和S n .
解:(I )设q 为等比数列{}n a 的公比,则由21322,4224a a a q q ==+=+得,…………2分
即2
20q q --=,解得21q q ==-或(舍去),因此 2.q = …………4分 所以{}n a 的通项为1*222().n n n a n N -=⋅=∈ …………6分
(II )23325272(21)2n
n T n =⋅+⋅+⋅+++⋅L …………7分
23123252(21)2(21)2n n n T n n +=
⋅+⋅++-⋅++⋅L …………8分
231322222(21)2n n n T n +-=⋅+++++⋅L ()- …………10分
1114(12)
62(21)2212212n n n n n -++-=+⋅-+=--⋅--() …………12分
∴ 1S 212+2n n n +=
-⋅(). …………14分。

相关文档
最新文档