牛头刨床机构运动分析课程设计

合集下载

牛头刨床机构设计课程设计

牛头刨床机构设计课程设计

牛头刨床机构设计课程设计一、课程目标知识目标:1. 让学生掌握牛头刨床的基本结构及其工作原理;2. 使学生了解并掌握牛头刨床机构设计中涉及的几何关系和力学原理;3. 引导学生掌握牛头刨床机构设计的基本步骤和方法。

技能目标:1. 培养学生运用所学知识进行牛头刨床机构设计的能力;2. 提高学生运用绘图工具(如CAD软件)进行机构设计图绘制的能力;3. 培养学生通过小组合作,解决实际工程问题的能力。

情感态度价值观目标:1. 激发学生对机械设计的兴趣,培养其创新意识和实践能力;2. 培养学生严谨的科学态度和良好的团队合作精神;3. 引导学生关注我国机械制造业的发展,树立为国家和民族工业发展做贡献的价值观。

分析课程性质、学生特点和教学要求,本课程目标旨在使学生在掌握牛头刨床机构设计相关知识的基础上,具备实际设计和解决问题的能力,培养其创新精神和团队合作意识,为我国机械制造业培养高素质的技术人才。

通过本课程的学习,学生将能够独立完成牛头刨床机构的设计任务,并具备一定的工程实践能力。

二、教学内容1. 牛头刨床的基本结构及其工作原理:- 牛头刨床的结构组成与功能- 牛头刨床的工作原理及性能参数2. 牛头刨床机构设计相关理论知识:- 几何关系分析:平面连杆机构、曲柄滑块机构- 力学原理:刨削力的计算与合成、强度计算3. 牛头刨床机构设计方法与步骤:- 设计要求及参数确定- 机构设计计算:运动学计算、动力学计算- 结构设计:主要零部件设计、装配设计4. 牛头刨床机构设计实践:- 设计实例分析:分析典型牛头刨床机构设计案例- 设计任务:学生分组进行牛头刨床机构设计实践- 设计成果展示与评价根据课程目标,教学内容参照教材相关章节进行组织,包括牛头刨床的基本结构、工作原理、机构设计理论、设计方法和实践环节。

教学大纲明确教学内容安排和进度,确保教学内容的科学性和系统性。

通过本章节的学习,学生能够系统地掌握牛头刨床机构设计的相关知识和技能,为实际工程应用打下坚实基础。

牛头刨床机构方案分析

牛头刨床机构方案分析

牛头刨床机构方案分析一、题目说明(图a,b)所示为两种牛头刨床主机构的运动简图,已知,l1=0.1m,l0=0.4m,l3=0.75m,l4=0.15m,l y=0.738m,l′3=0.375m,a=0.05m,b=0.15,c= 0.4m,d=0.1m。

只计构件3、5的质量,其余略去不计,m3=30kg,J s3=0.7kg·m2,m5=95kg。

工艺阻力Q如图所示,Q=9000N。

主轴1的转速为60r/min(顺时针方向),许用运转不均匀系数[δ]=0.03。

二、内容要求与作法1.进行运动分析,绘制出滑枕5的位移、速度和加速度线图。

2.进行动态静力分析,绘制固定铰链处的反力矢端图和平衡力矩T d的线图。

3.以主轴为等效构件,计算飞轮转动惯量。

4.对两种机构方案进行综合评价,主要比较如下几项内容:工作行程中滑枕 5 的速度均匀程度。

固定铰链处的反力大小及方向变化。

平衡力矩平均值及波动情况。

飞轮转动惯量大小。

上机前认真读懂所用子程序,自编主程序,初始位置取滑枕 5 的左极限位置。

主程序中打开一数据文件“DGRAPS”,写入需要显示图形的数据。

三、课程设计说明书内容上机结束后,每位学生整理出课程设计说明书一份,其内容应包括:1.机构简图和已知条件。

2.滑枕初始位置及行程H的确定方法。

3.杆组的拆分方法及所调用的杆组子程序中虚参与实参对照表。

4.飞轮转动惯量的计算方法。

5.自编程序中主要标识符说明。

6.自编程序及计算结果清单。

7.各种线图:①滑枕的位移、速度和加速度线图,②平衡力矩线图③固定铰链处反力矢端图④等效转动惯量,等效阻力矩,等效构件角速度线图。

8.对两种方案的比较,评价。

9.以一个位置为例,用图解法做机构的运动分析,与解析法计算结果比较误差。

10.主要收获与建议。

指导教师参考上述内容提出具体要求,学生按照指导教师的要求书写并制订成册。

机械原理课程设计---牛头刨床主体机构的分析与综合

机械原理课程设计---牛头刨床主体机构的分析与综合

机械原理课程设计---牛头刨床主体机构的分析与综合1 课程设计的目的和任务牛头刨床是常见的一种金属加工机床如图1所示。

其主体机构的机构运动简图有多种形式,图2所示的是常用的五种主体机构的示意图。

图 1 牛头刨床图2 牛头刨床的主体结构机构运动简图课程设计的内容包括:1)牛头刨床主传动系统总体传动方案的设计构思一个合理的传动系统。

它可将电机的高速转动(1440 转/分)变换为安装有刨刀的滑枕5 的低速往复移动(要求有三挡速度:60,95,150 次/分)。

其中,将转动变为移动的装置(主体机构)采用图2 所示的连杆机构。

在构思机构传动方案时,能做到思路清晰,各部分的传动比分配合理,最后在计算机上绘出主传动机构的原理示意图。

2)牛头刨床主体机构的尺度综合已知数据如表1所示图中的参数如图3所示。

图3参数表达形式表13)牛头刨床主体机构的运动分析根据已定出的主体机构的尺度参数,按曲柄处于最低转速、滑枕处于最大行程的工况对主体机构进行运动分析。

设各具有旋转运动的构件对x 轴的转角分别为i i θ , ( 为旋转构件的标号),相应的角速度和角加速度分别为ωi ,εi ;用解析法求出当曲柄转角θ1 从刨刀处于最右侧时起,沿逆时针方向转动每隔100 计算一组运动参数,其中包括:各杆的角位置、角速度、角加速度及刨刀的位置刀s (以最右点为零点)、速度刀v 和加速度刀a ,应用计算机在同一幅图中绘出刨刀的位移曲线、速度曲线和加速度曲线,并分析计算结果的合理性。

4)牛头刨床主体机构的受力分析杆的受力以及质量如表2所示。

已知数据其余构件的质量和转动惯量以及运动的摩擦忽略不计。

假定刨刀在空回行程不受力,在工作行程中所受的阻力为水平力,其大小见图3。

用解析法求出机构处于不同位置时应加在曲柄上的驱动力矩TN 以及各运动副的约束总反力的大小和方向。

图3 刨刀的有效阻力课程设计的主要内容包括:设计任务(包括设计条件和要求);②传动方案的确定;③机构综合的方法和结果;④运动分析的方法和结果;⑤受力分析的方法和结果;⑥结束语;⑦主要参考文献;⑧附件(计算机程序等)。

机械原理课程设计_—_牛头刨床的运动分析

机械原理课程设计_—_牛头刨床的运动分析

目录一、概述§1.1、课程设计的任务和目的————————————— 1 §1.2、课程设计的要求———————————————— 1 §1.3、课程设计的数据———————————————— 1二、牛头刨床主传动机构的结构设计与分析§2.1、机构选型、方案分析及方案的确定———————— 2 §2.2、主传动机构尺寸的综合与确定—————————— 2 §2.3、杆组拆分——————————————————— 3 §2.4、绘制机构运动简图——————————————— 3 §2.5、绘制刀头位移曲线图—————————————— 3三、牛头刨床主传动机构的运动分析及程序§3.1、解析法进行运动分析—————————————— 3 §3.2、程序编写过程(计算机C语言程序)——————— 5 §3.3、计算数据结果————————————————— 6 §3.4、位移、速度和加速度运动曲线图与分析—————— 7四、小结心得体会—————————————————————— 8五、参考文献参考文献—————————————————————— 8一、概述§1.1、课程设计的任务和目的课程设计的任务:(一)执行机构结构设计及分析1.牛头刨床的机构选型、运动方案拟定;2.主传动机构尺度综合及确定;3.机构的杆组拆分和机构简图的绘制;4.绘制刀头位移曲线图;(二)执行机构运动分析1.建立数学模型,解析法进行运动分析;2.程序编写;3.上机调试程序;4.位移、速度和加速度运动曲线图与分析;(三)撰写设计说明书(四)考核课程设计的目的:机械原理课程设计是培养学生机械系统方案设计能力的技术基础课程,他是机械原理课程学习过程中的一个重要实践环节。

其目的是以机械原理课程的学习为基础,记忆不巩固和加深所学的基本理论、基本概念和基本知识,培养学生分析和解决与本课程有关的具体机械所涉及的实际问题的能力,使学生熟悉机械系统设计的步骤及方法,其中包括选型、运动方案的确定、运动学和动力学的分析和整体设计等,并进一步提高计算、分析、计算机辅助设计、绘图以及查阅和使用文献的综合能力。

牛头刨床机构课程设计

牛头刨床机构课程设计

目录一.课程设计的目的和任务二.工作原理与结构组成三.设计方案确定四.拟订传动系统方案五.确定机构尺寸参数六.运动分析及参数计算七.对整机设计的结果分析,本机的优缺点和改进意见八.收获体会和建议九.参考文献牛头刨床机构的分析与综合一、课程设计的目的和任务1、目的机械原理课程设计是培养学生掌握机械系统运动方案设计能力的技术基础课程,它是机械原理课程学习过程中的一个重要实践环节。

其目的是以机械原理课程的学习为基础,进一步巩固和加深所学的基本理论、基本概念和基本知识,培养学生分析和解决与本课程有关的具体机械所涉及的实际问题的能力,使学生熟悉机械系统设计的步骤及方法,其中包括选型、运动方案的确定、运动学和动力学的分析和整体设计等,并进一步提高计算、分析,计算机辅助设计、绘图以及查阅和使用文献的综合能力。

2、任务本课程设计的任务是对牛头刨床的机构选型、运动方案的确定;对导杆机构进行运动分析和动态静力分析。

并在此基础上确定飞轮转惯量,设计牛头刨床上的凸轮机构和齿轮机构。

二、工作原理与结构组成牛头刨床的简介牛头刨床是用于加工中小尺寸的平面或直槽的金属切削机床,多用于单件或小批量生产。

为了适用不同材料和不同尺寸工件的粗、精加工,要求主执行构件—刨刀能以数种不同速度、不同行程和不同起始位置作水平往复直线移动,且切削时刨刀的移动速度低于空行程速度,即刨刀具有急回现象。

刨刀可随小刀架作不同进给量的垂直进给;安装工件的工作台应具有不同进给量的横向进给,以完成平面的加工,工作台还应具有升降功能,以适应不同高度的工件加工。

三、设计方案的确定方案(a)采用偏置曲柄滑块机构。

结构最为简单,能承受较大载荷,但其存在有较大的缺点。

一是由于执行件行程较大,则要求有较长的曲柄,从而带来机构所需活动空间较大;二是机构随着行程速比系数K的增大,压力角也增大,使传力特性变坏。

方案(b)由曲柄摇杆机构与摇杆滑块机构串联而成。

该方案在传力特性和执行件的速度变化方面比方案(a)有所改进,但在曲柄摇杆机构ABCD中,随着行程速比系数K的增大,机构的最大压力角仍然较大,而且整个机构系统所占空间比方案(a)更大。

机械原理课程设计——牛头刨床

机械原理课程设计——牛头刨床

项目
刨刀冲程 H( mm)
刨刀越程量 ΔS( mm)
刨削平均速度 Vm( mm/s)
极位夹角 θ( ° )
行程速比系数 K
机器运转速度许用不均匀系
数[δ]
参数
320 16
1211.4
30
1.4
0.05
Page 11
八 、机构运动循环图
机构工艺动作分解
牛头刨床的主运动为: 电动机 →变速机构→摇杆机构 →滑枕往复运动; 牛头刨床的进给运动为: 电动机 →变速机构→棘轮进给 机构 →工作台横向进给运动。
Page 12
九 、主机构尺度综合及运动特性评定
机构位置划分图
以 7号和 14 号位置 作运动分析
Page 13
十 、 电动机功率与型号的确定
电动机的选择
传动比分配与 减速机构设计
确定电动机功率 总传动比
采用展开式二级圆柱齿轮减速器
工作台进给方案
Page 14
工作台横向进给运动 工作台垂直进给运动
其中 ,刨刀向左为工作行程 ,速度平稳 ,运动行 程大; 向右为工作回程,速度快,具有快速返回的 特性。
Page 8
六 、对方案二的பைடு நூலகம்能分析
(2)传递性能和动力性能分析
杆 1、2、3、6 所组成的曲柄摇杆机构中 ,传动 角是不断变化传动性能最好的时候出现在 A ,B, C ,D 四点共线与机构处于极位时两者传动角相等 该机构中不存在高副 , 只有回转副和滑动副 ,故能 承受较大的载荷 , 有较强的承载能力 , 可以传动 较大的载荷 。当其最小传动角和最大传动角相差不 大时 ,该机构的运转就很平稳 ,不论是震动还是冲 击都不会很大 。从而使机械又一定的稳定性和精确 度。

机械原理课程设计牛头刨床机构的课程设计

机械原理课程设计牛头刨床机构的课程设计
构件4的受力分析
FR54×lh1+FI4×lh2+G4×lh3﹣FR34lO4A=0
FR34=[7100x536.05+15.49x399.19+200x32.58]/483.65=7895.49N
再对构件4列力平衡方程,按比例尺μF=10N/mm作力多边形如图所示。求出机架对构件4的反力FR14:
以上两种情况分别为曲柄转过75°和122°时加速度与速度的瞬时分析,这种分析有助于后面的动态静力分析。取任意两点的目的也是为了消除特殊性,使计算更为准确。
3.2动态静力分析(当曲柄位置为75°时)
首先依据运动分析结果,计算构件4的惯性力FI4(与aS4反向)、构件4的惯性力矩MI4(与a4反向,逆时针)、构件4的惯性力平移距离lhd(方位:右上)、构件6的惯性力矩FI6(与aC反向)。
vA4=vA3+vA4A3
大小



方向
⊥O4A
⊥O2A
∥O4A
取极点p,按比例尺μv=0.005(m/s)/mm作速度图(与机构简图绘在同一图样上),如图所示,并求出构件4(3)的角速度ω4和构件4上B点的速度vB以及构件4与构件3上重合点A的相对速度vA4A3。因为
vA4=μvPa4=0.005x124.11m/s=0.62m/s
Lh4= = m=0.180m=118mm
FI6=m6aS6= aS6= ×0.59N=42.0998N
1.取构件5、6基本杆组为示力体(如图所示)
因构件5为二力杆,只对构件(滑块)6做受力分析即可,首先列力平衡方程: 构件5.6的受力分析
构件5.6的受力简图
由于 FR65=—FR56FR54=—FR45
FR54+G4+FI4+FR34+FR14=0

机械原理牛头刨床课程设计----运动分析

机械原理牛头刨床课程设计----运动分析

机械原理牛头刨床课程设计----运动分析第一篇:机械原理牛头刨床课程设计----运动分析3的角位移l1=120;l6=240;x=-pi/6:2*pi/36:11*pi/6;y=atan((l6+l1*sin(x))./(l1*cos(x)));fori=14:1:31 y(i)=pi+y(i);end >> plot(x*180/pi,y*180/pi) E的位移 l1=120;l6=240;x=-pi/6:2*pi/36:11*pi/6;y=atan((l6+l1*sin(x))./(l1*cos(x)));for i=14:1:31 y(i)=pi+y(i);end l=466.507;l3=500;l4=97.929;a=pi-asin((l-l3*sin(y))./l4);b=l3*cos(y)+l4*cos(a);plot(x*180/pi,b) 4的角位移l1=120;l6=240;x=-pi/6:2*pi/36:11*pi/6;y=atan((l6+l1*sin(x))./(l1*cos(x)));for i=14:1:31 y(i)=pi+y(i);end l=466.507;l3=500;l4=97.929;a=pi-asin((l-l3*sin(y))./l4);>> plot(x*180/pi,a*180/pi)3的角速度l1=120;l6=240;x1=-pi/6:2*pi/36:11/6*pi;y1=l1*2*pi*(l1+l6*sin(x1))./(l6*l6+l1*l1+2*l6 *l1*sin(x1));plot(x1*180/pi,y)4的角速度l1=120;l6=240;>> x=-pi/6:2*pi/36:11*pi/6;>> y=atan((l6+l1*sin(x))./(l1*cos(x)));>> for i=14:1:31 y(i)=pi+y(i);end >> l=466.507;l3=500;l4=97.929;>> a=pi-asin((l-l3*sin(y))./l4);>>y1=l1*2*pi*(l1+l6*sin(x))./(l6*l6+l1*l1+2*l6*l1*sin(x));>>y4=(y1.*l3.*cos(y))./(l4.*cos(a));>> plot(x*180/pi,y4)E的速度l1=120;l6=240;x=-pi/6:2*pi/36:11*pi/6;y=atan((l6+l1*sin(x))./(l1*cos(x)));fori=14:1:31 y(i)=pi+y(i);end l=466.507;l3=500;l4=97.929;a=pi-asin((l-l3*sin(y))./l4);y1=l1*2*pi*(l1+l6*sin(x))./(l6*l6+l1*l1+2*l6*l1*sin(x ));>> v=-(y1.*l3.*sin(y+a))./cos(a);>> plot(x*180/pi,v)3的角加速度l1=120;l6=240;x=-pi/6:2*pi/36:11*pi/6;y3=(l6.*l6-l1.*l1).*l6.*l1.*2.*2.*pi.*pi.*cos(x)./((l6.*l6+l1.*l1+2.*l6.*l1.*sin(x)).* (l6.*l6+l1.*l1+2.*l6.*l1.*sin(x)));>>plot(x*180/pi,y3)4的角加速度>> l1=120;l6=240;x=-pi/6:2*pi/36:11*pi/6;y=atan((l6+l1*sin(x))./(l1*cos(x)));fori=14:1:31 y(i)=pi+y(i);end l=466.507;l3=500;l4=97.929;a=pi-asin((l-l3*sin(y))./l4);y1=l1*2*pi*(l1+l6*sin(x))./(l6*l6+l1*l1+2*l6*l1*sin(x ));y4=-(y1.*l3.*cos(y))./(l4.*cos(a));>> y3=(l6.*l6-l1.*l1).*l6.*l1.*2.*2.*pi.*pi.*cos(x)./((l6.*l6+l1.*l1+2.*l6.*l1.*sin(x)).* (l6.*l6+l1.*l1+2.*l6.*l1.*sin(x)));a4=((y3.*l3.*cos(y)-y1.*y1.*l3.*sin(y)).*l4.*cos(a)+y1.*l3.*l4.*cos(y).*sin(a).*y4)./((l4.*c os(a)).*(l4.*cos(a)));>> plot(x*180/pi,a4)E的加速度l1=120;l6=240;x=-pi/6:2*pi/36:11*pi/6;y=atan((l6+l1*sin(x))./(l1*cos(x)));fori=14:1:31 y(i)=pi+y(i);end l=466.507;l3=500;l4=97.929;a=asin((l-l3*sin(y))./l4);y1=l1*2*pi*(l1+l6*sin(x))./(l6*l6+l1*l1+2*l6*l1*sin(x ));y4=-(y1.*l3.*cos(y))./(l4.*cos(a));y3=(l6.*l6-l1.*l1).*l6.*l1.*2.*2.*pi.*pi.*cos(x)./((l6.*l6+l1.*l1+2.*l6.*l1.*sin(x)).* (l6.*l6+l1.*l1+2.*l6.*l1.*sin(x)));>> e=-((y3.*l3.*sin(y-a)+y1.*l3.*cos(y+a).*(y1+y4)).*cos(a)+y1.*l3.*sin(y+a).*sin(a).*y4). /(cos(a).*cos(a));>> plot(x*180/pi,e)第二篇:机械原理课程设计牛头刨床机械原理课程设计——牛头刨床设计说明书(3)待续2.6.滑块6的位移,速度,加速度随转角变化曲线§其位移,速度,加速度随转角变化曲线如图所示:三.设计方案和分析§3.1方案一3.1.1方案一的设计图3.1.2方案一的运动分析及评价(1)运动是否具有确定的运动该机构中构件n=5。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

江苏师范大学机电工程学院课程设计说明书题目:牛头刨床机构设计及运动分析系别专业班级学生姓名学号指导教师2014年1月8日目录一、概述1.1、课程设计的目的——————————————— 21.2、工作原理—————————————————— 21.3、设计要求—————————————————— 31.4、设计数据—————————————————— 41.5、创新设计内容及工作量———————————— 4二、牛头刨床主传动机构的结构设计与分析2.1、方案分析—————————————————— 52.2、主传动机构尺寸的综合与确定————————— 52.2、杆组拆分—————————————————— 62.4、绘制刀头位移曲线图————————————— 7三、牛头刨床主传动机构的运动分析及程序3.1、解析法进行运动分析————————————— 83.2、程序编写过程(计算机C语言程序)—————— 103.3、计算数据结果——————————————— 123.4、位移、速度和加速度运动曲线图与分析————— 13四、小结心得体会——————————————————— 18五、参考文献参考文献——————————————————— 19一、概述1.1、课程设计的目的目的:机械课程创新设计是培养学生机械系统方案设计能力的技术基础课程,他是机制专业课程学习过程中的一个重要实践环节。

其目的是以机制专业课程的学习为基础,进一步巩固和加深所学的基本理论、基本概念和基本知识,培养学生分析和解决与本专业课程有关的具体机械所涉及的实际问题的能力,使学生熟悉机械系统设计的步骤及方法,其中包括选型、运动方案的确定、运动学和动力学的分析和整体设计等,并进一步提高计算、分析、计算机辅助设计、绘图以及查阅和使用文献的综合能力。

1.2、工作原理牛头刨床是一种靠刀具的往复直线运动及工作台的间歇运动来完成工件的平面切削加工的机床。

图1为其参考示意图。

电动机经过减速传动装置(皮带和齿轮传动)带动执行机构(导杆机构和凸轮机构)完成刨刀的往复运动和间歇移动。

刨床工作时,刨头6由曲柄2带动右行,刨刀进行切削,称为工作行程。

在切削行程H中,前后各有一段0.05H的空刀距离,工作阻力F为常数;刨刀左行时,即为空回行程,此行程无工作阻力。

在刨刀空回行程时,凸轮8通过四杆机构带动棘轮机构,棘轮机构带动螺旋机构使工作台连同工件在垂直纸面方向上做一次进给运动,以便刨刀继续切削。

(a)机械系统示意图(b)刨头阻力曲线图(c)执行机构运动简图图1 牛头刨床1.3、设计要求电动机轴与曲柄轴2平行,刨刀刀刃E点与铰链点C的垂直距离为50mm,使用寿命10年,每日一班制工作,载荷有轻微冲击。

允许曲柄2转速偏差为±5%。

要求导杆机构的最大压力角应为最小值。

执行构件的传动效率按0.95计算,系统有过载保护。

按小批量生产规模设计。

1.4、设计数据题号 1导杆机构运动分析转速n2(r/min) 48 机架l O2O1 (mm) 380工作行程H(mm) 310行程速比系数K 1.46 连杆与导杆之比l BC / l O1B0.251.5、创新设计内容及工作量1)根据给定的工作原理和设计数据确定机构的运动尺寸;2)导杆机构的运动分析。

用解析法求出刨头6的位移、速度、加速度及导杆4的角速度和角加速度,并编程绘制运动线图3)编写计算机辅助优化设计与运动分析说明书,包括问题的数学模型、程序框图、源程序及计算结果图表等内容。

二、牛头刨床主传动机构的结构设计与分析2.1、方案分析1.机构具有确定运动,自由度为F=3n-(2h PP 1)=3×5-(2×7+0)=1,曲柄为机构原动件;2.通过曲柄带动摆动导杆机构和滑块机构使刨刀往复移动,实现切削功能,能满足功能要求3.工作性能,工作行程中,刨刀速度较慢,变化平缓符合切削要求;摆动导杆机构使其具有急回作用,可满足任意行程速比系数K的要求;4. 传递性能,机构传动角恒为90°,传动性能好,能承受较大的载荷,机构运动链较长,传动间隙较大;5. 动力性能,传动平稳,冲击震动较小;6. 结构和理性,结构简单合理,尺寸和质量也较小,制造和维修也较容易;7. 经济性,无特殊工艺和设备要求,成本较低。

2.2、主传动机构尺寸的综合与确定由已知数据经过计算得图(2)牛头刨床机构简图由θθ-180180︒+︒=K 得出θ=33.66°)(110)2/66.33sin(380)2/sin(211mm O O A O =︒⨯==θ)(535)2/sin(/)2/(1mm H B O ==θ)(13425.0535/11mm L L B O BC B O BC =⨯=⨯=)(5232/))2/cos((111mm B O B O B O H =--=θ2.3、杆组拆分Ⅰ级杆组Ⅱ级杆组 Ⅱ级杆组2.4、绘制刀头位移曲线图θ1Se120°-0.230150°-0.246197°-0.298343°0.020三、牛头刨床主传动机构的运动分析及程序3.1、解析法进行运动分析如图,建立直角坐标系,并标出各杆矢量及方位角。

利用两个封闭图形ABCA及BDEGB。

投影方程式为图(3)牛头刨床结构分析图1133cos cos θθl s = (1) 11633sin sin θθl l s += (2)0cos cos 4433=-+E S l l θθ (3)'64433sin sin l l l =+θθ (4)① 求333αωθ、、、 由公式(1)和(2)得:163cos sin arctan111θθθl l l += 221πθπ<≤- (5)163cos sin arctan111θθπθl l l ++= 2321πθπ<≤ (6)上式等价于 116113sin cos cot θθθl l l arc += (7)求3θ对时间一阶导得:1162126161113sin 2sin θθωωl l l l l l l +++=)( (8)求对时间二阶导:211621261211621263)sin 2(cos )(θθωαl l l l l l l l ++-= (9) ② 求滑块E 的E E E S αν、、 由(3)、(4)式得:4433cos cos θθl l S E += (10)433sin arcsin4l l H θθ-= (11)求对时间一阶导得:443334cos cos θθωωl l -= (12)44333cos )sin(θθθων--=l E (13)求对时间二阶导得:44333442433234cos cos sin sin θθαθωθωαl l l l -+=(14) 4424433234333cos )cos()sin(θωθθωθθααl l l E --+--= (15) 根据设计要求,不同位置的速度、加速度、位移都不同,将利用C 语言编写程序,达到输出各个位置的速度、加速度以及位移的目的。

程序的源代码以及执行程序之后显示结果均予以显示。

3.2、程序源代码(计算机C 语言程序)#include<stdio.h> #include<math.h>#define PI 3.1415926 void main() {double a=0.110,b=0.535,c=0.134,d=0.380,e=0.523,f=5; /*O1A=AB,b=O1B,c=BC,d=O1O2,e=H,f=ω1 */ double B,C,E,F,G,I,L,M,O; /*B=θ3,C=θ4, E=Se ,F =ω3,G=ω4, I= Ve ,L=а3,M=а4, O=аe */ double x=0;printf(" @1 @3 @4 Se W3 W4 Ve A3 A4 Ae \n"); while(x<6.3) {B=atan((d+a*sin(x))/(a*cos(x))); /*求θ3*/ if(B<0)B=PI+B;C=PI-asin((e-b*sin(B))/c); /*求θ4*/if(C<0)C=PI+C;E=b*cos(B)+c*cos(C); /*求 Se */F=(a*f*(a+d*sin(x)))/(d*d+a*a+2*d*a*sin(x)); /*求ω3*/G=-(F*b*cos(B))/(c*cos(C)); /*求ω4*/I=-(F*b*sin(B-C))/cos(C); /*求 Ve */L=((d*d-a*a)*d*a*f*f*cos(x))/((d*d+a*a+2*d*a*sin(x))*(d*d+a*a+ 2*d*a*sin(x))); /*求а3*/M=(F*F*b*sin(B)+G*G*c*sin(C)-L*b*cos(B))/(c*cos(C)); /*求а4*/ O=-(L*b*sin(B-C)+F*F*b*cos(B-C)-G*G*c)/cos(C); /*求аe */ printf("%3.0f %3.3f %3.3f %3.3f %3.3f %3.3f %3.3f %3.3f %3.3f %3.3f\n",x*180/PI,(B*180)/PI,(C*180)/PI,E,F,G,I,L,M,O);x=x+PI*10/180;}}以上程序在C语言环境下运行,执行文件执行输出结果显示见表 13.3、计算数据结果表 1.各构件的位置、速度和加速度θ1θ3θ4Seω3ω4νeа3а4аe / (°)/ (rad/s)/ (rad/s²)/ m/ (m/s)/ (m/s) 073.856176.1070.0150.3870.430-0.203 5.645 5.694-3.000 1074.814177.1420.0060.5660.593-0.296 4.655 3.622-2.520 2076.098178.430-0.0050.7130.684-0.373 3.792 1.655-2.104 3077.648179.835-0.0200.8320.711-0.435 3.045-0.101-1.738 4079.410181.235-0.0360.9270.680-0.485 2.396-1.603-1.411 5081.341182.524-0.053 1.0000.602-0.525 1.827-2.838-1.112 6083.399183.617-0.072 1.0550.485-0.557 1.319-3.802-0.833 7085.549184.446-0.092 1.0930.340-0.5790.856-4.494-0.568 8087.760184.962-0.113 1.1150.175-0.5940.421-4.911-0.312 9090.000185.138-0.133 1.1220.000-0.6010.000-5.050-0.061 10092.240184.962-0.154 1.115-0.175-0.598-0.421-4.9110.190 11094.451184.446-0.175 1.093-0.340-0.586-0.856-4.4940.444 12096.601183.617-0.195 1.055-0.485-0.565-1.319-3.8020.706 13098.659182.524-0.214 1.000-0.602-0.533-1.827-2.8380.982 140100.590181.235-0.2320.927-0.680-0.489-2.396-1.603 1.278 150102.352179.835-0.2480.832-0.711-0.435-3.045-0.101 1.603 160103.902178.430-0.2620.713-0.684-0.368-3.792 1.655 1.966 170105.186177.142-0.2740.566-0.593-0.288-4.655 3.622 2.377 180106.144176.107-0.2820.387-0.430-0.195-5.645 5.694 2.846 190106.708175.469-0.2870.170-0.196-0.085-6.7547.662 3.379 200106.799175.363-0.288-0.0860.0990.043-7.9419.164 3.968 210106.337175.891-0.284-0.3840.4320.193-9.1019.668 4.576 220105.240177.085-0.274-0.7190.7550.366-10.0298.518 5.115 230103.446178.860-0.258-1.077 1.0000.558-10.396 5.126 5.406 240100.933180.979-0.235-1.433 1.0850.755-9.774-0.627 5.183 25097.745183.046-0.206-1.7440.9390.931-7.784-7.803 4.171 26094.022184.572-0.171-1.9590.550 1.052-4.364-14.088 2.282 27090.000185.138-0.133-2.0370.000 1.0900.000-16.634-0.200 28085.978184.572-0.096-1.959-0.550 1.040 4.364-14.088-2.665 29082.255183.046-0.062-1.744-0.9390.9187.784-7.803-4.520 30079.067180.979-0.033-1.433-1.0850.7509.774-0.627-5.502 31076.554178.860-0.010-1.077-1.0000.56310.396 5.126-5.701 32074.760177.0850.007-0.719-0.7550.37610.0298.518-5.384 33073.663175.8910.017-0.384-0.4320.2019.1019.668-4.813 34073.201175.3630.021-0.086-0.0990.0457.9419.164-4.169 35073.292175.4690.0200.1700.196-0.089 6.7547.662-3.552 36073.856176.1070.0150.3870.430-0.203 5.645 5.694-3.0003.4、位移、速度和加速度的运动曲线图与分析(MATLAB程序、图)>> clear all;clc;w1=5;l1=0.110;l3=0.535;l6=0.380;l61=0.523;l4=0.134;for m=1:3601o1(m)=pi*(m-1)/1800;o31(m)=atan((l6+l1*sin(o1(m)))/(l1*cos(o1(m))));if o31(m)>=0o3(m)=o31(m);else o3(m)=pi+o31(m);end;s3(m)=(l1*cos(o1(m)))/cos(o3(m));o4(m)=pi-asin((l61-l3*sin(o3(m)))/l4);se(m)=l3*cos(o3(m))+l4*cos(o4(m));if o1(m)==pi/2o3(m)=pi/2; s3(m)=l1+l6;endif o1(m)==3*pi/2o3(m)=pi/2; s3(m)=l6-l1;endA1=[cos(o3(m)),-s3(m)*sin(o3(m)),0,0;sin(o3(m)),s3(m)*cos(o3(m)),0,0;0,-l3*sin(o3 (m)),-l4*sin(o4(m)),-1;0,l3*cos(o3(m)),l4*cos(o4(m)),0];B1=w1*[-l1*sin(o1(m));l1*cos(o1(m));0;0];D1=A1\B1;E1(:,m)=D1;ds(m)=D1(1);w3 (m)=D1(2);w4(m)=D1(3);ve(m)=D1(4);A2=[cos(o3(m)),-s3(m)*sin(o3(m)),0,0;sin(o3(m)),s3(m)*cos(o3(m)),0,0;0,-l3*sin(o3 (m)),-l4*sin(o4(m)),-1;0,l3*cos(o3(m)),l4*cos(o4(m)),0];B2=-[-w3(m)*sin(o3(m)),(-ds(m)*sin(o3(m))-s3(m)*w3(m)*cos(o3(m))),0,0;w3(m)* cos(o3(m)),(ds(m)*cos(o3(m))-s3(m)*w3(m)*sin(o3(m))),0,0;0,-l3*w3(m)*cos(o3(m)),-l4*w4(m)*cos(o4(m)),0;0,-l3*w3(m)*sin(o3(m)),-l4*w4(m)*sin(o4(m)),0]*[ds(m) ;w3(m);w4(m);ve(m)];C2=w1*[-l1*w1*cos(o1(m));-l1*w1*sin(o1(m));0;0];B=B2+C2;D2=A2\B;E2(:,m)= D2;dds(m)=D2(1);a3(m)=D2(2);a4(m)=D2(3);ae(m)=D2(4);end;o11=o1*180/pi;y=[o3*180/pi;o4*180/pi];w=[w3;w4];a=[a3;a4];figure;subplot(221);h1=plotyy(o11,y,o11, se);title('位置线图');xlabel('\it\theta1(°)');ylabel('\it\theta3 \theta4,(°) Se(m)');grid on subplot(222);h2=plotyy(o11,w,o11,ve);title('速度线图');xlabel('\it\theta1(°)');ylabel('\it\omega3 \omega4(rad/s) Ve(m/s)');grid onsubplot(212);h3=plotyy(o11,a,o11,ae);title('加速度线图');xlabel('\it\theta1(°)');ylabel('\it\alpha3 \alpha4(rad/s^2) \alphaE(m/s^2)');grid onF=[o11;o3./pi*180;o4./pi*180;se;w3;w4;ve;a3;a4;ae]';G=F(1:10:3601,:)图(4)牛头刨床运动位置线图分析:随着摇杆的摆动,θ1的增大和减小,但摇杆牵引连杆,使得θ4的角度变化幅度不大,呈浮动装态。

相关文档
最新文档