CRISPRCas9技术简介
crispr cas9原理简介

crispr cas9原理简介CRISPR-Cas9基因编辑技术,是一种通过靶向剪切基因组中特定DNA序列的方法。
该技术最初源自一种天然的细菌免疫系统,可用于编辑生物体的基因组。
CRISPR(簇状规律间隔短回文重复序列,Clustered Regularly Interspaced Short Palindromic Repeats)是细菌和古细菌基因组中的一种特殊DNA序列,以重复、间隔和短回文特点而命名。
CRISPR序列常常与Cas(CRISPR-associated protein)基因一起出现,这些Cas基因编码一类能够识别并修剪DNA的酶。
CRISPR-Cas系统中最常用的是Cas9酶,它是通过向CRISPR-Cas9复合物中引入特定的RNA分子来实现DNA靶向。
这种RNA分子称为单导RNA(sgRNA),它是一种具有20个核苷酸的短链RNA,结合了用于指引Cas9定位到特定目标序列的脱氧核苷酸。
sgRNA与Cas9酶形成复合物后,可以通过碱基互补配对与基因组DNA中的目标序列结合。
当sgRNA与Cas9复合物与目标DNA序列配对时,Cas9酶便会被激活并剪切其靶向序列。
这一过程引发DNA修复机制,使得目标序列得以重组或删除。
如果提供了外源DNA修复模板,修复机制还可以将该模板中的DNA片段插入到被剪切的部分,实现想要的基因修饰。
CRISPR-Cas9技术的优势在于其简单性和高效性。
相较于传统的基因编辑技术,CRISPR-Cas9可以更加准确地指定目标序列,并在短时间内完成基因组的编辑。
它已被广泛应用于基础科学研究、生物医学研究以及农业领域,为基因治疗和作物改良等领域带来了突破性的进展。
crispr cas9原理及应用

crispr cas9原理及应用CRISPR-Cas9 是一种革命性的基因编辑技术,其原理基于一种存在于细菌免疫系统中的天然机制。
该技术利用了一种称为Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)的 DNA 序列和 Cas9 蛋白质,能够准确地识别和编辑基因组中的特定目标序列。
CRISPR-Cas9 技术的基本原理是通过设计特定的引导 RNA 来指导 Cas9 蛋白质精确地结合到目标 DNA 序列上。
一旦 Cas9与目标 DNA 结合,它会切割 DNA 分子,从而可能引发自然修复过程或介导外源 DNA 片段嵌入到基因组中。
这种技术的目标序列可以根据需求进行设计,从而实现精确的基因组编辑。
CRISPR-Cas9 技术在基因组编辑领域有着广泛的应用。
首先,它可以用于研究基因功能和疾病模型的构建。
科学家可以利用CRISPR-Cas9 技术来人为地引发基因突变,以研究基因功能和疾病的发病机制。
此外,CRISPR-Cas9 技术还可以用于治疗基因相关疾病。
通过准确编辑患有遗传病的患者的基因组,科学家可以修复或纠正疾病相关基因的缺陷,以治疗或预防疾病的发生。
CRISPR-Cas9 技术还被用于生物学研究和农业领域。
从基因组编辑的角度看,这种技术可以用于培育产量更高、对病虫害抵抗力更强的农作物,以满足全球不断增长的粮食需求。
此外,CRISPR-Cas9 技术还可以用于改良微生物产生特定化合物,例如药物或化学制品。
总而言之,CRISPR-Cas9 是一种功能强大的基因编辑技术,它已经革新了生物学研究和医学领域。
它的应用不仅仅局限于基因功能研究,还包括基因治疗、农业改良等领域,为人类带来了希望和新的可能性。
cas9 功能基因筛选

cas9 功能基因筛选
CRISPR-Cas9是一种基因编辑技术,它可以用于基因筛选以及其他基因编辑应用。
在基因筛选方面,CRISPR-Cas9可以通过靶向特定基因的DNA序列,来实现对该基因的编辑或沉默,从而揭示该基因在细胞或生物体中的功能。
以下是CRISPR-Cas9在功能基因筛选中的一些重要方面:
1. 靶向性,CRISPR-Cas9系统可以被设计用来精确地靶向特定基因的DNA序列,使得研究人员能够选择性地编辑或沉默感兴趣的基因。
2. 高效性,相较于传统的基因筛选技术,CRISPR-Cas9具有更高的编辑效率,可以更快速地实现基因编辑和筛选。
3. 多功能性,CRISPR-Cas9不仅可以用于基因沉默,还可以实现基因敲入、基因突变等多种基因编辑操作,使得研究人员能够更全面地了解基因的功能。
4. 高通量筛选,结合高通量测序技术,CRISPR-Cas9可以实现对大规模基因组的筛选,从而加快对基因功能的理解。
5. 生物医学应用,CRISPR-Cas9的功能基因筛选在疾病研究和
药物开发中具有重要意义,可以帮助科学家们发现与疾病相关的基因,以及潜在的治疗靶点。
总之,CRISPR-Cas9在功能基因筛选中具有高度的灵活性和精
准性,为研究人员提供了强大的工具来探究基因的功能和作用机制。
这些特点使得CRISPR-Cas9成为当前基因筛选和编辑领域的热门技
术之一。
基因编辑技术CRISPR-Cas9的应用前景和伦理问题讨论。

基因编辑技术CRISPR-Cas9的应用前景和伦理问题讨论。
1. 引言1.1 概述基因编辑技术是一项革命性的科学技术,它给人类带来了前所未有的机会和挑战。
其中CRISPR-Cas9技术作为最新发展的一种基因编辑工具,引起了广泛的关注。
该技术能够精确地修改生物体的基因序列,为治疗遗传性疾病、改良农作物以及推动药物研发等领域带来了巨大潜力。
1.2 CRISPR-Cas9技术简介CRISPR-Cas9是一种源于细菌免疫系统的天然防御机制,并被科学家们用于基因编辑中。
该技术通过利用Cas9蛋白与RNA引导分子找到特定DNA序列并进行剪切,实现对目标基因进行精确修改的能力。
相比于传统的基因编辑方法,CRISPR-Cas9更加简单、高效、灵活,并在世界范围内迅速被广泛采用。
1.3 目的本文旨在探讨CRISPR-Cas9技术在应用前景中所面临的伦理问题。
随着这项技术渐渐成熟和应用范围的扩大,其中涉及的道德、生物伦理学等问题也日益受到关注。
我们将讨论人类基因编辑的道德考量,以及可能对未来世代和动植物种群生态平衡带来的影响。
同时,本文还将介绍伦理原则在CRISPR-Cas9技术中的应用与挑战,并提出公共政策与监管措施的建议,力求寻求技术进步与伦理平衡之间的良好观点总结。
通过对这些伦理问题进行深入研究和讨论,我们可以更好地推动CRISPR-Cas9等基因编辑技术的发展,并为未来科技发展做出相应规范和决策。
最后,我们将总结当前技术进步与伦理平衡之间关系,并展望未来该领域的发展趋势。
2. CRISPR-Cas9技术的应用前景:2.1 治疗遗传性疾病:CRISPR-Cas9技术在治疗遗传性疾病方面展示出巨大的应用前景。
该技术可以通过定点基因编辑修复患者体内存在的致病突变,从根本上解决遗传疾病的问题。
以囊胚基因编辑为例,科学家们已经成功地利用CRISPR-Cas9技术来纠正一些单基因遗传性疾病,如囊性纤维化和镰刀形细胞贫血等。
crisprcas9基因编辑技术原理

crisprcas9基因编辑技术原理CRISPR-Cas9基因编辑技术是一种革命性的生物技术,它允许科学家以前所未有的精确度和效率对DNA进行编辑。
这项技术基于细菌的自然防御机制,已被广泛用于生物医学研究和基因治疗领域。
CRISPR-Cas9技术的原理CRISPR-Cas9系统是由两部分组成的:CRISPR(Clustered Regularly Interspaced Short Palindromic Repeats)和Cas9蛋白。
CRISPR是细菌基因组中的一种特殊结构,由一系列重复的DNA序列组成,这些序列之间由非重复的间隔序列隔开。
这些间隔序列实际上是细菌在遭遇病毒入侵时,从病毒DNA中截取的片段,用作识别和防御未来入侵的标记。
Cas9蛋白是一种核酸酶,它能够切割DNA。
在自然状态下,Cas9蛋白与CRISPR RNA(crRNA)和转录自CRISPR区域的一段RNA(tracrRNA)结合,形成复合体。
crRNA和tracrRNA的结合使得Cas9能够识别并结合到特定的DNA序列上,然后切割双链DNA。
CRISPR-Cas9的应用科学家们利用CRISPR-Cas9技术,通过设计特定的导向RNA(gRNA),可以指导Cas9蛋白精确地定位到目标DNA序列上。
一旦定位成功,Cas9蛋白就会在目标位点切割DNA,造成DNA双链断裂。
细胞自身的DNA修复机制会尝试修复这个断裂,科学家可以利用这一点,通过提供特定的DNA模板,引导细胞修复机制将特定的基因序列插入到目标位点,实现基因的添加、删除或替换。
CRISPR-Cas9的优势1. 精确性:CRISPR-Cas9可以精确地定位到基因组中的特定位置,实现单碱基的编辑。
2. 灵活性:通过改变导向RNA的序列,可以轻松地将Cas9蛋白引导到不同的基因位点。
3. 效率:CRISPR-Cas9技术大大提高了基因编辑的效率,使得基因编辑变得更加快速和经济。
CRISPR_Cas9 基因编辑技术简介

CRISPR是一种特殊的DNA 重复序列家族,广泛分布于细菌 和古细菌基因组中。CRISPR位点通常由短的高度保守的重复序 列(repeats)组成,重复序列的长度通常为21--48bp,重复序列之 间被26--72bp间隔序列(spacer)隔开。CIRSPR通过这些间隔序列 (spacer)与靶基因进行识别。
2013年之后,研究者们在《science 》和《nature》等国际著 名杂志上发表多篇文章介绍CRISPR/Cas9系统,并且已成功在人类、 小鼠、斑马鱼等物种上实现精准的基因修饰。
1.CRISPR/Cas系统概述
1.1CRISPR的分布与分类:
已测序的接近90%的古细菌和40%的细菌的基因组或是质粒 中至少存在CRISPR 基因座。
Feng Zhang et al. 2015 Cpf1 Is a Single RNA-Guided Endonuclease of a Class 2 CRISPR-Cas System
7.视频:基因编辑CRISPR-Cas9原理
6.降低脱靶效应 CRISPR/Cpf1系统
Cpf1系统更简单一些,它只需要一条 RNA。Cpf1酶也比标准SpCas9要小, 使得它更易于传送至细胞和组织内。 Cpf1以一种不同于Cas9的方式切割DNA。 Cas9切割留下“平端”(blunt ends)。 Cpf1复合物生成的两条链切口是偏 移的,在裸露端留下了短悬端 (overhang)。这预计有助于精确 插入。 Cpf1切口远离识别位点。
基因编辑技术CRISPR/Cas9
1.CRISPR/Cas系统概述
1987年,日本大阪大学(Osaka University) 在对一种细菌编 码的碱性磷酸酶基因进行研究时,发现在这个基因编码区域的附近 存在一小段不同寻常的DNA片段,但一直不清楚功能。后来的研究 发现,这种重复序列广泛存在于细菌和古细菌中。 2002年才正式命名为成簇的规律间隔性短回文重复序列 CRISPR(Clustered regulatory interspaced short palindromic repeats).
CRISPR-Cas9技术优化

▪ CRISPR-Cas9在农业领域的应用
1.CRISPR-Cas9技术可以用于改良农作物,提高作物的抗病性 、抗虫性和抗旱性。 2.通过CRISPR-Cas9技术,研究人员可以精确地编辑作物的基 因,以提高作物的营养价值或改善作物的品质。 3.目前,CRISPR-Cas9已经在一些农作物中展示出良好的改良 效果,如改良水稻、小麦等粮食作物。
CRISPR-Cas9技术的应用领域
▪ CRISPR-Cas9在生物研究中的应用
1.CRISPR-Cas9技术可以用于快速、高效地构建基因敲除或基 因过表达的细胞或动物模型。 2.通过CRISPR-Cas9技术,研究人员可以精确地编辑细胞或动 物的基因,以研究基因的功能和疾病机制。 3.目前,CRISPR-Cas9已经成为生物研究中最常用的基因编辑 工具之一。
CRISPR-Cas9技术简介
▪ CRISPR-Cas9技术的优势
1.CRISPR-Cas9技术具有操作简便、效率高、成本低等优点。 2.与传统的基因编辑技术相比,CRISPR-Cas9技术更加精准, 错误率更低。 3.CRISPR-Cas9技术可以广泛应用于生物学、医学、农业等领 域。
▪ CRISPR-Cas9技术的应用领域
CRISPR-Cas9技术优化
目录页
Contents Page
1. CRISPR-Cas9技术简介 2. CRISPR-Cas9的工作原理 3. CRISPR-Cas9技术的优势 4. CRISPR-Cas9技术的应用领域 5. CRISPR-Cas9技术存在的问题 6. 优化CRISPR-Cas9的策略和方法 7. 优化后的CRISPR-Cas9应用案例 8. CRISPR-Cas9技术的未来展望
CRISPR-Cas9的优化策略
CRISPR技术简介

CRISPR技术简介CRISPR/Cas9(Clustered Regularly Interspaced Short Palindromic Repeats)是新出现的一种由sgRNA指导Cas核酸酶对靶向基因进行特定DNA修饰的技术。
在这一系统中,sgRNA 引导序列靶定位点剪切双链DNA达到对基因组DNA 进行修饰的目的。
虽然有很多CRISPR–Cas系统需要多种蛋白的参与,但是在很多细菌的胞内都只需要一种内切酶(endonuclease)——Cas9就足够了,我们将这种CRISPR–Cas系统也称作2型系统(type II systems)。
Cas9内切酶在向导RNA的指引下能够对各种入侵的外源DNA分子进行定点切割,不过主要识别的还是保守的间隔相邻基序(proto-spacer adjacent motifs,PAM基序)。
如果要形成一个有功能的DNA切割复合体,还需要另外两个RNA分子的帮助,它们就是CRISPR RNA (crRNA)和反式作用CRISPR RNA(trans -acting CRISPR RNA, tracrRNA)。
crRNA ( CRISPR-derived RNA )通过碱基配对与 tracrRNA (trans-activating RNA )结合形成 tracrRNA/crRNA 复合物,此复合物引导核酸酶 Cas9 蛋白在与 crRNA 配对的序列靶位点剪切双链 DNA。
不过最近有研究发现,这两种RNA可以被“改装”成一个向导RNA (single-guide RNA, sgRNA)。
这个sgRNA足以帮助Cas9内切酶对DNA进行定点切割。
最新的报道称,在多种类型的细胞和生物体内,这种RNA介导的Cas9酶切作用能够正常地行使功能,在完整基因组上的特定位点完成切割反应。
这样就可以方便地进行后续的基因组改造工作了。
细胞通常会通过两种方式对发生双链断裂的DNA进行修复,这两种方式分别是同源重组修复机制(homologous recombination, HR)和非同源末端连接修复机制(non-homologous end joining, NHEJ),不过在修复的过程中细胞有可能会对修复位点进行修饰,或者插入新的遗传信息。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
CRISPR/Cas9技术详解,简单易懂6月2日,Science杂志发表了关于CRISPR技术的突破性成果,确定了一个靶向RNA而非DNA的新型CRISPR 系统特征。
来自麻省理工学院-哈佛大学Broad研究所、麻省理工学院、美国国立卫生研究院、罗格斯大学新布朗斯维克分校和俄罗斯Skolkovo理工学院的研究人员共同取得了这项研究成果,拥有“CRISPR/Cas之父”之称的著名科学家张锋也是这项研究的主导者之一。
这再次让CRISPR技术成为了人们瞩目的焦点(最新论文PDF请见附件abudayyeh2016.pdf)CRISPR/Cas这项明星技术自问世以来,已经吸引了无数欢呼和掌声。
在短短两三年之内,它已经成为了生物科学领域最炙手可热的研究工具,并有近700篇相关文献发表。
CRISPR/Cas技术的先驱者们,包括张锋以及两位美女科学家珍妮弗·杜德娜和艾曼纽·夏邦杰,更是获得了众多荣誉和奖项。
CRISPR/Cas技术是什么?CRISPR/Cas系统是一种原核生物的免疫系统,用来抵抗外源遗传物质的入侵,比如噬菌体病毒和外源质粒。
同时,它为细菌提供了获得性免疫:这与哺乳动物的二次免疫类似,当细菌遭受病毒或者外源质粒入侵时,会产生相应的“记忆”,从而可以抵抗它们的再次入侵。
CRISPR/Cas系统可以识别出外源DNA,并将它们切断,沉默外源基因的表达。
这与真核生物中RNA干扰(RNAi)的原理是相似的。
正是由于这种精确的靶向功能,CRISPR/Cas 系统被开发成一种高效的基因编辑工具。
在自然界中,CRISPR/Cas系统拥有多种类别,其中CRISPR/Cas9系统是研究最深入,应用最成熟的一种类别。
CRISPR/Cas9是继锌指核酸内切酶(ZFN)”、“类转录激活因子效应物核酸酶(TALEN)”之后出现的第三代“基因组定点编辑技术”。
凭借着成本低廉,操作方便,效率高等优点,CRISPR/Cas9迅速风靡全球的实验室,成为了生物科研的有力帮手。
在TALEN和ZFN的时代,科学家们往往要花费重金,把基因编辑工作交给生物公司。
而现在,在实验室里,人们就可以使用CRISPR/Cas9技术轻松的实现基因编辑。
CRISPR/Cas9如何工作?CRISPR簇是一个广泛存在于细菌和古生菌基因组中的特殊DNA重复序列家族,充当了防御外源遗传物质的“基因武器”。
CRISPR全称Clustered Regularly Interspersed Short Palindromic Repeats—成簇的规律间隔的短回文重复序列,分布在40%的已测序细菌和90%的已测序古细菌当中。
图1展示了完整的CRISPR位点的结构。
其中,CRISPR 序列由众多短而保守的重复序列区(repeat)和间隔区(spacer)组成。
重复序列区含有回文序列,可以形成发卡结构。
而间隔区比较特殊,它们是被细菌俘获的外源DNA序列。
这就相当于细菌免疫系统的“黑名单”,当这些外源遗传物质再次入侵时,CRISPR/Cas系统就会予以精确打击。
而在上游的前导区(leader)被认为是CRISPR 序列的启动子。
另外,在上游还有一个多态性的家族基因,该基因编码的蛋白均可与CRISPR序列区域共同发生作用。
因此,该基因被命名为CRISPR关联基因(CRISPR associated,Cas)。
目前已经发现了Cas1-Cas10等多种类型的Cas基因。
Cas基因与CRISPR序列共同进化,形成了在细菌中高度保守的CRISPR/Cas系统。
图1:CRISPR位点结构图那么,CRISPR序列是如何与Cas蛋白配合来执行防御功能的呢?整个过程大体分为3步。
1.外源DNA俘获:“黑名单”登记简单来说,CRISPR/Cas系统在这一步实现了一个“黑名单登记”功能。
序CRISPR/Cas系统将识别出入侵者的“名字”(PAM)并找到它的“身份证”(原间隔序列),然后把入侵者身份信息作为“档案”(间隔序列)记录到“黑名单”(CRISPR序列)中。
图2展示了第一阶段的工作原理。
当噬菌体病毒首次入侵宿主细菌,病毒的双链DNA 被注入细胞内部。
CRISPR/Cas系统会从这段外源DNA中截取一段序列作为外源DNA的“身份证”,然后将其作为新的间隔序列被整合到基因组的CRISPR序列之中。
因此,这段与间隔序列对应的“身份证”被称为原间隔序列(protospacer)。
然而,“身份证”的选取并不是随机的。
原间隔序列向两端延伸的几个碱基都十分保守,被称为原间隔序列临近基序(protospacer adjacent motif,PAM)。
PAM通常由NGG三个碱基构成(N为任意碱基)。
病毒入侵时,Cas1和Cas2编码的蛋白将扫描这段外源DNA,并识别出PAM区域,然后将临近PAM的DNA序列作为候选的原间隔序列。
随后,Cas1/2蛋白复合物将原间隔序列从外源DNA中剪切下来,并在其他酶的协助下将原间隔序列插入临近CRISPR序列前导区的下游。
然后,DNA会进行修复,将打开的双链缺口闭合。
这样一来,一段新的间隔序列就被添加到了基因组的CRISPR序列之中。
图2:第一阶段:外源DNA俘获2. crRNA合成:”军火“制造战争总需要武器,CRISPR/Cas系统也要制造足够的”军火“来打击入侵者。
目前的研究表明,CRISPR/Cas系统共有三种方式(Type Ⅰ、Ⅱ、Ⅲ)来制造”军火“。
CRISPR/Cas9系统属于Type Ⅱ,是目前最成熟也是应用最广的类型。
因此,图3将重点介绍CRISPR/Cas9的原理。
当入侵者到来,CRISPR序列会在”指挥官“(前导区)的调控下转录出两种“军火材料”:pre-CRISPR-derived RNA (pre-crRNA)和trans-acting crRNA(tracrRNA)。
其中,tracrRNA是由重复序列区转录而成的具有发卡结构的RNA,而pre-crRNA是由整个CRISPR序列转录而成的大型RNA分子。
随后,pre-crRNA,tracrRNA以及Cas9编码的蛋白将会组装成一个小型“兵工厂”。
它将根据入侵者的类型,选取对应的“身份证”(间隔序列RNA),并在RNase Ⅲ的协助下对这段间“身份证”进行剪切,最终形成一段短小的crRNA(包含单一种类的间隔序列RNA以及部分重复序列区)。
crRNA,Cas9以及tracrRNA组成的复合物,就是最终的“战斗武器”。
图3:第二阶段:crRNA合成3.靶向干扰:强大火力,精确打击武器已经制造完成,战争就要打响。
图4展示了靶向干扰的过程。
Cas9/tracrRNA/crRNA复合物就像是一枚制导导弹,可以对入侵者的DNA进行精确的打击。
这个复合物将扫描整个外源DNA序列,并识别出与crRNA互补的原间隔序列。
这时,复合物将定位到PAM/原间隔序列的区域,DNA双链将被解开,形成R-Loop。
crRNA将与互补链杂交,而另一条链则保持游离状态。
随后,Cas9蛋白发起猛烈攻势,其HNH酶活性将剪切crRNA互补的DNA链,而其RuvC活性位点将剪切非互补链。
最终,Cas9强大的火力使双链断裂(DSB)形成,外源DNA的表达被沉默,入侵者被一举歼灭。
图4:第三阶段:靶向干扰如何应用CRISPR/Cas技术?CRISPR/Cas是进行基因编辑的强大工具,可以对基因进行定点的精确编辑。
在向导RNA(guide RNA,gRNA)和Cas9蛋白的参与下,待编辑的细胞基因组DNA将被看作病毒或外源DNA,被精确剪切。
但是,CRISPR/Cas9的应用也有一些限制条件。
首先,待编辑的区域附近需要存在相对保守的PAM序列(NGG)。
其次,向导RNA 要与PAM上游的序列碱基互补配对。
图5展示了最基础的两种CRISPR/Cas9技术应用。
最基础的技术就是基因敲除。
如果在基因的上下游各设计一条向导RNA(向导RNA1,向导RNA2),将其与含有Cas9蛋白编码基因的质粒一同转入细胞中,向导RNA通过碱基互补配对可以靶向PAM附近的目标序列,Cas9蛋白会使该基因上下游的DNA双链断裂。
而生物体自身存在着DNA损伤修复的应答机制,会将断裂上下游两端的序列连接起来,从而实现了细胞中目标基因的敲除。
如果在此基础上为细胞引入一个修复的模板质粒(供体DNA分子),这样细胞就会按照提供的模板在修复过程中引入片段插入或定点突变。
这样就可以实现基因的替换或者突变。
对受精卵细胞进行基因编辑,并将其导入代孕母体中,可以实现基因编辑动物模型的构建。
随着研究的深入,CRISPR/Cas 技术已经被广泛的应用。
除了基因敲除,基因替换等基础编辑方式,它还可以被用于基因激活,疾病模型构建,甚至是基因治疗。
图5:CRISPR/Cas9技术应用最新突破是什么?这是一项复杂的研究,但是我们简单来说,研究人员们发现了一个新兴CRISPR系统。
事实上,除了CRISPR/Cas 系统,CRISPR系统的类型众多。
Cas9仅仅是其中一类作用蛋白,CRISPR序列理论上还可以跟许多其它蛋白共同作用。
但是长期以来,这些系统并未被验证可以进行有效的基因编辑。
CRISPR/C2c2就是张锋博士的团队最新发现的可以被用作基因编辑的CRISPR系统。
图6展示了这个系统的工作模型。
这个系统的突破性意义就在于它可以在RNA级别进行编辑,而不是传统的DNA级别的编辑。
该系统基本的工作流程与CRISPR/Cas9类似,还是借助CRISPR序列的”黑名单“系统对入侵者进行打击。
但是crRNA形成的方式与CRISPR/Cas9系统不同。
C2c2蛋白会与成熟的crRNA复合,在不借助tracrRNA的情况下与外源单链RNA结合,crRNA则会与PFS片段(类似PAM)附近的互补区域杂交。
最后,外源单链RNA会被剪切,其基因表达也会被沉默。
然而,被剪切的外源RNA有可能会触发宿主细胞RNA的剪切,从而引入宿主细胞凋亡机制。
这种只靶向作用于RNA并协助执行基因组指令的能力能够让人们特异性地和高通量地操纵RNA,以及更加广泛地操纵基因功能。
这有潜力加快理解、治疗和预防疾病的步伐。
张锋博士说,“C2c2为强大CRISPR工具的一个全新领域打开大门。
对C2c2而言,它有大量的可能性,而且我们兴奋地将它开发为一种用于生命科学研究和医学的平台。
”图6:选自 C2c2 is a single-component programmable RNA-guided RNA-targeting CRISPR effector.。