第四讲 数数与计数(二)

合集下载

六年级下册数学讲义-培优专题讲练:第4讲:枚举法(教师版)

六年级下册数学讲义-培优专题讲练:第4讲:枚举法(教师版)

第四讲枚举法1.计数问题分为两个大类,一类是“计次序”的问题,一类是“不计次序”的问题。

2.枚举需要按照一定的顺序和一定的规律来进行分类,这样可以做到不重复和不遗漏。

3.枚举法的根本思想在于分类,通过分类可以将原本复杂的问题拆分成若干个比较简单的问题,然后再逐一进行分析。

分类的思想可以化繁为简,化复杂为简单。

4.可以利用“树形图”来方便的记录枚举的过程,有几类问题就分出几个分枝,逐层按照顺序不断分叉再一一筛选,留下符合条件的,去掉不符合条件的。

注意在枚举“不计次序”的问题时,只需考虑从小到大(或从大到小)排列的分枝,而不用理会其他情况。

5.计次序:不但要挑选出来,而且还需要排列顺序,不同的排列顺序认为是不同的情况或方法。

这类问题通常是“排列”的题目。

6.不计次序:只要挑选出来即可,不需要排列顺序,不同的排列顺序认为是相同的情况或方法。

这类问题通常是“选取”的题目。

1.理解“枚举法”的含义。

2.能在题目中熟练运用枚举法解题。

例1:小明和小红玩掷骰子的游戏,共有两枚骰子,一起掷出。

若两枚骰子的点数和为7,则小明胜;若点数和为8,则小红胜。

试判断他们两人谁获胜的可能性大。

分析与解:将两枚骰子的点数和分别为7与8的各种情况都列举出来,就可得到问题的结论。

用a+b表示第一枚骰子的点数为a,第二枚骰子的点数是b的情况。

出现7的情况共有6种,它们是:1+6,2+5,3+4,4+3,5+2,6+1。

出现8的情况共有5种,它们是:2+6,3+5,4+4,5+3,6+2。

所以,小明获胜的可能性大。

注意,本题中若认为出现7的情况有1+6,2+5,3+4三种,出现8的情况有2+6,3+5,4+4也是三种,从而得“两人获胜的可能性一样大”,那就错了。

例2:数一数,右图中有多少个三角形。

分析与解:图中的三角形形状、大小都不相同,位置也很凌乱,不好数清楚。

为了避免数数过程中的遗漏或重复,我们将图形的各部分编上号(见右图),然后按照图形的组成规律,把三角形分成单个的、由两部分组成的、由3部分组成的……再一类一类地列举出来。

二年级华数

二年级华数

数数与计数(二)1、数一数,图中一共有多少条线段?2、数一数,图中一共有多少条线段?345、数一数,图中一共有多少个三角形?67、数一数,图中一共有多少个三角形?8、你能在1分钟内数出图中的三角形吗?9101112、数一数,图中一共有多少个角?1314找规律填图1、根据前面几幅图的规律,接下去该怎样画?234(1)(2)5、请你根据前面几幅图的规律,接着画。

67911、按顺序仔细观察图,第三幅图“?”出怎么填?121314、仔细观察图,回答下面的问题:(1)在第四幅图中应画什么图形?(2)在第十幅图中应画什么图形?第一组 第二组 第三组 第四组数数与计数(一)1、数一数,图中有多少个黑方格和白方格?23、在1~100中,数字“0”共出现了多少次?4、一本书共有200页,页码依次为1、2、3、…、200,数字“2”在页码中出现了多少次?5 6、数一数,图中有多少个小方块?7、数一数,图中一共有多少个正方体?(每一层的中间是空心) 89、数一数,图中一共有多少个正方体?10、将10个小正方体组成一个“I ”字形,如图,再将表面涂成红色,然后把小正方体分开。

问:(1)3面涂成红色的小正方体有多少块?( )块(2)4面涂成红色的小正方体有多少块?( )块(3)5面涂成红色的小正方体有多少块?( )块11、图中这堆木方块共有多少块?12、图中一共有多少个○?13、如图所示,这是由12个小方块组成的,如果在它的表面涂上蓝色,再分成12个小方块。

问:(1)5面涂成蓝色的有几个块小方块?( )块 (2)4面涂成蓝色的有几个块小方块?( )块 (3)3面涂成蓝色的有几个块小方块?( )块 (4)2面涂成蓝色的有几个块小方块?( )块第1题 第5题第7题第11题 第13题综合练习一、找规律填数。

(1)1、2、4、5、7、8、10、()、()(2)1、1、2、3、5、8、()、()(3)1、2、4、7、11、()、()(4)18、9、10、5、6、()、()(5)1、2、3、6、7、()、()(6)19、9、17、8、15、7、()、()(7)2、5、6、9、10、13、14、()、()二、填空。

小学数学西师大版二年级下册《数数》课件

小学数学西师大版二年级下册《数数》课件
西师大版 二年级数学下
数数
你还记得我们学过哪些 计数单位吗?
百 十个
一个一个地数,十个一是( 十)。 十个十个地数,十个十是(一百 )
聪明的你能一百一 百往下数吗?
一百,两百,三百,四百,五百, 六百,七百,八百,九百, 一千。
当数到第十个一百时,出
现了一个新的计数单位, 那就是千。
在这里, 我们可以发现:
10个一百是(一千 )。
我来考考你
(10)个一百是一千。
一千里面有(10)个一百。
百与千的关系是:
十个一百是一千。
你们真棒!
我们来试试一千一千地数。
一千,二千,三千,四千, 五千,
六千, 十个一千是一万。
满(10 )向前面进一。
数位顺序表
…… 万 千 百 十位 个 位位 位位


从一百起,一个一个地数,数 到一百二十五。
从一百九十六起,一个一个地数, 数到二百零四。
从一百八十起,十个十个地数,数 到二百六十。
从三千七百起,一百一百地 数,数到四千三百。
同桌合作: 按照要求一个人拨计数器,一个人数。
从六千九百九十五起,一个一个地数,数到七千零二。 从九千四百起,一百一百地数,数到一万。
这节课你有什么收获?
谢谢大家

六年级下数学思维训练教程(尖子生)

六年级下数学思维训练教程(尖子生)

六年级下期第一讲 图形题例1 一个长方形(左下图)被分为9个面积不相等的小长方形。

其中A 、B 、C 、D 、E 的面积分别是A =160,B =172,C =215,D =240,E =300(单位:㎝2)。

原来大长方形的面积是多少平方厘米?(北京市第十一届迎春杯数学竞赛题)解:给大长方形宽上的四个点标上字母(右上图),NP MN =C B =215172=54, PQ MN =D A =240160=64,所以MN ∶NP ∶PQ =4∶5∶6。

设MN 、NP 、PQ 分别为4a 、5b 、6c ,那么原长方形的长=a A 4+a C 5+a E 6=a 1(4A +5C +6E )=a 133。

所以原长方形的面积是a 133×(4+5+6)a =1995(㎝2)。

例2 如图,阴影部分小正六角星形的面积是16㎝2。

问:大正六角形的面积是多少平方厘米?(第五届“华杯赛”决赛题)解:小正六角星形可以分成12个相等的小正三角形,每个小正三角形的面积是16÷12=131(㎝2)。

围绕小正六角星形的正六边形比小六角星形大了6个小等边三角形,每个小等边三角形的面积等于一个小正三角形的面积,所以正六边形的面积是16+131×6=24(㎝2),而大正六角星形面积等于正六边形面积的2倍,是24×2=48(㎝2)。

例3 如左下图,将三角形ABC 的BA 边延长1倍到D ,CB 边延长2倍到E ,AC 边延长3倍到F 。

如果三角形ABC 的面积等于1,那么三角形DEF 的面积是多少?(北京市第一届“迎春杯”数学竞赛题)D DA AC CB BE F E F解:连结CD 、AE 、BF 如右上图,那么△ACD =△ABC =1,△ADE =△ABE =2,A B CD E M N P Q A B C D E△CDF =△CBF =3,△BEF =6,所以,△DEF =1×2+2×2+3×2+6=18。

数数与计数教案

数数与计数教案

个性化辅导教案授课时间:2014年7月日年级:小二科目:数学课时:2课时课题: 数数与计数数数与计数(一)数学需要观察.大数学家欧拉就特别强调观察对于数学发现的重要作用,认为“观察是一件极为重要的事”.本讲数数与计数的学习有助于培养同学们的观察能力.在这里请大家记住,观察不只是用眼睛看,还要用脑子想,要充分发挥想像力.例1数一数,图2-1和图2-2中各有多少黑方块和白方块?解:仔细观察图2-1,可发现黑方块和白方块同样多.因为每一行中有4个黑方块和4个白方块,共有8行,所以:黑方块是:4×8=32(个)白方块是:4×8=32(个)再仔细观察图2-2,从上往下看:第一行白方块5个,黑方块4个;第二行白方块4个,黑方块5个;第三、五、七行同第一行,第四、六、八行同第二行;但最后的第九行是白方块5个,黑方块4个.可见白方块总数比黑方块总数多1个.白方块总数:5+4+5+4+5+4+5+4+5=41(个)黑方块总数:4+5+4+5+4+5+4+5+4=40(个)再一种方法是:每一行的白方块和黑方块共9个.共有9行,所以,白、黑方块的总数是: 9×9=81(个).1由于白方块比黑方块多1个,所以白方块是41个,黑方块是40个.例2图2-3所示砖墙是由正六边形的特型砖砌成,中间有个“雪花”状的墙洞,问需要几块正六边形的砖(图2-4)才能把它补好?解:仔细观察,并发挥想象力可得出答案,用七块正六边形的砖可把这个墙洞补好.如果动手画一画,就会看得更清楚了.例3将8个小立方块组成如图2-5所示的“丁”字型,再将表面都涂成红色,然后就把小立方块分开,问:(1)3面被涂成红色的小立方块有多少个?(2)4面被涂成红色的小立方块有多少个?(3)5面被涂成红色的小立方块有多少个?解:如图2-6所示,看着图,想像涂色情况.当把整个表面都涂成红色后,只有那些“粘在一起”的面(又叫互相接触的面),没有被涂色.每个小立方体都有6个面,减去没涂色的面数,就得涂色的面数.每个小立方体涂色面数都写在了它的上面,参看图2-6所示.(1)3面涂色的小立方体共有1个;(2)4面涂色的小立方体共有4个;(3)5面涂色的小立方体共有3个.例4如图2-7所示,一个大长方体的表面上都涂上红色,然后切成18个小立方体(切线如图中虚线所示).在这些切成的小立方体中,问:(1)1面涂成红色的有几个?2(2)2面涂成红色的有几个?(3)3面涂成红色的有几个?解:仔细观察图形,并发挥想像力,可知:(1)上下两层中间的2块只有一面涂色;(2)每层四边中间的1块有两面涂色,上下两层共8块;(3)每层四角的4块有三面涂色,上下两层共有8块.最后检验一下小立体总块数:2+8+8=18(个).能力训练1.如图2-8所示,数一数,需要多少块砖才能把坏了的墙补好?2.图2-9所示的墙洞,用1号和2号两种特型砖能补好吗?若能补好,共需几块?3.图2-10所示为一块地板,它是由1号、2号和3号三种不同图案的瓷砖拼成.问这三种瓷砖各用了多少块?34.如图2-11所示,一个木制的正方体,棱长为3寸,它的六个面都被涂成了红色.如果沿着图中.画出的线切成棱长为1寸的小正方体求:(1)3面涂成红色的有多少块?(2)2面涂成红色的有多少块?(3)1面涂成红色的有多少块?(4)各面都没有涂色的有多少块?4数数与计数(二)第一层 1个第二层 2个第三层 3个第四层 4个第五层 5个第六层 6个第七层 7个5第九层 9个第十层 10个第十一层 9个第十二层 8个第十三层 7个第十四层 6个第十五层 5个第十六层 4个第十七层 3个第十八层 2个第十九层 1个总数1+2+3+4+5+6+7+8+9+10+9+8+7+6+5+4+3+2+1=(1+2+3+4+5+6+7+8+9+10)+(9+8+7+6+5+4+3+2+1)=55+45=100(利用已学过的知识计算).6第二层 3个第三层 5个第四层 7个第五层 9个第六层 11个第七层 13个第八层 15个第九层 17个第十层 19个总数:1+3+5+7+9+11+13+15+17+19=100(利用已学过的知识计算).71+2+3+4+5+6+7+8+9+10+9+8+7+6+5+4+3+2+1=10×10即等号左边这样的一串数之和等于中间数的自乘积.由此我们猜想:1=1×11+2+1=2×21+2+3+2+1=3×31+2+3+4+3+2+1=4×41+2+3+4+5+4+3+2+1=5×51+2+3+4+5+6+5+4+3+2+1=6×61+2+3+4+5+6+7+6+5+4+3+2+1=7×71+2+3+4+5+6+7+8+7+6+5+4+3+2+1=8×81+2+3+4+5+6+7+8+9+8+7+6+5+4+3+2+1=9×981+2+3+4+5+6+7+8+9+10+9+8+7+6+5+4+3+2+1=10×10这样的等式还可以一直写下去,能写出很多很多.同学们可以自己检验一下,看是否正确,如果正确我们就发现了一条规律.③由方法2和方法3也可以得出下式:1+3+5+7+9+11+13+15+17+19=10×10.即从1开始的连续奇数的和等于奇数个数的自乘积.由此我们猜想:1+3=2×21+3+5=3×31+3+5+7=4×41+3+5+7+9=5×51+3+5+7+9+11=6×61+3+5+7+9+11+13=7×71+3+5+7+9+11+13+15=8×81+3+5+7+9+11+13+15+17=9×91+3+5+7+9+11+13+15+17+19=10×10还可往下一直写下去,同学们自己检验一下,看是否正确,如果正确,我们就又发现了一条规律.9解:(1)我们已知,两点间的直线部分是一条线段.以A点为共同端点的线段有:AB AC AD AE AF 5条.以B点为共同左端点的线段有:BC BD BE BF 4条.以C点为共同左端点的线段有:CD CE CF 3条.以D点为共同左端点的线段有:DE DF 2条.以E点为共同左端点的线段有:EF1条.总数5+4+3+2+1=15条.10习题数数与计数(三)数数与计数习题1.学生排成一队,在小进的前面有6人,后面有8人,问这队共有多少人?2.12辆汽车组成一列车队向前行进。

四下第四讲——小数的意义和性质

四下第四讲——小数的意义和性质

第四讲小数的性质和意义例题精讲例1、小数的意义、组成和数位顺序表:例2、小数的性质:例3、小数的大小比较:例4、小数点的移动:例5、名数的改写:(单位换算)例6、小数的近似数:例7、把较大的数改写成以“亿”或“万”做单位的数:例8、解答题:【课堂练习】【课后习题一】1、填空题:2、判断题:3、把下面各数的小数点都移到最高位的左边,小数的大小有什么变化?【课后习题二】一、填空:1、5.25是由()个1,()个0。

1和()个0.01组成的。

2、0.01平方米扩大到它的100倍是(),1平方米缩小到它的1/1000是( )。

3、4.06千米=()米 6.24公顷=()平方米6.005吨=( )千克 70平方分米=( )平方米4、0.6里面有()个0.01;0。

42里面有( )个0。

01。

5、()扩大到它的1000倍是96;( )缩小到它的1/100是0。

089.6、求5.3645的近似数,精确到千分位是(),精确到百分位是(),精确到十分位是()。

7、960米=()千米 360平方米=()公顷1。

4平方米=()平方分米 8.56吨=( )吨( )千克8、2。

65是由 ( )个1,()个0。

1和()个0.01组成的。

9、把0。

03扩大到它的100倍是( );缩小到它的1/10是()。

10、把235780000改写成用“亿”做单位的数是(),精确到0.01是( )。

11、一个末尾有若干个零的多位数,把它末尾的零去掉三个。

原数是新数的( )倍。

12、十分之一是小数的();十分位上的3个单位相当于()个千分位上的单位。

13、把0。

96的小数点向左移动两位后,缩小为原数的( )。

14、0.2的小数点向右移动三位后,在向左移动两位是()。

15、一个数的十位上是1,百分位上是5,个位和十分位上都是0,这个数是(),读作(),精确到十分位是()。

16、5个0。

1是(),8个()是0.08,()里有3个百分之一,0。

16里有( )个( )。

高斯小学奥数六年级上册含答案第04讲对应计数

高斯小学奥数六年级上册含答案第04讲对应计数

第四讲对应计数有9个球排成一行:OOOO OO O传说电尤利曲斯在界眩了独韻的波吕輩1®塘后,离幵了独眼巨人的丄地一血那个可怜的戶人毎入早展都坐在詞穴人口的附近,帚让一只博羊从洞里出来,就从一堆卵石中捡趾哄来一等到了黄昏爲羊回兀的时慎.他每放进一只羊*就放下一块卵石” 就这样・如果早晨捲起的弟石都放完了,他就知道他所冇的羊状回来了.我们往其中插入两块(相同的)木板,就能够把这9个球分成三堆,例如:O ODO O O ODO O O O OOQO ODO O O O OOOOOOODODO可以看到,插入两块木板把9个球分成三堆的方法很多,那么到底有多少种插入木板的方法呢?每相邻两个小球之间有一个空隙,一共有8个空隙.插入的两块木板要把小球分成三堆,说明两块木板要放在两个不同的空隙之中. 8个空隙选两个,共有2C s 28种方法.如果要把三堆小球分别装入颜色为红、 黄、蓝的三个袋子里,又有多少种装法呢?其实,所谓装入红、黄、蓝三个袋子,就是把球分成三堆,因此答案也是28 •这样我们就把“小球装袋”问题转化成“小球插板”问题来求解了,这种方法我们称之为“插 “插板法”是一种特殊的对应技巧,能够帮我们解决很多计数问题.例1. 把20个苹果分给3个小朋友,每个小朋友至少分1个,共有多少种分苹果的方法?第二问允许有的“小朋友没有分到苹果” ,还能不能用“插板法”呢? 练习1、龟丞相把7个顶级乌龟壳分给4只小乌龟.如果每只小乌龟至少分一 个,共有多少种分法?如果可以有的小乌龟没有分到乌龟壳,共有多少种方 法?例2.某班40名学生参加了一项关于“超市是否应该提供免费塑料袋”的调查,每人均在“应该提供”、“不应该提供”和“无所谓”三个选项中做出了选择•请问:三个选项的统计数字共有多少种不同的可能?「分析」题目只关心三个选项的统计数字,需要具体考虑每个学生所作的选择吗?练习2、8名同学做同一道单选题,它有 A 、B 、C 、D 四个选项,每个同学都选了其中如何用“插板法”求解呢?放入红色放入黄色 放入蓝色如果可以有小朋友没有分到苹果,共有多少种分法?一个选项.老师为了调查同学们的做题情况,把选择各个选项的人数都做了统计,则有多少种可能的统计结果?最早的计数方法一一对应法] 我们这一讲学习对应的计数方法,这种计数方法有很强的技巧性,很考验思维能力. 也/::许你觉得这种对应法不是那么容易掌握,但它其实是非常有用,而且历史悠久的.人类最早使用的计数方法不是枚举,不是排列组合,也不是递推,而是对应!y!■对应法最早的应用是结绳计数. 最早期的时候,人类还没有发明数字. 因而用枚举等其他方法来记录数量的多少是不可能办到的. 这时,人们的计数方法是在绳子上打结或者在树;;上刻痕•用绳子上的结的数目或者树上划痕的道数来记录补获了多少猎物,采集了多少花:果.这个时期持续了很长时间,因为人类的历史已经有几百万年,而数字的发明距今还不到::1万年,在人类历史上的大部分时间,使用的计数方法是对应法一一结绳计数.i; 结绳记数这种方法,不但在远古时候使用,而且一直在某些民族中沿用下来•宋朝:人在一本书中说:“鞑靼无文字,每调发军马,即结草为约,使人传达,急于星火.”这是用结草来调发军马,传达要调的人数呢!其他如藏族、彝族等,虽都有文字,但在一般不识字的人中间都还长期使用这种方法•中央民族大学就收藏着一副高山族的结:绳,由两条绳组成:每条上有两个结,再把两条绳结在一起.「:有趣的是,结绳计数不止在我们中国古代用过,在国外也有很多结绳计数的记载. 传说古波斯王有一次打仗,命令手下兵马守一座桥,要守60天.为了让将士们不少守一天:也不多守一天,波斯王用一根长长的皮条,把上面系了60个扣.他对守桥的官兵们说:\“我走后你们一天解一个扣,什么时候解完了,你们就可以回家了.”: 对应是最原始的计数方法,充分蕴含着人类的智慧.例3.在8 8的方格棋盘中,一共可以数出多少个如下图所示的由4个单位小正方形组成的“L ” 型? ”型放入8 8的方格棋盘的方格盘中,按照放的方向分,可以有情形,那么是不是需要对每一个方向的“ L ”型分别进行计数呢?例4. ( 1) 一只青蛙沿着一条直线跳跃 4次后回到起点•如果它每一次跳跃的长度都是 1分米,那么这只青蛙共有多少种可能的跳法?(2)如果这只青蛙在一个方格边长为 1分米的方格纸上沿格线跳跃 4次后回到起点,每次跳跃的长度仍是 1分米,那么这只青蛙共有多少种可能的跳法?「分析」(1)青蛙在直线上跳跃 4次后要回到起点,如果一直往一个方向跳,显然是不 行的•那么青蛙应该怎么跳呢?( 2)青蛙在方格表上跳跃 4 次后要回到起点,现在青蛙有哪些跳跃的方向,每个方向 上各应该跳跃多少次呢?练习3、在6 6的方格棋盘中, 一共可以数出多少个如下图所示的由 3个单位小正方形练习4、一只青蛙沿着一条直线跳跃6 次后回到起点.如果它每一次跳跃的长度都是1分米,那么这只青蛙共有多少种可能的跳法?对应法是一种很巧的计数方法,但如何建立对应关系,是其中的难点.之前几道题,对应关系的建立相对比较直接,而有些问题,则需要通过大量的分析,才能找出隐藏的对应关系.例5.常昊与古力两人进行围棋“棋圣”冠军争霸赛,谁先胜4 局即获得比赛的胜利. 请问: 比赛过程一共有多少种不同的方式?「分析」由对称性,只需求出常昊获胜的比赛过程有多少种.比赛最多进行7 场,其中常昊一定胜4场.如果我们按比赛先后顺序给每场比赛编号,那么常昊胜的4 场比赛编号,就决定了整个比赛流程.而常昊获胜的比赛可以是哪 4 场呢?例6.海淀大街上一共有18 盏路灯,区政府为了节约用电,打算熄灭其中的7 盏.但为了行路安全,任意相邻的两盏灯不能同时被熄灭,请问:一共有多少种熄灯方案?分析」你能用插板法求解这道题吗?课堂内外 -------------------------------------------------最早的密码战公元前405年,雅典和斯巴达之间的伯罗奔尼撒战争已进入尾声. 斯巴达军队逐渐占据了优势地位,准备对雅典发动最后一击.这时,原来站在斯巴达一边的波斯帝国突然改变态度,停止了对斯巴达的援助,意图是使雅典和斯巴达在持续的战争中两败俱伤,以便从中渔禾U.在这种情况下,斯巴达急需摸清波斯帝国的具体行动计划,以便采取新的战略方针•正在这时,斯巴达军队捕获了一名从波斯帝国回雅典送信的雅典信使. 斯巴达士兵仔细搜查这名信使,可搜查了好大一阵,除了从他身上搜出一条布满杂乱无章的希腊字母的普通腰带外,别无他获.情报究竟藏在什么地方呢?斯巴达军队统帅莱桑德把注意力集中到了那条腰带上,情报一定就在那些杂乱的字母之中. 他反复琢磨研究这些天书似的文字,把腰带上的字母用各种方法重新排列组合,怎么也解不出来.最后,莱桑德失去了信心,他一边摆弄着那条腰带,一边思考着弄到情报的其他途径. 当他无意中把腰带呈螺旋形缠绕在手中的剑鞘上时,奇迹出现了.原来腰带上那些杂乱无章的字母,竟组成了一段文字.这便是雅典间谍送回的一份情报,它告诉雅典,波斯军队准备在斯巴达军队发起最后攻击时,突然对斯巴达军队进行袭击.斯巴达军队根据这份情报马上改变了作战计划,先以迅雷不及掩耳之势攻击毫无防备的波斯军队,并一举将它击溃,解除了后顾之忧.随后,斯巴达军队回师征伐雅典,终于取得了战争的最后胜利.公元前405年,雅典和斯巴达之间的伯罗奔尼撒战争已进入尾声. 斯巴达军队逐渐占据了优势地位,准备对雅典发动最后一击.这时,原来站在斯巴达一边的波斯帝国突然改变态度,停止了对斯巴达的援助,意图是使雅典和斯巴达在持续的战争中两败俱伤,以便从中渔禾U.在这种情况下,斯巴达急需摸清波斯帝国的具体行动计划,以便采取新的战略方针.正在这时,斯巴达军队捕获了一名从波斯帝国回雅典送信的雅典信使. 斯巴达士兵仔细搜查这名信使,可搜查了好大一阵,除了从他身上搜出一条布满杂乱无章的希腊字母的普通腰带外,别无他获.情报究竟藏在什么地方呢?斯巴达军队统帅莱桑德把注意力集中到了那条腰带5. 作业1. 一部电视连续剧共 8集,电视台要在周一到周四这 4天内按顺序播完,其中可以有若干 天不播,共有多少种安排播出的方法?2. 现在有12道竞赛题,卡莉娅要在今天、明天、后天这三天内按顺序做完,但每一天可以做很多道题也可以一道不做•共有多少种安排做题的方案?3. 阿呆在玩PSP 格斗游戏,游戏采用的是五局三胜制(阿呆VS 电脑),谁先胜三场谁就 获得胜利.如果最后阿呆获胜,那么一共有多少种可能的比赛过程?(只考虑每场比赛的胜负) 4. 在6 6的方格棋盘中,一共可以数出多少个如图所示的由5个单位小正方形组成的“凹”字形?(注:这8个鸡蛋看作完全相同)(1)有8个鸡蛋,每天至少吃 1个,一共吃了 5天,有多少种不同的吃法?(2)有8个鸡蛋,每天至少吃2个,一共吃了 3天,有多少种不同的吃法?例题:例题1.答案:171 ; 231详解:第一问用课文里所说的“插板法”即可解决.20个苹果,共有19个空隙,分给3个小朋友需要3 1 2块隔板,将2块隔板插入19个空隙中的某两个中,就是从2 19个空隙中挑出两个用来插板子,方法有C 19 171 ;第二问同样用插板法,仍然是 20个苹果和2块隔板•但此时隔板不一定要放在 19个空隙中,也可以放在所有苹果 的最左端或者最右端,而且它们也不一定插入两个不同的空隙,插入同一个空隙也是可以的.因此,我们只要把20个苹果和2块隔板随意排成一行即可. 这20 2 22个 对象排成一行会占 22个位置,从这22个位置中挑出2个来放隔板,剩余的 20个位 置自然就是放苹果,因此共有 C ;2 231种不同的方法.例题2.答案:861详解:本题相当于把 40个苹果放入3个盘子里,每个盘子都允许为空•因此共有 40 个苹果和2块隔板.方法数等于 C 42 861 .可以分为两类情形:第一类,1、2、3、4各一个,共有A 4种方法;第二类,只有21、2或者只有3、4,共有2 C 4种方法.两者相加共 36种. 例题5.答案:70 详解:由对称性,只需求出常昊获胜的比赛过程有多少种,再乘以 2即可.比赛最多进行7场,其中常昊一定胜 4场,而且比赛一定是在常昊获得第 4场胜利时结束的, 因此常昊获胜的那 4场比赛的编号就决定了整个比赛流程. 第四讲对应计数例题4.答案: (1)(1) 6; (2) 36详解:青蛙要能够回到起点, 必须向左跳两次, 右,右),(左,右,右,左)等.不难看出,只要从 外两步自然向右,所以只要确定哪两步是向左跳,就确定了哪两步是向右跳.因 此跳跃的方法数为C : 6种;(2) 详解:现在青蛙需要朝四个方向跳,我们记四个方向为 示).如果想要跳回原地,必须保证四步之内向右跳两次. 4步中挑出1、2、3、4 (如图所1和2 一样多,3和4 一样多.于是 例题3.答案:336个 详解:如右图所示,每个2 此只要求出图中有几个 册第 2 6 29讲)的知识不难得知,7 84个,所以共有“例如(左,左,2步来向左,另例题6.答案:C:792详解:本题从题面上看,是要从18盏灯中选出7盏来熄灭•但实际解决的时候,需要换一个角度:如何把灭掉的7盏灯,插入另外11盏亮着的灯之间.如下图所示,在11盏亮灯之间插入熄灭的灯时,每个空隙最多插1盏,否则灭灯就相邻了,因此必须挑7个空隙,每个空隙插一盏,而可供插入的空隙有12个(两端也可),因此答案为C:792 •d’A ifhJLxr w. A<> <> <> <> <> <> <> <> <> <>A A A R* * r* 八练习:1. 答案:C B 20 ;C;o 120简答:用插板法即可解决,具体过程略.32. 答案:C11 165简答:相当于把8个球放入4个篮子,每个篮子都可以为空.3. 答案:100简答:每个田字格都可以找到4个“L”型•共有5 5 25个田字格,所以共4 25 100 个“L”型.4. 答案:20简答:6次跳远中,一定3次向左,3次向右,因此共有C;20种不同的跳法.作业1.答案:165简答: 4 1 3C8 4 1 C111652.答案:91简答:C1^3 1 G4913.答案:10简答:C s 10 •4.答案:80简答:每个2 3的方格内都有2个“凹”字形,一共有40个2 3的方格,因此共有80 个“凹”字形.5. 答案:(1)35;(2)6简答:(1)用插板法,8个鸡蛋之间有7个“空”,用4个“板”隔成5部分,有C; 35种方法;(2)每天预先吃掉一个鸡蛋,问题相当于是3天吃8 3 5个鸡蛋,每天至少2吃一个,有C42 6 种吃法.。

中班数学《数数》教案

中班数学《数数》教案

中班数学《数数》教案教案标题:小班数学《数数》教学目标:1.能够按照指定的顺序数数,掌握1-30的数的顺序。

2.能够正确地念出并标示1—10的基本数词。

3.能够根据实物和图形进行数数,并能通过手指、计数棒或计数器等进行实际操作。

4.能够从一组物品中选出指定的数量。

教学重点:1.数的顺序和数词的正确念法。

2.实物和图形的对应。

3.使用物品进行实际操作。

教学准备:1.教学图片或卡片,上面标有数字1-30。

2.数字卡片。

3.实物数数道具,如小球、计数棒、手指等。

教学步骤:Step 1: 导入新课 (10分钟)1.通过展示数字图片或卡片,引导学生回忆1-30的数的顺序。

2.利用数字卡片,教授1-10的基本数词及数的顺序。

Step 2: 通过实物进行数数 (15分钟)1.准备一些实物,如小球或计数棒,并将它们摆放在学生面前。

2.教师先数一遍实物,然后请学生模仿教师的数数方式进行数数。

3.引导学生观察实物数量的变化,并理解相应的数词。

Step 3: 用手指进行数数 (15分钟)1.教师引导学生使用手指进行数数,从1开始数到10。

2.随后,教师提出一个数,要求学生用手指显示出该数。

3.继续进行,逐渐增加数的范围,直到30。

Step 4:利用计数器进行数数 (15分钟)1.准备一些计数器,如计数棒或小球,并将它们分发给学生。

2.教师先数一遍计数器,然后请学生模仿教师的数数方式进行数数。

3.引导学生理解计数器的作用,即通过计数器记录数量。

Step 5:数和实物的对应 (15分钟)1.准备一些具有不同数量的物品,如纸小人、玩具等,在教室中分散放置。

2.教师口头提出一个数,要求学生根据该数,在教室中找出相应的数量物品。

3.学生通过实践操作,增强了数和实物之间的对应关系。

Step 6:练习和巩固 (15分钟)1.教师给学生分发一些与数有关的练习题,要求学生完成。

2.教师检查和纠正学生的练习,并解答学生的疑问。

3.引导学生通过练习,巩固和运用所学知识。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第四讲数数与计数(二)
数数与计数时,注意不应漏掉,不应重复。

如果漏掉了,要加上;如果重复了,要减掉。

例1 小朋友排队,小红前面4个人,后面3个人,问这队共有几个人?
解:
这队的总人数要数上小红,所以是4+3+1=8(人)。

例2 排好队,来报数,
正着报数我报七,
倒着报数我报九,
一共多少小朋友?
解:见下图
正着报数“我”报了一次,倒着报数“我”又报了一次,所以把两次报数加起来时,“我”被加了两次。

因此算这队的总人数时,应从两次报数之和减1。

7+9-1=15(人)。

也可以这样想:正着报数报到我为止,倒着报数时,我就不报了,只报到我的后面相邻的那个人他应该报8,所以全队总人数是:
7+(9-1)=15(人)。

例3少先队员排成队去参观科技馆。

从排头数起刘平是第20个;从排尾数起,张英是第23个。

已知刘平的前一个是张英。

问这队少先队员共有多少人?
解:画示意图,用点代表少先队员。

由图可见,从排头数起时,把张英和刘平数了一次。

由排尾数起时,又把刘平和张英数了一次,可见把他两人多数了一次,所以点总人数时,应减去多数的那一次才对。

20+23-2=41(人)。

例4 45个小朋友排成一队去春游。

从排头往后数,小刚是第19个;从排尾往前数,小莉是第12个,问小刚和小莉中间有几个人?
解:画示意图。

用点“·”代表人
由图可见,小刚和小莉中间的人数是:
45-(19+12)=14(人)。

例5一班同学做花,做红花的有38人,做黄花的有39人,没有做花的有3人。

如果全班55人,那么既做红花又做黄花的有多少人?
解:画图如下:
由图可见,做花的人:55-3=52(人)。

图中阴影部分表示两色花都做的人:
38+39-52=25(人)。

习题四
1.学生排成一队,在小进的前面有6人,后面有8人,问这队共有多少人?
2.12辆汽车组成一列车队向前行进。

从前面数起,红色的小轿车是第7辆。

问从后面数它是第几辆?
3.游泳池里男生都戴蓝帽,女生都戴红帽。

池中一个男生小强边看边数,他看见蓝帽4个,红帽5个。

问池中男女生共多少人?
4.说稀奇、道稀奇,鸭子队里有只鸡。

正着数它第六,倒着数它第七。

请你帮助算一算,小鸭一共有几只?
5.一个小组的小学生共有5人,已知他们都做了语文作业或数学作业。

又知做完语文作业的有3人,做完数学作业的有4人。

问语文和数学作业都做完的有几人?
6.在100名学生中统计,有65人会骑自行车,有73人会游泳,有10人既不会骑自行车又不会游泳。

问既会骑自行车又会游泳的人有多少?
7.某班有学生45人,订阅《中国少年报》的有29人,订阅《小朋友》的有28人,其中两种都订阅的有16人,问两种刊物都没有订阅的人有多少?
习题四解答
1.解
由图可知:总人数是
6+8+1=15人。

2.解:方法1:数一数;先画示意图如下,用●代表红色小轿车,用○代表其他车。

从后面往前数一数,红色小轿车是第6辆。

方法2:算一算;这队车共有12辆,从前面往后数,红色小轿车是第7辆,所以红色小轿车前面有7-1=6辆车,因此从后面往前数,红色小轿车是第12-6=6辆。

3.解:画示意图如下:
因为男生小强边看边数时,没有看见自己的蓝帽,他把自己漏数了。

所以算总人数时,要把他加上,即
4+5+1=10(人)。

4.解:画示意图,用○代表小鸭,用●代表小鸡。

由图可见,正数算上了小鸡,倒数也算上了小鸡。

这样两数之和
6+7=13中,把小鸡计算了两次。

所以求小鸭的数目时就要减去两个小鸡。

6+7-2=11(只)。

5.解:画示意图如下:
两种作业都做完的人既算在了做完语文作业的3人中,又算在了做完数学作业的4人中,因此这部分人被多算了一次,(如图中阴影部分所示)所以两种作业都做完的人数是:
3+4-5=2(人)。

6.解:画图如下:
由图可知:会骑车或是会游泳的总人数是
100-10=90(人)。

两种都会的人数是65+73-90=48(人)。

(图中阴影部分所示)
7.解:画示意图如下:
因为至少订1份刊物的人:
28+29-16=41(人)。

两种刊物都没有订的人:
45-41=4(人)。

相关文档
最新文档