多元正态分布的参数估计

合集下载

多元正态分布参数的估计与假设检验-判别分析

多元正态分布参数的估计与假设检验-判别分析
分布h(θ | x ) ∈ F * , 则称F *是关于分布密度p( x | θ ) 的共轭先验分布族,简称共轭分布族.
注 共轭分布族总是针对分布中的某个参数而言的 共轭分布族总是针对分布中的某个参数而言的.
三、贝叶斯风险
1、贝叶斯风险的定义 由第一小节内容可知,给定损失函数以后, 由第一小节内容可知,给定损失函数以后,风 险函数定义为
R(d ) = inf R(d ),
* d ∈D
∀d ∈ D
则称d * ( X )为参数θ的贝叶斯估计量
注 1、贝叶斯估计是使贝叶斯风险达到最小的决策 、 函数. 函数 2、不同的先验分布,对应不同的贝叶斯估计 、不同的先验分布, 2、贝叶斯点估计的计算 平方损失下的贝叶斯估计 定理4.2 定理 设θ的先验分布为π(θ)和损失函数为 的先验分布为π θ 和损失函数为
Θ
=∫
Θ

Χ
L(θ , d ( x ))q( x | θ )π(θ )dxdθ
=∫
Θ
∫θ | x )g(x )dxdθ
Θ
= ∫ g(x ){ ∫ L(θ , d ( x ))h(θ | x )dθ }dx
Χ
四 、贝叶斯估计
1、贝叶斯点估计 定义4.6 若总体 的分布函数F(x,θ)中参数θ为随机 定义 若总体X的分布函数 中参数θ 的分布函数 θ 中参数 变量, θ 为 的先验分布,若决策函数类D中存在 变量,π(θ)为θ的先验分布,若决策函数类 中存在 一个决策函数使得对决策函数类中的任一决策函数 均有
第8.2节 节
判别分析
一、先验分布和后验分布 二、共轭先验分布 三、贝叶斯风险 四、贝叶斯估计
一、先验分布与后验分布
上一章提出用风险函数衡量决策函数的好坏, 上一章提出用风险函数衡量决策函数的好坏,但 是由于风险函数为二元函数,很难进行全面比较。 是由于风险函数为二元函数,很难进行全面比较。 贝叶斯通过引入先验分布, 的指标. 贝叶斯通过引入先验分布,给出了整体比较 的指标 1、先验信息 在抽取样本之前, 在抽取样本之前,人们对所要估计的未知参数 先验信息. 所了解的信息,通常称为先验信息 所了解的信息,通常称为先验信息 例1(p121例4.6) 某学生通过物理试验来确定当地 1(p121例 的重力加速度,测得的数据为(m/s²): 的重力加速度,测得的数据为 9.80, 9.79, 9.78, 6.81, 6.80 试求当地的重力加速度. 试求当地的重力加速度

第2章多元正态分布的参数估计

第2章多元正态分布的参数估计

第2章多元正态分布的参数估计多元正态分布是统计学中常用的一种概率分布模型,在实际应用中经常被用来描述多个变量之间的关系。

在参数估计的过程中,我们通常需要估计多元正态分布的均值向量和协方差矩阵。

本章将介绍多元正态分布的参数估计方法。

多元正态分布的均值向量和协方差矩阵分别用μ和Σ表示。

在参数估计的过程中,我们可以使用样本的均值向量和协方差矩阵来估计总体的均值向量和协方差矩阵。

首先,我们需要收集一个包含n个样本的数据集,其中每个样本有d 个变量。

我们将这个数据集表示为X=[x1, x2, ..., xn],其中xi是一个d维向量。

均值向量的估计可以通过计算样本向量的平均值来得到。

均值向量的估计公式为:μ̂ = (1/n) * Σxi其中,μ̂是均值向量的估计值。

协方差矩阵的估计可以通过计算样本向量之间的协方差来得到。

协方差矩阵的估计公式为:Σ̂ = (1/n) * Σ(xi - μ̂)(xi - μ̂)T其中,Σ̂是协方差矩阵的估计值。

这里需要注意的是,协方差矩阵是一个对称正定矩阵,因此需要对估计值进行修正,以保证估计出的协方差矩阵是对称正定的。

修正的常用方法有Ledoit-Wolf修正和修正。

在进行参数估计之后,我们还可以计算估计值的标准误差(standard error),以衡量估计值的可靠性。

在多元正态分布的参数估计中,均值向量估计值的标准误差为:SE(μ̂) = (√((2/n)(d(d+1)/2))) * (√(Σi î))协方差矩阵估计值的标准误差为:SE(Σ̂) = (√((1/n)(d(d+1)/2))) * (√(Σi î(Σj ĵ -Σi ĵ^2)))其中,Σi î表示协方差矩阵估计值的第i个对角元素,Σi ĵ表示协方差矩阵估计值的第i行第j列元素。

参数估计的过程中,还需要考虑到样本量的大小。

当样本量较大时,参数估计的精度会提高;而当样本量较小时,参数估计的精度会降低。

多元正态分布下贝叶斯估计法

多元正态分布下贝叶斯估计法

多元正态分布下贝叶斯估计法贝叶斯估计法是一种基于贝叶斯定理的参数估计方法,可以用于在已有数据的情况下估计未知参数的分布。

在统计学中,多元正态分布是一种常见的概率分布,描述了多个变量之间的关系。

本文将介绍多元正态分布下的贝叶斯估计法,并详细讨论其原理、应用和计算方法。

一、多元正态分布及其性质多元正态分布是一种连续型概率分布,用于描述多个随机变量之间的关系。

假设有一个d维随机向量x=(x₁, x₂, ..., x d)服从多元正态分布x(x, Σ),其中x是一个d维均值向量,Σ是一个d×d的协方差矩阵。

多元正态分布的概率密度函数可以表示为:x(x; x, Σ)=(2x)⁻ᵈ/²|Σ|⁻¹/²exp⁡[−½(x−x)ᵀΣ⁻¹(x−x)] 其中x表示向量的转置,|Σ|表示协方差矩阵Σ的行列式。

多元正态分布具有许多重要的性质,例如,线性组合仍然服从多元正态分布,条件分布也是多元正态分布等。

这些性质使得多元正态分布在实际问题中的应用非常广泛。

二、贝叶斯估计法的原理贝叶斯估计法是一种基于贝叶斯定理的参数估计方法,通过引入先验分布和后验分布来估计未知参数的分布。

其基本思想是将参数视为随机变量,并基于已有数据对参数进行推断。

在多元正态分布中,我们通常需要估计的参数包括均值向量x和协方差矩阵Σ。

贝叶斯估计法假设这些参数服从先验分布,然后通过观测数据来更新先验分布,得到后验分布,进而对参数进行估计。

具体而言,假设我们有n个样本x₁, x₂, ..., x n,那么贝叶斯估计法的步骤如下:1.选择参数的先验分布。

通常先验分布会根据领域知识或经验进行选择,常见的先验分布包括共轭先验、非信息先验等。

2.根据先验分布和样本数据,计算参数的后验分布。

根据贝叶斯定理,后验分布可以表示为:x(x, Σ | x₁, x₂, ..., xn)∝x(x₁, x₂, ..., x n|x, Σ)x(x, Σ)其中x(x₁, x₂, ..., x n|x, Σ)表示给定参数x和Σ的情况下样本数据的似然函数。

第三讲多元正态分布

第三讲多元正态分布

二元正态分布的密度曲面图
2 2 下图是当 1 2 , 0.75 时二元正态分布的钟形密
度曲面图。
多元正态分布性质
(1)、若 X ( X1, X 2 , X p )T ~ N p (, ), 是对角阵, 则 X1, X 2 , X p 相互独立。 (2)、若 X ~ N p (, ) , A 为 s p 阶常数阵,则
•有些现象服从多元正态分布
•许多多元统计分布的抽样分布是近似正态分布
23
多元正态分布
它是一元正态分布的推广
X ~ N p ,
设随机向量 X ( x1 , x2 ,, x p )' 服从P维正态分布,则有,
f ( X ) 2
p 2

1 2
1 1 exp x x 2

12
随机向量的数字特性
随机向量的均值
E ( X 1 ) 1 E( X 2 ) 2 E( X ) E( X ) p p
性质
E ( AX ) AE( X ) E ( AXB) AE( X ) B E ( AX BY ) AE( X ) BE(Y )
15
性质
1)若(x1,x2,…,xp)’ 和(y1,y2,…,yq)’不相关。则
cov(x1 , y1 ) cov(x1 , y2 ) cov(x1 , yq ) cov(x2 , y1 ) cov(x2 , y2 ) cov(x2 , yq ) 0 cov(x , y ) cov(x , y ) cov(x , y ) p 1 p 2 p q
(1) q

第二章多元正态分布的参数估计

第二章多元正态分布的参数估计

就是剔除了 X2 Xk1, , X p 得(线性)影响之后,Xi和
Xj之间得协方差。
给定X2时Xi 和Xj得偏相关系数(partial correlation
coefficient)定义为: ij k1, , p
ij k1, , p
,
ii k1, , p jj k1, , p
其中 Σ11 2 ij k1, , p 。
μ12
μ1
Σ12
Σ
1 22
x2 μ2
Σ112
Σ11
Σ12
Σ
1 22
Σ
21
μ1·2和Σ11·2分别就是条件数学期望和条件协方差矩
阵,Σ11·2通常称为偏协方差矩阵。
这一性质表明,对于多元正态变量,其子向量得条件分布仍
就是(多元)正态得。
例5 设X~N3(μ, Σ),其中
1
16 4 2
μ
0 2
μ(1) μ(2)
11 Σ 21
31
12 22 32
13 23 33
Σ11
Σ
21
Σ12
22

X (1)
X1
X
2
~
N2 ( μ(1) ,
Σ11)
其中
μ (1)
1
2
Σ11
11 21
12
22
在此我们应该注意到,如果 X ( X1, X 2 , , X p ) 服从 p
aX
(0,1,
0)
X
2
X2
~
N (aμ, aΣa)
X3
1

(0,1,
0)
2
2
3
11 12 aΣa (0,1, 0) 21 22

多元正态分布参数估计与检验

多元正态分布参数估计与检验

则称随机向量 为X维正p态随机向量,
其中
称为均值向量, V为协方差矩阵(协差阵),且
V0. 对于一般情形 V0, 仍可定义多维正
态随机向量, 记为 X~ Np(,V 。) 当 V0时,
X有前面的密度表示,而当
布是退化的正态分布。
时|V,|0 X的分
多元正态分布的性质:
(1) p维正态分布由其均值向量和协方差阵唯


H0
成立时, 1
时,
2
D 0 6 n 1 n 20 7(X Y )T V 0 8 1 (X Y )0 9 2 (p )1 0
n n 而当 不 1有偏2 大的趋
因此,对
给定的显著

H 成立时, 0
势。
D
性水平 ,
D n n 11 n n 22(X Y )T V 1 (X Y )1 2 (p )
体 Np(,V)的简单样本, 令
X
1n nk1
Xk
——样本均值向量
n
S (XkX)X (kX)T —样本离差阵
k1
定理18.1
态总体
的简单样本,
设 X 1 ,X 2 , ,X n ( n 是p ) 来自多元正
态总体 Np(,的V简)单样本,
且 V,0 则 X是
的极大似然估计,
1 S 是 V的极大似然估计。
体 Np(,V的) 简单样本,
其中 V已知。 考虑假设
检验问题
H 0 : 0 , H 1 : 0
令 D n (X 0)T V 1(X 0),则可以证明当
H 0 成立时,即 时,0 D~ 2(p)
H0
D
01
0 2
03
04

多元正态分布

多元正态分布


(
xi1

x1)(xip

x
p
)

n (xi2 x1)(xi1 x2)


i1
(
xip

xp )(xi1

x1)
(xi2 x2)2
(xip xp )(x2 x2)

(xi2 x1)(xip xp )


(xip xp )2
组内组间水平内误差组内方差水平间误差组间误差总的误差其他随机因素的影响随机性影响某因素不同水平的影响系统性影响水平内误差组内方差水平间误差组间误差总的误差其他随机因素的影响随机性影响某因素不同水平的影响系统性影响水平内误差组内方差水平间误差组间误差总的误差其他随机因素的影响随机性影响某因素不同水平的影响系统性影响水平内误差组内方差水平间误差组间误差总的误差其他随机因素的影响随机性影响某因素不同水平的影响系统性影响水平内误差组内方差水平间误差组间误差总的误差其他随机因素的影响随机性影响某因素不同水平的影响系统性影响如果原假设成立
第一章多元正态分布及其参数估计
多元正态分布的重要性: (1)多元统计分析中很多重要的理论和方法都是直接或间接
地建立在正态分布 基础上的,许多统计量的极限分布往往和 正态分布有关。 (2)许多实际问题涉及的随机向量服从多元正态分布或近似 服从正态分布。因此多元正态分布是多元统计分析的基础。
一、多元正态分布的定义 定义1:若p维随机向量 X (X1,X p) 的密度函数为:
(1 0,2 0, 1)
为X1和X2的相关系数。
当 0 时X1与X2不相关,对于正态分布来说不相关和独立
等价。因为:
X1, X 2

第1章多元正态分布的参数估计(精)

第1章多元正态分布的参数估计(精)

第一章 多元正态分布的参数估计一、填空题1.设X 、Y 为两个随机向量,对一切的u 、v ,有)v (p )u (p )uv (p =,则称X 与Y 相互独立。

2.多元分析处理的数据一般都属于 横截面 数据。

3.多元正态向量()'=X X X p ,,1 的协方差阵∑是 对角阵 ,则X 的各分量是相互独立的随机变量。

4.一个p 元函数()p x x x f ,,,21 能作为p R 中某个随机向量的密度函数的主要条 件是 p 'p 21p 21R )x ,,x ,x (,0)x ,,x ,x (f ∈∀≥和1dx dx dx )x ,,x ,x (f p 21-p 21-=⎰⎰+∞∞+∞∞ 。

5.若()∑,~i p i n W S ,k i ,,1 =,且相互独立,则~21k S S S S +++= ),n (W k1i i p ∑∑=。

二、判断题1.多元分布函数()x F 是单调不减函数,而且是右连续的。

正确2.设X 是p 维随机向量,则X 服从多元正态分布的充要条件是:它的任何组合()p R X ∈'αα都是一元正态分布。

错误3.μ是一个P 维的均值向量,当A 、B 为常数矩阵时,具有如下性质:(1)E (AX )=AE (X ) (2)E (AXB )=AE (X )B 正确4.若P 个随机变量X 1,…X P 的联合分布等于各自边缘分布的乘积,则称X 1,… X P 是相互独立的。

正确5.一般情况下,对任何随机向量()'=X X X p ,,1 ,协差阵∑是对称阵,也是正定阵。

错误6.多元正态向量()'=X X X p ,,1 的任意线性变换仍然服从多元正态分布。

正确7.多元正态分布的任何边缘分布为正态分布,反之一样。

错误8.多元样本中,不同样品之间的观测值一定是相互独立的。

正确9.多元正态总体参数均值μ的估计量X 具有无偏性、有效性和一致性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(2) X 和 S 相互独立 ;
( 3) 1 X ~ N p ( , ), n
(n 1)S V ~ Wp (n 1, )
定理1.4.2 设X 1 , X 2 , , X n是来自于多元正态
总体 N p ( , )的一个随机样本,则:
( n 1) X和 S 分别是总体均值 和总体 n 协方差矩阵 的极大似然估计。求 和 的无偏估计。
解:
115.6 1 5 X Xi 5 i 1 74 . 8
14.8 13.4 1 5 S ( X i X )(X i X ) 4 i1 13 . 4 15 . 7
例1.4.1:
1 令 x1 表示舒张压, x 2 表示收缩压,假设某地区人的血压 X x 2
x
服从正态分布 N 2 ( , ) ,现从该地区随机抽取 5 人,测得血压数据 如下:
被测量者 舒张压 x1 收缩压 x 2 1 120 80 2 110 70 3 114 75 4 118 77 5 116 72
1 X Xi n i 1
n
样本离差矩阵
V ( X i X )( X i X )
i 1
n
样本协方差矩阵
S ( sij ) p p
1 V n 1
1 n ( X i X )( X i X ) n 1 i 1
样本相关矩阵
R (R rij ) (r D D p)p
2
( n 1) 2 s 分别是 的随机样本,则: x 和 n
总 体 均 值 和 方 差 的 极 大 似 然 估 计 。
2
定理1.4.1
设X 1 , X 2 , , X n是来自于多元正态
总体 N p ( , )的一个随机样本,则:
(1) 样本均值X 和样本协方差矩阵 S 分别是 总体均值 和总体协方差矩阵 的无偏估计 ;
ij p p
1 1 s 2
s
2
SD SD 1
s
2
1 s 2
其中:
D
1 s 2
s2 11
1
1 2 s pp
rij
s ij s ii s jj
一元正态总体参数估计的回顾
设x1 , x2 ,, xn 是来自于正态总体 N ( , 2 ) 的随机样本,则:
(1) 样本均值 x 和样本方差 s 2 分别是 总体均值 和方差 的无偏估计;
2
(2) x和s 相互独立 ;
( 3) x ~ N ( ,
2
2
n
),
( n 1) s
2

2
~ 2 ( n 1)
一元正态总体 参数的极大似然估计
设x 1 , x 2 , , x n 是 来 自 于 正 态 总 体 N ( , )
设X 1 , X 2 ,, X n为来自于多元正态总体 x1i x2 i N p ( , )的样本, 0, 其中X i , x pi 则常见的样本统计量有
样本均值
x1i x2 i Xi x pi
相关文档
最新文档