习题1.1答案

合集下载

执业药师中药综合知识与技能习题答案附后

执业药师中药综合知识与技能习题答案附后
7.阴阳转化的内在依据是
B、A、B
8一11
A.寒者热之B.热者寒之C.阴阳双补
D.阳病治阴E.阴病治阳
8.阳偏盛的治疗方法是
9.阴偏盛的治疗方法是
10.阳偏衰的治疗方法是
11.阴偏衰的治疗方法是
BAED
『6-8
A.相生B.相克C.相乘D.相侮E.母病及子
6.水与火的关系为
7.火的病变影响及金的称为
8.土的病变影响及木的称为
BCD
9-10
A.母病及子B.子病犯母C.相乘D.相侮E.相克
9.肝火犯肺属于
10.肝气犯脾属于
DC
10-13
A.心、肝、肾B.心、肝、脾C.肺、脾、肾
D.肝、脾E.肺、肾
10.与呼吸关系密切的有
11.与消化关系密切韵有
12.与脑的生理活动关系密切的有
13.与水液代谢关系密切的有
EDAC
14-16
A.补益心阳B.补养心气C.清心泻火
D.气能摄津E.气能行津
A
25.积聚于胸中的气是
A.元气B.宗气C.营气D.卫气E.中气
B
26.临床治疗血虚病证时,常于补血药中配以益气药物,这是因为
A.气能行血B.气能生血C.气能摄血
D.血能生气E.血能载气
B
27.津布散于
A.骨节B.皮肤C.脑D.髓E.脏腑
B
28.具有推动呼吸和血行功能的气是
A.心气B.肺气C.营气D.卫气E.宗气
A.纳气归肾,促进元气生成B.固摄二便,防止二便失禁
C.固摄水液,防止水液流失D.固摄精气,防止精气散失
E.摄纳阳气,防止阳气浮越于上
D
23.“夺血者无汗”的理论基础是
A.气能生律B.气能行津c.气能摄津

移动通信原理与系统习题答案

移动通信原理与系统习题答案

移动通信原理与系统习题答案1.1简述移动通信的特点:答:①移动通信利用无线电波进行信息传输;②移动通信在强干扰环境下工作;③通信容量有限;④通信系统复杂;⑤对移动台的要求高。

1.2移动台主要受哪些干扰影响?哪些干扰是蜂窝系统所特有的?答:①互调干扰;②邻道干扰;③同频干扰;(蜂窝系统所特有的)④多址干扰。

1.3简述蜂窝式移动通信的发展历史,说明各代移动通信系统的特点。

答:第一代(1G)以模拟式蜂窝网为主要特征,是20世纪70年代末80年代初就开始商用的。

其中最有代表性的是北美的AMPS(Advanced Mobile Phone System)、欧洲的 TACS (Total Access Communication System)两大系统,另外还有北欧的 NMT 及日本的 HCMTS系统等。

从技术特色上看,1G以解决两个动态性中最基本的用户这一重动态性为核心并适当考虑到第二重信道动态性。

主要是措施是采用频分多址 FDMA 方式实现对用户的动态寻址功能,并以蜂窝式网络结构和频率规划实现载频再用方式,达到扩大覆盖服务范围和满足用户数量增长的需求。

在信道动态特性匹配上,适当采用了性能优良的模拟调频方式,并利用基站二重空间分集方式抵抗空间选择性衰落。

第二代(2G)以数字化为主要特征,构成数字式蜂窝移动通信系统,它于20世纪90年代初正式走向商用。

其中最具有代表性的有欧洲的时分多址(TDMA)GSM(GSM原意为Group Special Mobile,1989年以后改为Global System for Mobile Communication)、北美的码分多址(CDMA)的 IS-95 两大系统,另外还有日本的 PDC 系统等。

从技术特色上看,它是以数字化为基础,较全面地考虑了信道与用户的二重动态特性及相应的匹配措施。

主要的实现措施有:采用 TDMA(GSM)、CDMA(IS-95)方式实现对用户的动态寻址功能,并以数字式蜂窝网络结构和频率(相位)规划实现载频(相位)再用方式,从而扩大覆盖服务范围和满足用户数量增长的需求。

概率论与数理统计(茆诗松)第二版第一章课后习题1.1-1.3参考答案

概率论与数理统计(茆诗松)第二版第一章课后习题1.1-1.3参考答案
i =1 i =1 n ∞
(3)由定义条件 2,知 A1 ,A2 , L , An ∈ F ,根据(2)小题结论,可得 U Ai ∈ F ,
i =1
n
再由定义条件 2,知 U Ai ∈ F ,即 I Ai ∈ F ;
i =1 i =1
n
n
(4)由定义条件 2,知 A1 , A2 , L , An , L ∈ F ,根据定义条件 3,可得 U Ai ∈ F ,
n n −1 n (3)由二项式展开定理 ( x + y ) n = ⎜ ⎜0⎟ ⎟x + ⎜ ⎜1⎟ ⎟x y + L + ⎜ ⎜n⎟ ⎟ y ,令 x = y = 1,得 ⎝ ⎠ ⎝ ⎠ ⎝ ⎠
⎛n⎞ ⎛n⎞ ⎛n⎞ n ⎜ ⎜0⎟ ⎟+⎜ ⎜1⎟ ⎟ +L+ ⎜ ⎜n⎟ ⎟=2 ; ⎝ ⎠ ⎝ ⎠ ⎝ ⎠
⎛ n − 1⎞ ⎛ n − 1⎞ ⎛n⎞ (n − 1)! (n − 1)! (n − 1)! n! ⎟ ⎟ ⎟ [ r + (n − r )] = +⎜ = + = =⎜ ⎟ ⎜ ⎟ ⎟; r!(n − r )! ⎜ ⎝ r − 1⎠ ⎝ r ⎠ (r − 1)!(n − r )! r!(n − 1 − r )! r!( n − r )! ⎝r⎠ ⎛n⎞ ⎛ n⎞ ⎛n⎞
2
Ω A
B C (A − B )∪C

证: (1) AB U AB = A( B U B ) = AΩ = A ; (2) A U A B = ( A U A )( A U B ) = Ω( A U B ) = A U B . 11.设 F 为一事件域,若 An ∈F ,n = 1, 2, …,试证: (1)∅ ∈F ; (2)有限并 U Ai ∈ F ,n ≥ 1;

高中数学必修1人教b版课后习题答案

高中数学必修1人教b版课后习题答案

人教B 版高中数学必修1课后习题答案第一章 集合与函数概念1.1集合1.1.1集合的含义与表示练习(第5页) 1.用符号“∈”或“∉”填空:(1)设A 为所有亚洲国家组成的集合,则:中国_______A ,美国_______A ,印度_______A ,英国_______A ;(2)若2{|}A x x x ==,则1-_______A ;(3)若2{|60}B x x x =+-=,则3_______B ;(4)若{|110}C x N x =∈≤≤,则8_______C ,9.1_______C .1.(1)中国∈A ,美国∉A ,印度∈A ,英国∉A ;中国和印度是属于亚洲的国家,美国在北美洲,英国在欧洲.(2)1-∉A 2{|}{0,1}A x x x ===.(3)3∉B 2{|60}{3,2}B x x x =+-==-.(4)8∈C ,9.1∉C 9.1N ∉. 2.试选择适当的方法表示下列集合:(1)由方程290x -=的所有实数根组成的集合; (2)由小于8的所有素数组成的集合;(3)一次函数3y x =+与26y x =-+的图象的交点组成的集合;(4)不等式453x -<的解集.2.解:(1)因为方程290x -=的实数根为123,3x x =-=,所以由方程290x -=的所有实数根组成的集合为{3,3}-;(2)因为小于8的素数为2,3,5,7, 所以由小于8的所有素数组成的集合为{2,3,5,7};(3)由326y x y x =+⎧⎨=-+⎩,得14x y =⎧⎨=⎩,即一次函数3y x =+与26y x =-+的图象的交点为(1,4),所以一次函数3y x =+与26y x =-+的图象的交点组成的集合为{(1,4)};(4)由453x -<,得2x <,所以不等式453x -<的解集为{|2}x x <.1.1.2集合间的基本关系练习(第7页)1.写出集合{,,}a b c 的所有子集.1.解:按子集元素个数来分类,不取任何元素,得∅;取一个元素,得{},{},{}a b c ;取两个元素,得{,},{,},{,}a b a c b c ;取三个元素,得{,,}a b c ,即集合{,,}a b c 的所有子集为,{},{},{},{,},{,},{,},{,,}a b c a b a c b c a b c ∅.2.用适当的符号填空:(1)a ______{,,}a b c ; (2)0______2{|0}x x =;(3)∅______2{|10}x R x ∈+=; (4){0,1}______N ;(5){0}______2{|}x x x =; (6){2,1}______2{|320}x x x -+=.2.(1){,,}a a b c ∈ a 是集合{,,}a b c 中的一个元素;(2)20{|0}x x ∈= 2{|0}{0}x x ==;(3)2{|10}x R x ∅=∈+= 方程210x +=无实数根,2{|10}x R x ∈+==∅;(4){0,1}N (或{0,1}N ⊆) {0,1}是自然数集合N 的子集,也是真子集;(5){0}2{|}x x x = (或2{0}{|}x x x ⊆=) 2{|}{0,1}x x x ==;(6)2{2,1}{|320}x x x =-+= 方程2320x x -+=两根为121,2x x ==.3.判断下列两个集合之间的关系:(1){1,2,4}A =,{|8}B x x =是的约数;(2){|3,}A x x k k N ==∈,{|6,}B x x z z N ==∈; (3){|410}A x x x N +=∈是与的公倍数,,{|20,}B x x m m N +==∈.3.解:(1)因为{|8}{1,2,4,8}B x x ==是的约数,所以A B ;(2)当2k z =时,36k z =;当21k z =+时,363k z =+,即B 是A 的真子集,BA ;(3)因为4与10的最小公倍数是20,所以A B =.1.1.3集合的基本运算练习(第11页)1.设{3,5,6,8},{4,5,7,8}A B ==,求,A B A B .1.解:{3,5,6,8}{4,5,7,8}{5,8}A B ==,{3,5,6,8}{4,5,7,8}{3,4,5,6,7,8}A B ==.2.设22{|450},{|1}A x x x B x x =--===,求,AB A B .2.解:方程2450x x --=的两根为121,5x x =-=,方程210x -=的两根为121,1x x =-=,得{1,5},{1,1}A B =-=-,即{1},{1,1,5}A B A B =-=-.3.已知{|}A x x =是等腰三角形,{|}B x x =是直角三角形,求,A B A B .3.解:{|}A B x x =是等腰直角三角形,{|}AB x x =是等腰三角形或直角三角形.4.已知全集{1,2,3,4,5,6,7}U =,{2,4,5},{1,3,5,7}A B ==,求(),()()U U U A B A B . 4.解:显然{2,4,6}UB =,{1,3,6,7}UA =,则(){2,4}U A B =,()(){6}U U A B =.1.1集合习题1.1 (第11页) A 组 1.用符号“∈”或“∉”填空:(1)237_______Q ; (2)23______N ; (3)π_______Q ;(4_______R ; (5Z ; (6)2_______N .1.(1)237Q ∈ 237是有理数; (2)23N ∈ 239=是个自然数;(3)Q π∉ π是个无理数,不是有理数; (4R 是实数;(5Z3=是个整数; (6)2N ∈ 25=是个自然数.2.已知{|31,}A x x k k Z ==-∈,用 “∈”或“∉” 符号填空:(1)5_______A ; (2)7_______A ; (3)10-_______A .2.(1)5A ∈; (2)7A ∉; (3)10A -∈. 当2k =时,315k -=;当3k =-时,3110k -=-;3.用列举法表示下列给定的集合:(1)大于1且小于6的整数;(2){|(1)(2)0}A x x x =-+=;(3){|3213}B x Z x =∈-<-≤.3.解:(1)大于1且小于6的整数为2,3,4,5,即{2,3,4,5}为所求;(2)方程(1)(2)0x x -+=的两个实根为122,1x x =-=,即{2,1}-为所求;(3)由不等式3213x -<-≤,得12x -<≤,且x Z ∈,即{0,1,2}为所求.4.试选择适当的方法表示下列集合:(1)二次函数24y x =-的函数值组成的集合; (2)反比例函数2y x=的自变量的值组成的集合;(3)不等式342x x ≥-的解集.4.解:(1)显然有20x ≥,得244x -≥-,即4y ≥-,得二次函数24y x =-的函数值组成的集合为{|4}y y ≥-;(2)显然有0x ≠,得反比例函数2y x =的自变量的值组成的集合为{|0}x x ≠; (3)由不等式342x x ≥-,得45x ≥,即不等式342x x ≥-的解集为4{|}5x x ≥.5.选用适当的符号填空:(1)已知集合{|233},{|2}A x x x B x x =-<=≥,则有:4-_______B ; 3-_______A ; {2}_______B ; B _______A ;(2)已知集合2{|10}A x x =-=,则有:1_______A ; {1}-_______A ; ∅_______A ; {1,1}-_______A ;(3){|}x x 是菱形_______{|}x x 是平行四边形;{|}x x 是等腰三角形_______{|}x x 是等边三角形.5.(1)4B -∉; 3A -∉; {2}B ; B A ;2333x x x -<⇒>-,即{|3},{|2}A x x B x x =>-=≥;(2)1A ∈; {1}-A ; ∅A ; {1,1}-=A ;2{|10}{1,1}A x x =-==-;(3){|}x x 是菱形{|}x x 是平行四边形;菱形一定是平行四边形,是特殊的平行四边形,但是平行四边形不一定是菱形;{|}x x 是等边三角形{|}x x 是等腰三角形.等边三角形一定是等腰三角形,但是等腰三角形不一定是等边三角形.6.设集合{|24},{|3782}A x x B x x x =≤<=-≥-,求,AB A B .6.解:3782x x -≥-,即3x ≥,得{|24},{|3}A x x B x x =≤<=≥,则{|2}A B x x =≥,{|34}A B x x =≤<.7.设集合{|9}A x x =是小于的正整数,{1,2,3},{3,4,5,6}B C ==,求AB ,AC ,()A B C ,()A B C . 7.解:{|9}{1,2,3,4,5,6,7,8}A x x ==是小于的正整数,则{1,2,3}A B =,{3,4,5,6}A C =,而{1,2,3,4,5,6}B C =,{3}B C =,则(){1,2,3,4,5,6}AB C =,(){1,2,3,4,5,6,7,8}A B C =.8.学校里开运动会,设{|}A x x =是参加一百米跑的同学,{|}B x x =是参加二百米跑的同学,{|}C x x =是参加四百米跑的同学,学校规定,每个参加上述的同学最多只能参加两项,请你用集合的语言说明这项规定,并解释以下集合运算的含义:(1)A B ;(2)A C .8.解:用集合的语言说明这项规定:每个参加上述的同学最多只能参加两项,即为()AB C =∅.(1){|}A B x x =是参加一百米跑或参加二百米跑的同学;(2){|}AC x x =是既参加一百米跑又参加四百米跑的同学.9.设{|}S x x =是平行四边形或梯形,{|}A x x =是平行四边形,{|}B x x =是菱形,{|}C x x =是矩形,求BC ,A B ,S A .9.解:同时满足菱形和矩形特征的是正方形,即{|}B C x x =是正方形,平行四边形按照邻边是否相等可以分为两类,而邻边相等的平行四边形就是菱形,即{|}AB x x =是邻边不相等的平行四边形,{|}SA x x =是梯形.10.已知集合{|37},{|210}A x x B x x =≤<=<<,求()RA B ,()RA B ,()R A B,()R A B .10.解:{|210}A B x x =<<,{|37}A B x x =≤<,{|3,7}RA x x x =<≥或,{|2,10}RB x x x =≤≥或,得(){|2,10}R A B x x x =≤≥或,(){|3,7}RA B x x x =<≥或,(){|23,710}R A B x x x =<<≤<或,(){|2,3710}R A B x x x x =≤≤<≥或或.B 组1.已知集合{1,2}A =,集合B 满足{1,2}A B =,则集合B 有 个.1.4 集合B 满足AB A =,则B A ⊆,即集合B 是集合A 的子集,得4个子集.2.在平面直角坐标系中,集合{(,)|}C x y y x ==表示直线y x =,从这个角度看,集合21(,)|45x y D x y x y ⎧-=⎫⎧=⎨⎨⎬+=⎩⎩⎭表示什么?集合,C D 之间有什么关系?2.解:集合21(,)|45x y D x y x y ⎧-=⎫⎧=⎨⎨⎬+=⎩⎩⎭表示两条直线21,45x y x y -=+=的交点的集合,即21(,)|{(1,1)}45x y D x y x y ⎧-=⎫⎧==⎨⎨⎬+=⎩⎩⎭,点(1,1)D 显然在直线y x =上,得D C .3.设集合{|(3)()0,}A x x x a a R =--=∈,{|(4)(1)0}B x x x =--=,求,A B A B .3.解:显然有集合{|(4)(1)0}{1,4}B x x x =--==,当3a =时,集合{3}A =,则{1,3,4},A B A B ==∅;当1a =时,集合{1,3}A =,则{1,3,4},{1}AB A B ==;当4a =时,集合{3,4}A =,则{1,3,4},{4}AB A B ==;当1a ≠,且3a ≠,且4a ≠时,集合{3,}A a =,则{1,3,4,},AB a A B ==∅.4.已知全集{|010}U AB x N x ==∈≤≤,(){1,3,5,7}U A B =,试求集合B .4.解:显然{0,1,2,3,4,5,6,7,8,9,10}U =,由U AB =,得UB A ⊆,即()U UA B B =,而(){1,3,5,7}U A B =,得{1,3,5,7}UB =,而()UU B B =,即{0,2,4,6,8.9,10}B =.第一章 集合与函数概念1.2函数及其表示1.2.1函数的概念练习(第19页)1.求下列函数的定义域:(1)1()47f x x =+; (2)()1f x =.1.解:(1)要使原式有意义,则470x +≠,即74x ≠-,得该函数的定义域为7{|}4x x ≠-;(2)要使原式有意义,则1030x x -≥⎧⎨+≥⎩,即31x -≤≤,得该函数的定义域为{|31}x x -≤≤.2.已知函数2()32f x x x =+,(1)求(2),(2),(2)(2)f f f f -+-的值;(2)求(),(),()()f a f a f a f a -+-的值.2.解:(1)由2()32f x x x =+,得2(2)322218f =⨯+⨯=,同理得2(2)3(2)2(2)8f -=⨯-+⨯-=,则(2)(2)18826f f +-=+=,即(2)18,(2)8,(2)(2)26f f f f =-=+-=;(2)由2()32f x x x =+,得22()3232f a a a a a =⨯+⨯=+,同理得22()3()2()32f a a a a a -=⨯-+⨯-=-,则222()()(32)(32)6f a f a a a a a a +-=++-=,即222()32,()32,()()6f a a a f a a a f a f a a =+-=-+-=.3.判断下列各组中的函数是否相等,并说明理由:(1)表示炮弹飞行高度h 与时间t 关系的函数21305h t t =-和二次函数21305y x x =-;(2)()1f x =和0()g x x =.3.解:(1)不相等,因为定义域不同,时间0t >;(2)不相等,因为定义域不同,0()(0)g x x x =≠.1.2.2函数的表示法练习(第23页)1.如图,把截面半径为25cm 的圆形木头锯成矩形木料,如果矩形的一边长为xcm ,面积为2ycm ,把y 表示为x 的函数.1.解:显然矩形的另一边长为2250x cm -,222502500y x x x x =-=-,且050x <<,即22500(050)y x x x =-<<.2.下图中哪几个图象与下述三件事分别吻合得最好?请你为剩下的那个图象写出一件事. (1)我离开家不久,发现自己把作业本忘在家里了,于是返回家里找到了作业本再上学;(2)我骑着车一路匀速行驶,只是在途中遇到一次交通堵塞,耽搁了一些时间; (3)我出发后,心情轻松,缓缓行进,后来为了赶时间开始加速.2.解:图象(A )对应事件(2),在途中遇到一次交通堵塞表示离开家的距离不发生变化;O离开家的距离 时间(A ) O离开家的距离 时间(B ) O离开家的距离 时间(C ) O离开家的距离时间(D )图象(B )对应事件(3),刚刚开始缓缓行进,后来为了赶时间开始加速;图象(D )对应事件(1),返回家里的时刻,离开家的距离又为零;图象(C )我出发后,以为要迟到,赶时间开始加速,后来心情轻松,缓缓行进.3.画出函数|2|y x =-的图象.3.解:2,2|2|2,2x x y x x x -≥⎧=-=⎨-+<⎩,图象如下所示.{|},{0,1}A x x B ==是锐角,从A 到B 的映射是“求正弦”,与A 中元素604.设相对应B 中的元素是什么?与B 中的元素22相对应的A 中元素是什么?的4.解:因为3sin 602=,所以与A 中元素60相对应的B 中的元素是32;因为2sin 452=,所以与B 中的元素22相对应的A 中元素是45.1.2函数及其表示习题1.2(第23页)1.求下列函数的定义域:(1)3()4xf x x =-; (2)2()f x x =;(3)26()32f x x x =-+; (4)4()1x f x x -=-.1.解:(1)要使原式有意义,则40x -≠,即4x ≠,得该函数的定义域为{|4}x x ≠;(2)x R ∈,2()f x x =都有意义,即该函数的定义域为R ;(3)要使原式有意义,则2320x x -+≠,即1x ≠且2x ≠,得该函数的定义域为{|12}x x x ≠≠且;(4)要使原式有意义,则4010x x -≥⎧⎨-≠⎩,即4x ≤且1x ≠,得该函数的定义域为{|41}x x x ≤≠且.2.下列哪一组中的函数()f x 与()g x 相等?(1)2()1,()1x f x x g x x=-=-; (2)24(),()()f x x g x x ==;(3)326(),()f x x g x x ==.2.解:(1)()1f x x =-的定义域为R ,而2()1x g x x=-的定义域为{|0}x x ≠,即两函数的定义域不同,得函数()f x 与()g x 不相等;(2)2()f x x =的定义域为R ,而4()()g x x =的定义域为{|0}x x ≥,即两函数的定义域不同,得函数()f x 与()g x 不相等;(3)对于任何实数,都有362x x =,即这两函数的定义域相同,切对应法则相同,得函数()f x 与()g x 相等.3.画出下列函数的图象,并说出函数的定义域和值域.(1)3y x =; (2)8y x=; (3)45y x =-+; (4)267y x x =-+.3.解:(1)义域是(,)-∞+∞,值域是(,)-∞+∞;定 (2)定义域是(,0)(0,)-∞+∞,值域是(,0)(0,)-∞+∞;(3)定义域是(,)-∞+∞,值域是(,)-∞+∞;(4)定义域是(,)-∞+∞,值域是[2,)-+∞.4.已知函数2()352f x x x =-+,求(2)f -,()f a -,(3)f a +,()(3)f a f +.4.解:因为2()352f x x x =-+,所以2(2)3(2)5(2)2852f -=⨯--⨯-+=+,即(2)852f -=+;同理,22()3()5()2352f a a a a a -=⨯--⨯-+=++,即2()352f a a a -=++;22(3)3(3)5(3)231314f a a a a a +=⨯+-⨯++=++,即2(3)31314f a a a +=++;22()(3)352(3)3516f a f a a f a a +=-++=-+,即2()(3)3516f a f a a +=-+.5.已知函数2()6x f x x +=-,(1)点(3,14)在()f x 的图象上吗?(2)当4x =时,求()f x 的值; (3)当()2f x =时,求x 的值.5.解:(1)当3x =时,325(3)14363f +==-≠-,即点(3,14)不在()f x 的图象上; (2)当4x =时,42(4)346f +==--, 即当4x =时,求()f x 的值为3-;(3)2()26x f x x +==-,得22(6)x x +=-,即14x =.6.若2()f x x bx c =++,且(1)0,(3)0f f ==,求(1)f -的值.6.解:由(1)0,(3)0f f ==,得1,3是方程20x bx c ++=的两个实数根,即13,13b c +=-⨯=,得4,3b c =-=,即2()43f x x x =-+,得2(1)(1)4(1)38f -=--⨯-+=,即(1)f -的值为8.7.画出下列函数的图象:(1)0,0()1,0x F x x ≤⎧=⎨>⎩; (2)()31,{1,2,3}G n n n =+∈.7.图象如下:8.如图,矩形的面积为10,如果矩形的长为x ,宽为y ,对角线为d ,周长为l ,那么你能获得关于这些量的哪些函数?8.解:由矩形的面积为10,即10xy =,得10(0)y x x=>,10(0)x y y =>,由对角线为d ,即22d x y =+,得22100(0)d x x x =+>,由周长为l ,即22l x y =+,得202(0)l x x x=+>,另外2()l x y =+,而22210,xy d x y ==+,得22222()22220(0)l x y x y xy d d =+=++=+>,即2220(0)l d d =+>.9.一个圆柱形容器的底部直径是dcm ,高是hcm ,现在以3/vcm s 的速度向容器内注入某种溶液.求溶液内溶液的高度xcm 关于注入溶液的时间ts 的函数解析式,并写出函数的定义域和值域.9.解:依题意,有2()2d x vt π=,即24v x t dπ=,显然0x h ≤≤,即240vt h d π≤≤,得204h d t v π≤≤,得函数的定义域为2[0,]4h d vπ和值域为[0,]h .10.设集合{,,},{0,1}A a b c B ==,试问:从A 到B 的映射共有几个?并将它们分别表示出来.10.解:从A 到B 的映射共有8个.分别是()0()0()0f a f b f c =⎧⎪=⎨⎪=⎩,()0()0()1f a f b f c =⎧⎪=⎨⎪=⎩,()0()1()0f a f b f c =⎧⎪=⎨⎪=⎩,()0()0()1f a f b f c =⎧⎪=⎨⎪=⎩,()1()0()0f a f b f c =⎧⎪=⎨⎪=⎩,()1()0()1f a f b f c =⎧⎪=⎨⎪=⎩,()1()1()0f a f b f c =⎧⎪=⎨⎪=⎩,()1()0()1f a f b f c =⎧⎪=⎨⎪=⎩.B组1.函数()r f p =的图象如图所示.(1)函数()r f p =的定义域是什么?(2)函数()r f p =的值域是什么?(3)r 取何值时,只有唯一的p 值与之对应?1.解:(1)函数()r f p =的定义域是[5,0][2,6)-;(2)函数()r f p =的值域是[0,)+∞;(3)当5r >,或02r ≤<时,只有唯一的p 值与之对应.2.画出定义域为{|38,5}x x x -≤≤≠且,值域为{|12,0}y y y -≤≤≠的一个函数的图象.(1)如果平面直角坐标系中点(,)P x y 的坐标满足38x -≤≤,12y -≤≤,那么其中哪些点不能在图象上?(2)将你的图象和其他同学的相比较,有什么差别吗?2.解:图象如下,(1)点(,0)x 和点(5,)y 不能在图象上;(2)省略.3.函数()[]f x x =的函数值表示不超过x 的最大整数,例如,[ 3.5]4-=-,[2.1]2=.当( 2.5,3]x ∈-时,写出函数()f x 的解析式,并作出函数的图象.3.解:3, 2.522,211,10()[]0,011,122,233,3x x x f x x x x x x --<<-⎧⎪--≤<-⎪⎪--≤<⎪==≤<⎨⎪≤<⎪≤<⎪⎪=⎩图象如下4.如图所示,一座小岛距离海岸线上最近的点P 的距离是2km ,从点P 沿海岸正东12km 处有一个城镇.(1)假设一个人驾驶的小船的平均速度为3/km h ,步行的速度是5/km h ,t (单位:h )表示他从小岛到城镇的时间,x (单位:km )表示此人将船停在海岸处距P 点的距离.请将t 表示为x 的函数.(2)如果将船停在距点P 4km 处,那么从小岛到城镇要多长时间(精确到1h )?4.解:(1)驾驶小船的路程为222x +,步行的路程为12x -,得2221235x xt +-=+,(012)x ≤≤,即241235x xt +-=+,(012)x ≤≤.(2)当4x =时,2441242583()3535t h +-=+=+≈.第一章 集合与函数概念1.3函数的基本性质1.3.1单调性与最大(小)值练习(第32页)1.请根据下图描述某装配线的生产效率与生产线上工人数量间的关系.1.答:在一定的范围内,生产效率随着工人数量的增加而提高,当工人数量达到某个数量时,生产效率达到最大值,而超过这个数量时,生产效率随着工人数量的增加而降低.由此可见,并非是工人越多,生产效率就越高.2.整个上午(8:0012:00)天气越来越暖,中午时分(12:0013:00)一场暴风雨使天气骤然凉爽了许多.暴风雨过后,天气转暖,直到太阳落山(18:00)才又开始转凉.画出这一天8:0020:00期间气温作为时间函数的一个可能的图象,并说出所画函数的单调区间.2.解:图象如下[8,12]是递增区间,[12,13]是递减区间,[13,18]是递增区间,[18,20]是递减区间.3.根据下图说出函数的单调区间,以及在每一单调区间上,函数是增函数还是减函数.3.解:该函数在[1,0]-上是减函数,在[0,2]上是增函数,在[2,4]上是减函数,在[4,5]上是增函数.4.证明函数()21f x x =-+在R 上是减函数.4.证明:设12,x x R ∈,且12x x <,因为121221()()2()2()0f x f x x x x x -=--=->,即12()()f x f x >,所以函数()21f x x =-+在R 上是减函数.5.设()f x 是定义在区间[6,11]-上的函数.如果()f x 在区间[6,2]--上递减,在区间[2,11]-上递增,画出()f x 的一个大致的图象,从图象上可以发现(2)f -是函数()f x 的一个 .5.最小值.1.3.2单调性与最大(小)值练习(第36页)1.判断下列函数的奇偶性:(1)42()23f x x x =+; (2)3()2f x x x =-(3)21()x f x x+=; (4)2()1f x x =+.1.解:(1)对于函数42()23f x x x =+,其定义域为(,)-∞+∞,因为对定义域内每一个x 都有4242()2()3()23()f x x x x x f x -=-+-=+=,所以函数42()23f x x x =+为偶函数;(2)对于函数3()2f x x x =-,其定义域为(,)-∞+∞,因为对定义域内每一个x 都有33()()2()(2)()f x x x x x f x -=---=--=-,所以函数3()2f x x x =-为奇函数;(3)对于函数21()x f x x+=,其定义域为(,0)(0,)-∞+∞,因为对定义域内每一个x 都有22()11()()x x f x f x x x -++-==-=--,所以函数21()x f x x+=为奇函数;(4)对于函数2()1f x x =+,其定义域为(,)-∞+∞,因为对定义域内每一个x 都有22()()11()f x x x f x -=-+=+=,所以函数2()1f x x =+为偶函数.2.已知()f x 是偶函数,()g x 是奇函数,试将下图补充完整.2.解:()f x 是偶函数,其图象是关于y 轴对称的;()g x 是奇函数,其图象是关于原点对称的.习题1.3A 组1.画出下列函数的图象,并根据图象说出函数()y f x =的单调区间,以及在各单调区间上函数()y f x =是增函数还是减函数.(1)256y x x =--; (2)29y x =-.1.解:(1)5(,)2-∞上递减;函数在5[,)2+∞上递增;函数在(2)函数在(,0)-∞上递增;函数在[0,)+∞上递减.2.证明:(1)函数2()1f x x =+在(,0)-∞上是减函数;(2)函数1()1f x x=-在(,0)-∞上是增函数.2.证明:(1)设120x x <<,而2212121212()()()()f x f x x x x x x x -=-=+-,由12120,0x x x x +<-<,得12()()0f x f x ->,即12()()f x f x >,所以函数2()1f x x =+在(,0)-∞上是减函数;(2)设120x x <<,而1212211211()()x x f x f x x x x x --=-=,由12120,0x x x x >-<,得12()()0f x f x -<,即12()()f x f x <,所以函数1()1f x x=-在(,0)-∞上是增函数.3.探究一次函数()y mx b x R =+∈的单调性,并证明你的结论.3.解:当0m >时,一次函数y mx b =+在(,)-∞+∞上是增函数; 当0m <时,一次函数y mx b =+在(,)-∞+∞上是减函数,令()f x mx b =+,设12x x <,而1212()()()f x f x m x x -=-,当0m >时,12()0m x x -<,即12()()f x f x <,得一次函数y mx b =+在(,)-∞+∞上是增函数;当0m <时,12()0m x x ->,即12()()f x f x >,得一次函数y mx b =+在(,)-∞+∞上是减函数.4.一名心率过速患者服用某种药物后心率立刻明显减慢,之后随着药力的减退,心率再次慢慢升高.画出自服药那一刻起,心率关于时间的一个可能的图象(示意图).4.解:自服药那一刻起,心率关于时间的一个可能的图象为5.某汽车租赁公司的月收益y 元与每辆车的月租金x 元间的关系为21622100050x y x =-+-,那么,每辆车的月租金多少元时,租赁公司的月收益最大?最大月收益是多少?5.解:对于函数21622100050x y x =-+-,当162405012()50x =-=⨯-时,max 307050y =(元),即每辆车的月租金为4050元时,租赁公司最大月收益为307050元.6.已知函数()f x 是定义在R 上的奇函数,当0x ≥时,()(1)f x x x =+.画出函数()f x的图象,并求出函数的解析式.6.解:当0x <时,0x ->,而当0x ≥时,()(1)f x x x =+,即()(1)f x x x -=--,而由已知函数是奇函数,得()()f x f x -=-,得()(1)f x x x -=--,即()(1)f x x x =-,所以函数的解析式为(1),0()(1),0x x x f x x x x +≥⎧=⎨-<⎩.B 组1.已知函数2()2f x x x =-,2()2([2,4])g x x x x =-∈.(1)求()f x ,()g x 的单调区间; (2)求()f x ,()g x 的最小值.1.解:(1)二次函数2()2f x x x =-的对称轴为1x =,则函数()f x 的单调区间为(,1),[1,)-∞+∞,且函数()f x 在(,1)-∞上为减函数,在[1,)+∞上为增函数,函数()g x 的单调区间为[2,4],且函数()g x 在[2,4]上为增函数;(2)当1x =时,min ()1f x =-,因为函数()g x 在[2,4]上为增函数,所以2min ()(2)2220g x g ==-⨯=.2.如图所示,动物园要建造一面靠墙的2间面积相同的矩形熊猫居室,如果可供建造围墙的材料总长是30m ,那么宽x (单位:m )为多少才能使建造的每间熊猫居室面积最大?每间熊猫居室的最大面积是多少?2.解:由矩形的宽为x m ,得矩形的长为3032xm -,设矩形的面积为S ,则23033(10)22x x x S x --==-,当5x =时,2max 37.5S m =,即宽5x =m 才能使建造的每间熊猫居室面积最大,且每间熊猫居室的最大面积是237.5m .3.已知函数()f x 是偶函数,而且在(0,)+∞上是减函数,判断()f x 在(,0)-∞上是增函数还是减函数,并证明你的判断.3.判断()f x 在(,0)-∞上是增函数,证明如下:设120x x <<,则120x x ->->,因为函数()f x 在(0,)+∞上是减函数,得12()()f x f x -<-,又因为函数()f x 是偶函数,得12()()f x f x <,所以()f x 在(,0)-∞上是增函数.复习参考题A 组1.用列举法表示下列集合:(1)2{|9}A x x ==;(2){|12}B x N x =∈≤≤;(3)2{|320}C x x x =-+=.1.解:(1)方程29x =的解为123,3x x =-=,即集合{3,3}A =-;(2)12x ≤≤,且x N ∈,则1,2x =,即集合{1,2}B =;(3)方程2320x x -+=的解为121,2x x ==,即集合{1,2}C =.2.设P 表示平面内的动点,属于下列集合的点组成什么图形?(1){|}P PA PB =(,)A B 是两个定点;(2){|3}P PO cm =()O 是定点.2.解:(1)由PA PB =,得点P 到线段AB 的两个端点的距离相等,即{|}P PA PB =表示的点组成线段AB 的垂直平分线;(2){|3}P PO cm =表示的点组成以定点O 为圆心,半径为3cm 的圆.3.设平面内有ABC ∆,且P 表示这个平面内的动点,指出属于集合{|}{|}P PA PB P PA PC ==的点是什么.3.解:集合{|}P PA PB =表示的点组成线段AB 的垂直平分线,集合{|}P PA PC =表示的点组成线段AC 的垂直平分线,得{|}{|}P PA PB P PA PC ==的点是线段AB 的垂直平分线与线段AC 的垂直平分线的交点,即ABC ∆的外心.4.已知集合2{|1}A x x ==,{|1}B x ax ==.若B A ⊆,求实数a 的值.4.解:显然集合{1,1}A =-,对于集合{|1}B x ax ==,当0a =时,集合B =∅,满足B A ⊆,即0a =;当0a ≠时,集合1{}B a =,而B A ⊆,则11a =-,或11a=,得1a =-,或1a =,综上得:实数a 的值为1,0-,或1.5.已知集合{(,)|20}A x y x y =-=,{(,)|30}B x y x y =+=,{(,)|23}C x y x y =-=,求AB ,AC ,()()A B B C .5.解:集合20(,)|{(0,0)}30x y A B x y x y ⎧-=⎫⎧==⎨⎨⎬+=⎩⎩⎭,即{(0,0)}A B =;集合20(,)|23x y AC x y x y ⎧-=⎫⎧==∅⎨⎨⎬-=⎩⎩⎭,即A C =∅;集合3039(,)|{(,)}2355x y B C x y x y ⎧+=⎫⎧==-⎨⎨⎬-=⎩⎩⎭;则39()(){(0,0),(,)}55AB BC =-.6.求下列函数的定义域:(1)y =(2)||5y x =-.6.解:(1)要使原式有意义,则2050x x -≥⎧⎨+≥⎩,即2x ≥,得函数的定义域为[2,)+∞;(2)要使原式有意义,则40||50x x -≥⎧⎨-≠⎩,即4x ≥,且5x ≠,得函数的定义域为[4,5)(5,)+∞.7.已知函数1()1xf x x-=+,求:(1)()1(1)f a a +≠-; (2)(1)(2)f a a +≠-.7.解:(1)因为1()1xf x x -=+, 所以1()1a f a a -=+,得12()1111a f a a a -+=+=++,即2()11f a a +=+;(2)因为1()1xf x x-=+,所以1(1)(1)112a af a a a -++==-+++,即(1)2af a a +=-+.8.设221()1x f x x+=-,求证:(1)()()f x f x -=; (2)1()()f f x x=-.8.证明:(1)因为221()1x f x x +=-,所以22221()1()()1()1x x f x f x x x +-+-===---,即()()f x f x -=;(2)因为221()1x f x x +=-,所以222211()11()()111()x x f f x x x x++===---,即1()()f f x x=-.9.已知函数2()48f x x kx =--在[5,20]上具有单调性,求实数k 的取值范围.9.解:该二次函数的对称轴为8k x =,函数2()48f x x kx =--在[5,20]上具有单调性,则208k ≥,或58k≤,得160k ≥,或40k ≤,即实数k 的取值范围为160k ≥,或40k ≤.10.已知函数2y x -=,(1)它是奇函数还是偶函数?(2)它的图象具有怎样的对称性?(3)它在(0,)+∞上是增函数还是减函数? (4)它在(,0)-∞上是增函数还是减函数?10.解:(1)令2()f x x -=,而22()()()f x x x f x ---=-==,即函数2y x -=是偶函数;(2)函数2y x -=的图象关于y 轴对称;(3)函数2y x -=在(0,)+∞上是减函数; (4)函数2y x -=在(,0)-∞上是增函数.B 组1.学校举办运动会时,高一(1)班共有28名同学参加比赛,有15人参加游泳比赛,有8人参加田径比赛,有14人参加球类比赛,同时参加游泳比赛和田径比赛的有3人,同时参加游泳比赛和球类比赛的有3人,没有人同时参加三项比赛.问同时参加田径和球类比赛的有多少人?只参加游泳一项比赛的有多少人? 1.解:设同时参加田径和球类比赛的有x 人, 则158143328x ++---=,得3x =, 只参加游泳一项比赛的有15339--=(人),即同时参加田径和球类比赛的有3人,只参加游泳一项比赛的有9人.2.已知非空集合2{|}A x R x a =∈=,试求实数a 的取值范围.2.解:因为集合A ≠∅,且20x ≥,所以0a ≥.3.设全集{1,2,3,4,5,6,7,8,9}U =,(){1,3}UA B =,(){2,4}U A B =,求集合B .3.解:由(){1,3}UA B =,得{2,4,5,6,7,8,9}A B =,集合AB 里除去()U A B ,得集合B ,所以集合{5,6,7,8,9}B =.4.已知函数(4),0()(4),0x x x f x x x x +≥⎧=⎨-<⎩.求(1)f ,(3)f -,(1)f a +的值.4.解:当0x ≥时,()(4)f x x x =+,得(1)1(14)5f =⨯+=;当0x <时,()(4)f x x x =-,得(3)3(34)21f -=-⨯--=;(1)(5),1(1)(1)(3),1a a a f a a a a ++≥-⎧+=⎨+-<-⎩.5.证明:(1)若()f x ax b =+,则1212()()()22x x f x f x f ++=; (2)若2()g x x ax b =++,则1212()()()22x x g x g x g ++≤. 5.证明:(1)因为()f x ax b =+,得121212()()222x x x x af a b x x b ++=+=++,121212()()()222f x f x ax b ax b ax x b ++++==++,所以1212()()()22x x f x f x f ++=; (2)因为2()g x x ax b =++,得22121212121()(2)()242x x x x g x x x x a b ++=++++,22121122()()1[()()]22g x g x x ax b x ax b +=+++++2212121()()22x x x x a b +=+++,因为2222212121212111(2)()()0424x x x x x x x x ++-+=--≤,即222212121211(2)()42x x x x x x ++≤+, 所以1212()()()22x x g x g x g ++≤. 6.(1)已知奇函数()f x 在[,]a b 上是减函数,试问:它在[,]b a --上是增函数还是减函数?(2)已知偶函数()g x 在[,]a b 上是增函数,试问:它在[,]b a --上是增函数还是减函数?6.解:(1)函数()f x 在[,]b a --上也是减函数,证明如下:设12b x x a -<<<-,则21a x x b <-<-<,因为函数()f x 在[,]a b 上是减函数,则21()()f x f x ->-,又因为函数()f x 是奇函数,则21()()f x f x ->-,即12()()f x f x >,所以函数()f x 在[,]b a --上也是减函数;(2)函数()g x 在[,]b a --上是减函数,证明如下:设12b x x a -<<<-,则21a x x b <-<-<,因为函数()g x 在[,]a b 上是增函数,则21()()g x g x -<-,又因为函数()g x 是偶函数,则21()()g x g x <,即12()()g x g x >,所以函数()g x 在[,]b a --上是减函数.7.《中华人民共和国个人所得税》规定,公民全月工资、薪金所得不超过2000元的部分不必纳税,超过2000元的部分为全月应纳税所得额.此项税款按下表分段累计计算:某人一月份应交纳此项税款为26.78元,那么他当月的工资、薪金所得是多少?7.解:设某人的全月工资、薪金所得为x 元,应纳此项税款为y 元,则0,02000(2000)5%,2000250025(2500)10%,25004000175(4000)15%,40005000x x x y x x x x ≤≤⎧⎪-⨯<≤⎪=⎨+-⨯<≤⎪⎪+-⨯<≤⎩该人一月份应交纳此项税款为26.78元,得由25004000x <≤,25(2500)10%26.78x +-⨯=,得2517.8x =,所以该人当月的工资、薪金所得是2517.8元.。

热力学与统计物理答案(汪志诚)

热力学与统计物理答案(汪志诚)

第一章 热力学的基本规律习题1.1 试求理想气体的体胀系数α,压强系数β和等温压缩系数T κ。

解:由得:nRT PV = VnRT P P nRT V ==; 所以, TP nR V T V V P 11)(1==∂∂=α T PVRn T P P V /1)(1==∂∂=β P PnRT V P V V T T /111)(12=--=∂∂-=κ 习题1.2 试证明任何一种具有两个独立参量的物质p T ,,其物态方程可由实验测得的体胀系数α及等温压缩系数T κ,根据下述积分求得:⎰-=)(ln dp dT V T κα如果1T α= 1T pκ= ,试求物态方程。

解: 因为0),,(=p V T f ,所以,我们可写成),(p T V V =,由此,dp p V dT T V dV T p )()(∂∂+∂∂=, 因为T T p pV V T V V )(1,)(1∂∂-=∂∂=κα 所以, dp dT V dV dp V dT V dV T T κακα-=-=,所以, ⎰-=dp dT V T καln ,当p T T /1,/1==κα.CT pV pdp T dT V =-=⎰:,ln 得到 习题 1.3测得一块铜块的体胀系数和等温压缩系数分别为1510*85.4--=K α和1710*8.7--=n T p κ,T κα,可近似看作常量,今使铜块加热至10°C 。

问(1压强要增加多少n p 才能使铜块体积不变?(2若压强增加100n p ,铜块的体积改多少解:分别设为V xp n ∆;,由定义得:74410*8.7*10010*85.4;10*858.4----=∆=V x T κ所以,410*07.4,622-=∆=V p x n习题 1.4描述金属丝的几何参量是长度L ,力学参量是张力η,物态方程是0),,(=T L f η实验通常在n p 1下进行,其体积变化可忽略。

12财政学习题参考答案

12财政学习题参考答案

财政学习题武汉大学经济系赵伟习题1.1:市场失灵n1.你认为下列哪个市场会产生效率结果?为什么?(4)n(1)海滨住房的防潮险;n(2)医疗;n(3)股票市场;n(4)个人计算机。

n2.下列属于市场失灵现象的有(1、2、3、4)。

n(1)电信服务价格居高不下;n(2)传染性疾病流行;n(3)私人企业没有能力从事国防科技研究;n(4)政府提供医疗保险,但医疗费用飞速上升,无法控制。

n3.市场失灵是如何产生的,根源有哪些?习题1.1:公共产品基本概念私人产品竞争性排他性非排他性混合产品公共资源公共地的悲剧免费搭车问题准公共产品思考与练习1.你认为下列哪些属于公共产品,哪些属于私人产品?为什么?1、2、4属于公共产品,3属于私人产品(1)道路;(2)公共电视节目;(3)闭路电视节目;(4)提供航班时刻表的网站。

习题1.1:政府失灵n 1.假如有5 个选民:甲、乙、丙、丁、戊,他们对A、B、C、D 四个项目的排序如下。

(1)依照图3-2,画出各选民的效用曲线。

(2)按照简单多数规则,能否选出项目?如果能,是哪一个?如果不能,请说明为什么。

2.在世界各国广泛实行间接民主制和多数票规则下,公共决策的结果能否充分有效地反映纳税人的意愿?为什么?3.根据公共选择理论,说明政府失灵的主要原因及其矫正方法。

偏好形态图ABCD甲乙丙丁戊1234D wins in every pairwise vote?although multi-peaked preferences may lead to voting inconsistencies, this is not necessarily the case. 两两投票表决中D 方案胜出。

投票悖论出现一定是存在多峰偏好。

2.假如王某和李某对焰火的需求曲线分别为:P A=10-0.5Q,P B=20-Q;焰火的边际成本曲线为MC=2/3·Q (1)如果焰火是私人产品,请求出其均衡价格和数量以及王某和李某各自对焰火的需求量;(2)如果焰火具有非排他性,王某和李某的需求量以及他们的意愿支付价格分别是多少?(3)如果王某选择搭便车,焰火的均衡数量是多少?(4)请问如何解决搭便车问题?(详见后)3.公共产品的有效供给和私人产品的有效供给有何区别?为什么存在这样的区别?试分析之。

(完整版)电工技术课后习题答案

(完整版)电工技术课后习题答案

1.1已知图中 U1=2V, U2=-8V,则U AB= ( -10V ) 。

习题1.1图1.2电路的三种工作状态是 ( 通路 )、( 断路 ) 、( 短路 ) 。

1.3有三个6Ω的电阻,若把它们串联,等效电阻是( 18 )Ω;若把它们并联,等效电阻是 ( 2 )Ω;若两个并联后再与第三个串联,等效电阻是( 9 ) Ω。

1.4用电流表测量电流时,应把电流表( 串联 )在被测电路中;用电压表测量电压时,应把电压表与被测电路 ( 并联 )。

1.5电路中任意一个闭合路径称为 ( 回路 ) ;三条或三条以上支路的交点称为( 节点 ) 。

1.6电路如图所示,设U=12V、I=2A、R=6Ω,则U AB=( -24 )V。

习题1.6图1.7直流电路如图所示,R1所消耗的功率为2W,则R2的阻值应为 ( 2 )Ω。

习题1.7图1.8电路中电位的参考点发生变化后,其他各点的电位 ( 均发生变化 ) 。

1.9基尔霍夫定律包括( B )个定律。

A、1B、2C、31.10支路电流法是以( B )为求解对象。

A、节点电压B、支路电流C、电路功率1.11用一个电动势和内阻串联表示的电源称为( A )。

A、电压源B、电流源C、受控源1.12用一个电激流和内阻并联表示的电源称为( B )。

A、电压源B、电流源C、受控源1.13恒流源可以等效为恒压源( B )A、正确B、不正确1.14戴维南定理适用于( A )A、有源线性二端网络B、非线性二端网络C、任意二端网络1.15电位是指电路中某点与( B )之间的电压。

A、任意点B、参考点C、地1.16电位和电压相同之处是( C )。

A.定义相同 B.方向一致 C.单位相同 D.都与参考点有关1.17两个阻值相同的电阻器串联后的等效电阻与并联后的等效电阻之比是( A )A.4:1 B.1:4 C.1:2 D.2:11.18有一段16Ω的导线,把它们对折起来作为一条导线用,其电阻是( C )。

算法设计与分析第二版课后习题及解答(可编辑)

算法设计与分析第二版课后习题及解答(可编辑)

算法设计与分析第二版课后习题及解答算法设计与分析基础课后练习答案习题1.14.设计一个计算的算法,n是任意正整数。

除了赋值和比较运算,该算法只能用到基本的四则运算操作。

算法求 //输入:一个正整数n2//输出:。

step1:a1; step2:若a*an 转step 3,否则输出a; step3:aa+1转step 2;5. a.用欧几里德算法求gcd(31415,14142)。

b. 用欧几里德算法求gcd(31415,14142),比检查min{m,n}和gcd(m,n)间连续整数的算法快多少倍?请估算一下。

a. gcd31415, 14142 gcd14142, 3131 gcd3131, 1618 gcd1618, 1513 gcd1513, 105 gcd1513, 105 gcd105, 43 gcd43, 19 gcd19, 5 gcd5, 4 gcd4, 1 gcd1, 0 1.b.有a可知计算gcd(31415,14142)欧几里德算法做了11次除法。

连续整数检测算法在14142每次迭代过程中或者做了一次除法,或者两次除法,因此这个算法做除法的次数鉴于1?14142 和 2?14142之间,所以欧几里德算法比此算法快1?14142/11 ≈1300 与2?14142/11 ≈ 2600 倍之间。

6.证明等式gcdm,ngcdn,m mod n对每一对正整数m,n都成立.Hint:根据除法的定义不难证明:如果d整除u和v, 那么d一定能整除u±v;如果d整除u,那么d也能够整除u的任何整数倍ku.对于任意一对正整数m,n,若d能整除m和n,那么d一定能整除n和rm mod nm-qn;显然,若d能整除n和r,也一定能整除mr+qn和n。

数对m,n和n,r具有相同的公约数的有限非空集,其中也包括了最大公约数。

故gcdm,ngcdn,r7.对于第一个数小于第二个数的一对数字,欧几里得算法将会如何处理?该算法在处理这种输入的过程中,上述情况最多会发生几次?Hint:对于任何形如0mn的一对数字,Euclid算法在第一次叠代时交换m和n, 即gcdm,ngcdn,m并且这种交换处理只发生一次.8.a.对于所有1≤m,n≤10的输入, Euclid算法最少要做几次除法?1次b. 对于所有1≤m,n≤10的输入, Euclid算法最多要做几次除法?5次gcd5,8习题1.21.农夫过河P?农夫W?狼 G?山羊 C?白菜2.过桥问题1,2,5,10---分别代表4个人, f?手电筒4. 对于任意实系数a,b,c, 某个算法能求方程ax^2+bx+c0的实根,写出上述算法的伪代码可以假设sqrtx是求平方根的函数算法Quadratica,b,c//求方程ax^2+bx+c0的实根的算法//输入:实系数a,b,c//输出:实根或者无解信息If a≠0D←b*b-4*a*cIf D0temp←2*ax1←-b+sqrtD/tempx2←-b-sqrtD/tempreturn x1,x2else if D0 return ?b/2*ael se return “no real roots”else //a0if b≠0 return ?c/belse //ab0if c0 return “no real numbers”else return “no real roots”5. 描述将十进制整数表达为二进制整数的标准算法a.用文字描述b.用伪代码描述解答:a.将十进制整数转换为二进制整数的算法输入:一个正整数n输出:正整数n相应的二进制数第一步:用n除以2,余数赋给Kii0,1,2,商赋给n第二步:如果n0,则到第三步,否则重复第一步第三步:将Ki按照i从高到低的顺序输出b.伪代码算法 DectoBinn//将十进制整数n转换为二进制整数的算法//输入:正整数n//输出:该正整数相应的二进制数,该数存放于数组Bin[1n]中i1while n!0 doBin[i]n%2;nintn/2;i++;while i!0 doprint Bin[i];i--;9.考虑下面这个算法,它求的是数组中大小相差最小的两个元素的差.算法略对这个算法做尽可能多的改进.算法 MinDistanceA[0..n-1]//输入:数组A[0..n-1]//输出:the smallest distance d between two of its elements 习题1.3考虑这样一个排序算法,该算法对于待排序的数组中的每一个元素,计算比它小的元素个数,然后利用这个信息,将各个元素放到有序数组的相应位置上去.a.应用该算法对列表”60,35,81,98,14,47”排序b.该算法稳定吗?c.该算法在位吗?解:a. 该算法对列表”60,35,81,98,14,47”排序的过程如下所示:b.该算法不稳定.比如对列表”2,2*”排序c.该算法不在位.额外空间for S and Count[]4.古老的七桥问题第2章习题2.17.对下列断言进行证明:如果是错误的,请举例a. 如果tn∈Ogn,则gn∈Ωtnb.α0时,Θαgn Θgn解:a这个断言是正确的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
D.从第一个函数开始执行,到main函数结束
答案A
14.以下对C语言的描述中,正确的是_________。
A.C语言源程序中可以有重名的函数
B.C语言源程序中要求每行只能书写一条语句
C.注释可以出现在C语言源程序中的任何位置
D.最小的C语言源程序中没有任何内容
答案C
15.以下不能定义为用户标识符的是_______。
D.C语言中的每条可执行语句和非执行语句最终都将被转换成二进制的机器指令
答案D
5.以下说法不正确的是_______。
A.C程序中必须有一个main()函数,C程序是从main()函数的第一条语句开始执行的
B.非主函数都是在执行主函数时,通过函数调用或嵌套调用而得以执行的
C.C程序中的main()函数必须放在程序的开始位置
A.array B.student C._3com D.float
答案D(一P10)
D.C程序中的main()函数的位置可以任意指定
答案C(二P32)
6.在一个C语言程序中_______。
A.main函数必须出现在所有函数之前
B.main函数可以在任何地方出现
C.main函数必须出现在所有函数之后
D.main函数必须出现在固定位置
答案B
7.以下叙述中正确的是_______。
A.C语言程序将从源程序中的第一个函数开始执行
习题1.1答案
1.用高级程序设计语言编写的程序称为_________。
A.目标程序B.可执行程序C.源程序D.伪代码程序
答案C
2.能将高级语言编写的源程序转换为目标程序的软件是_________。
A.编辑程序B.编译程序C.驱动程序D.链接程序
答案B
3.以下四条叙述中,正确的是______。
A.计算机语言中,只有机器语言属于低级语言
B.高级语言源程序可以被计算机直接执行
C.C语言属于高级语言
D.机器语言是与所用机器无关的
答案C
4.以下叙述中错误的是_______。
A.C语言源程序经编译后生成后缀为.obj的目标程序
B.C程序经过编译、连接步骤之后才能形成一个真正可执行的二进制机器指令文件
C.用C语言编写的程序成为源程序,它以ASCII代码形式存放在一个文本文件中
D.C语言的所有函数都是外部函数
答案D(一P8)
12.C语言程序的基本单位是_________。
A.程序行B.语句C.函数D.字符
答案C(一P8)
_____。
A.从main函数开始执行
B.从程序中第一个函数开始执行,到最后一个函数结束
C.从main函数开始执行,到源程序最后一个函数结束
B.可以在程序中由用户指定任意一个函数作为主函数,程序将从此开始执行
C.C语言规定必须用main作为主函数名,程序将从此开始执行,在此结束
D.main可作为用户标识符,用以命名任意一个函数作为主函数
答案C
8.请选出可以作为C语言用户标识符的一组标识符号______。
A.void define WORD
B.用户标识符中不可以出现中划线,但可以出现下划线
C.用户标识符中可以出现下划线,但不可以放在用户标识符的开头
D.用户标识符中可以出现下划线和数字,它们都可以放在用户标识符的开头
答案B
11.下列叙述中,正确的是_______。
A.C语言编译时不检查语法错误
B.C语言的子程序有过程和函数两种
C.C语言的函数可以嵌套定义
B.a3_b3 _123 IF
C.for -abc case
D.2aD0 sizeof
答案B
9.以下不能定义为用户标识符的是______。
A.Main B._0 C._int D.sizeof
答案D
10.下列关于C语言用户标识符的叙述中正确的是_______。
A.用户标识符中可以出现下划线和中划线(减号)
相关文档
最新文档