假设检验习题
人大版统计学 习题加答案第四章 假设检验

第四章 假设检验填空(5题/章),选择(5题/章),判断(5题/章),计算(3题/章) 一、填空1、在做假设检验时容易犯的两类错误是 和2、如果提出的原假设是总体参数等于某一数值,这种假设检验称为 ,若提出的原假设是总体参数大于或小于某一数值,这种假设检验称为3、假设检验有两类错误,分别是 也叫第一类错误,它是指原假设H0是 的,却由于样本缘故做出了 H0的错误;和 叫第二类错误,它是指原假设H0是 的, 却由于样本缘故做出 H0的错误。
4、在统计假设检验中,控制犯第一类错误的概率不超过某个规定值α,则α称为 。
5、 假设检验的统计思想是小概率事件在一次试验中可以认为基本上是不会发生的,该原理称为 。
6、从一批零件中抽取100个测其直径,测得平均直径为5.2cm ,标准差为1.6cm ,想知道这批零件的直径是否服从标准直径5cm ,在显著性水平α下,否定域为7、有一批电子零件,质量检查员必须判断是否合格,假设此电子零件的使用时间大于或等于1000,则为合格,小于1000小时,则为不合格,那么可以提出的假设为 。
(用H 0,H 1表示)8、一般在样本的容量被确定后,犯第一类错误的概率为α,犯第二类错误的概率为β,若减少α,则β9、某厂家想要调查职工的工作效率,用方差衡量工作效率差异,工厂预计的工作效率为至少制作零件20个/小时,随机抽样30位职工进行调查,得到样本方差为5,试在显著水平为0.05的要求下,问该工厂的职工的工作效率 (有,没有)达到该标准。
KEY: 1、弃真错误,纳伪错误 2、双边检验,单边检验3、拒真错误,真实的,拒绝,取伪错误,不真实的,接受4、显著性水平5、小概率事件6、1.25>21α-z7、H 0:t≥1000 H 1:t <1000 8、增大 9、有二、 选择1、假设检验中,犯了原假设H 0实际是不真实的,却由于样本的缘故而做出的接受H 0的错误,此类错误是( )A 、α类错误B 、第一类错误C 、取伪错误D 、弃真错误 2、一种零件的标准长度5cm ,要检验某天生产的零件是否符合标准要求,建立的原假设和备选假设就为( )A 、0:5H μ=,1:5H μ≠B 、0:5H μ≠,1:5H μ>C 、0:5H μ≤,1:5H μ>D 、0:5H μ≥,1:5H μ< 3、一个95%的置信区间是指( ) A 、总体参数有95%的概率落在这一区间内 B 、总体参数有5%的概率未落在这一区间内C 、在用同样方法构造的总体参数的多个区间中,有95%的区间包含该总体参数D 、在用同样方法构造的总体参数的多个区间中,有95%的区间不包含该总体参数4、假设检验中,如果增大样本容量,则犯两类错误的概率( ) A 、都增大 B 、都减小 C 、都不变 D 、一个增大一个减小5、一家汽车生产企业在广告中宣称“该公司的汽车可以保证在2年或24000公里内无事故”,但该汽车的一个经销商认为保证“2年”这一项是不必要的,因为汽车车主在2年内行驶的平均里程超过24000公里。
xin第七章假设检验习题

一、判断题1对假设H 0,从子样提供的信息,作出判断接受H 0,我们可以认为假设H 0客观上一定是正确的。
() 2在假设检验中,因为显著性水平α是犯第一类错误的概率,所以它越少越好。
()3、当n 充分大时,T 检验的临界值也可以查正态分布得到。
( ) 二、填空题1、假设检验的基本原理是2、假设检验中,显著性水平α的意义是3、假设检验中第一类错误是指 ,第二类错误是指 。
4、总体X~N (μ,σ2),且σ2已知,检验假设H 0:μ=μ0,H 1:μ≠μ0应选用 检验,相应的统计量为 式中X 为 ,n 为 ,查 表找临界值 ,当 时,拒绝原假设。
5、设总体X~N (μ,σ2),μ未知,检验H 0:σ2≤σ2,H 1:σ2>σ2应选用 检验,相应的统计量为 ,当 时,拒绝原假设H 0。
三、计算题1、已知某炼铁厂铁水含碳量服从正态分布N (4.55,0.1082),现测定了9炉铁水,其平均含碳量为4.484,如果估计方差没有变化,可否认为现在生产的铁水平均含碳量为4.55?(α=0.05) 解:H 0:μ=4.55,H 1:μ≠4.55对α=0.05,查表可得2αz =1.96若H 0为真时,则|Z |=|3/108.055.4484.4|/0-=-nX σμ|=1.83|Z|<1.96,故接受H 0 即可承认现在生产铁水的平均含碳量为4.552、已知某一试验,其温度服从正态分布N (μ,σ2),现在测量了温度的5个值为:1250,1265,1245,1260,1275,求得X =1259,S 2=11.942问是否可认为μ=1277?(α=0.05)解:由题目已知条件, 对于H 0:μ=1277 H 1:μ≠1277 对于α=0.05,查表可得2αt (4)=2.776若H0为真时,则|T|=||| 3.37==∵3.37>2.776,故拒绝H 0即不可认为μ=1277三、计算题某种导线的电阻服从正态分布N (μ,0.0052),今从新生产的一批导线中抽取9根,测其电阻,得S=0.008Ω,对于α=0.05,能否认为这批导线的电阻的标准差为0.005?解:设H 0:σ2=0.0052,H 1:σ2≠0.0052对于α=0.005,查表可得22αχ(8)=17.5若H 0为真时,则χ2=22202005.0008.0)19()1(⨯-=-σSn =20.48∵20.48>17.5,故否定H 0,即认为这批导线电阻的标准差不等于0.005。
假设检验基本概念习题

假设检验的基本概念练习题一、最佳选择题1.在两均数u检验中,其无效假设为()。
A.两个总体均数不同 B. 两个样本均数不同C.两个总体均数相同 D. 两个样本均数相同E. 两个总体位置不同2.当u检验的结果为P<0.05时,可以认为()。
A.两个总体均数不同 B. 两个样本均数不同C.两个总体均数相同 D. 两个样本均数相同E.还不能认为两总体均数有不同3.现有A、B两资料,经u检验得:A资料检验结果为P<0.01, B资料的检验结果为0.01<P<0.05, 可以认为()。
A.A资料两总体均数差别较B资料大B.B资料两总体均数差别较A资料大C.作推断两总体均数有差别时,A资料较B资料犯错误概率更大D.作推断两总体均数无差别时,B资料较A资料犯错误概率更小E.A资料更有理由推断两总体均数有差别4.两样本均数比较时,在其它条件相同情况下,下列四种选择中,()时检验效能最大。
A.α=0.05, n1=n2=20 B.α=0.01, n1=n2=30 C.α=0.05, n1=n2=30D.α=0.01, n1=n2=20 E. =0.05, n1=20, n2=305. 下列哪一种说法是正确的()。
A.两样本u检验时,要求两总体方差齐性B .当P >α接受0H 时,犯Ⅰ型错误概率很小C .单侧检验较双侧检验更易拒绝0HD .当P <α接受1H 时,犯Ⅱ型错误概率很小E .当P >α接受0H 时,犯Ⅰ型错误概率很大6.两样本率比较的单侧u 检验中,其1H 为( )。
A .1H :21ππ>或21ππ<B .1H : 21ππ≠C .1H :21p p >或21p p <D .1H :21p p ≠E .10ππ≠7.下列哪一种说法是正确的( )。
A .两样本均数比较均可用u 检验B .大样本时多个率比较可以用u 检验C .多个样本均数比较可以进行重复多次u 检验D .大样本时两均数比较和两个率比较可以用u 检验E .两个样本率比较均可用u 检验8.( )时,应作单侧检验。
第5章 假设检验习题

第五章假设检验思索与练习一、单项选择题1.将由显著性水平所规定的拒绝域平分为两部分,置于概率分布的两边,每边占显著性水平的二分之一,这是(b )。
a.单侧检验b.双侧检验2.检验功效定义为(b )oa.原假设为真时将其接受的概率c.原假设为真时将其舍弃的概率c.右侧检验d.左侧检验b.原假设不真时将其舍弃的概率d.原假设不真时将其接受的概率3.符号检验中,(+ )号的个数与(-)号的个数相差较远时,意味着(c )。
a.存在试验误差(随机误差)b.存在着条件误差c.不存在什么误差d.既有抽样误差,也有条件误差4.得出两总体的样本数据如下:甲:8, 6, 10, 7, 8 乙:5, 11, 6, 9, 7, 10秩和检验中,秩和最大可能值是(c )。
a. 15b. 48c. 45d. 66二、多项选择题L显著性水平与检验拒绝域关系(a b d )a.显著性水平提高(。
变小),意味着拒绝域缩小b.显著性水平降低,意味着拒绝域扩大c.显著性水平提高,意味着拒绝域扩大d.显著性水平降低,意味着拒绝域扩大化e.显著性水平提高或降低,不影响拒绝域的变化2.S 错误(acde)a.是在原假设不真实的条件下发生b.是在原假设真实的条件下发生c.打算于原假设与真实值之间的差距d.原假设与真实值之间的差距越大,犯£错误的可能性就越小e.原假设与真实值之间的差距越小,犯£错误的可能性就越大三、计算题L 假设某产品的重量听从正态分布,现在从一批产品中随机抽取16件, 测得平均重量为820克,标准差为60克,试以显著性水平/0. 01与a=0. 05, 分别检验这批产品的平均重量是否是800克。
解:假设检验为“。
://0 =800,修:4户800 (产品重量应当使用双侧 检验)。
采纳t 分布的检验统计量E = 5~等。
查出α =0.05和0. 01两个水 σ / y ∣n∣Z ∣ <2. 13K2. 947,所以在两个水平下都接受原假设。
统计学:假设检验习题与答案

一、单选题1、在假设检验中,我们认为()。
A.原假设是不容置疑的B.拒绝域总是位于检验统计量分布的两边C.小概率事件在一次抽样中实际上不会发生D.检验统计量落入拒绝域是不可能的正确答案:C2、在假设检验中,显著性水平确定后()。
A.双边检验的拒绝域小于单边检验的拒绝域B.双边检验的拒绝域大于单边检验的拒绝域C.双边检验的拒绝域与单边检验的拒绝域不可简单直接对比D.双边检验的拒绝域等于单边检验的拒绝域正确答案:C3、单个正态总体均值的检验时若总体方差已知,()。
A.设计的检验统计量服从卡方分布B.设计的检验统计量服从F分布C.设计的检验统计量服从标准正态分布D.设计的检验统计量服从t分布正确答案:C4、总体成数的假设检验()。
A.设计的检验统计量服从标准正态分布B.设计的检验统计量服从卡方分布C.设计的检验统计量近似服从卡方分布D.设计的检验统计量近似服从标准正态分布正确答案:D5、两个正态总体均值之差的检验中,如果两个总体方差未知但相等,检验统计量t的自由度是()。
A.两样本容量之和B.两样本容量之和减2C.两样本容量之积D.两样本容量之和减1正确答案:B6、假设检验是检验()的假设值是否成立。
A.总体均值B.总体指标C.样本方差D.样本指标正确答案:B7、在大样本条件下,样本成数的抽样分布近似为()。
A.均匀分布B.卡方分布C.二项分布D.正态分布正确答案:D8、下列关于假设检验的说法,不正确的是()。
A.作出“拒绝原假设”决策时可能会犯第一类错误B.作出“不能拒绝原假设”决策时意味着原假设正确C.作出“不能拒绝原假设”决策时可能会犯第二类错误D.作出“接受原假设”决策时意味着没有充分的理由认为原假设是错误的正确答案:B9、将由显著性水平所规定的拒绝域平分为两部分,置于概率分布的两,每边占显著性水平的二分之一,这是()。
A.右侧检验B.单侧检验C.左侧检验D.双侧检验正确答案:D10、如果使用者偏重于担心出现纳伪错误而造成的损失,则应把显著性水平定得()。
假设检验练习题

假设检验练习题一、判断题1、大多数的统计调查研究的都是样本而不是整个总体。
2、零假设和研究假设是相互对立的关系。
3、当我们拒绝了一个真的零假设时,所犯错误为第二类错误。
4、我们可以通过减少α来降低β错误。
5、如果α=.05,当我们拒绝H0时我们就有5%的可能犯错误。
6、如果α=.05,则当我们接受H0时,我们就有95%的可能犯错误。
7、如果取α=.01,我们拒绝了H0,则取α=.05时,我们仍然可以拒绝H0。
8、如果取α=.01,我们接受了H0,则取α=.05时,我们仍然可以接受H0。
9、如果H0为假,采用单侧检验比双侧检验更容易得到拒绝H0的结论。
10、即使我们更多地利用样本,还是有必要对一个给定总体的所有个体进行研究。
二、选择题1、总体是:A、很难被穷尽研究;B、可以通过样本进行估计;C、通常是假设性的;D、可能是无限的;E、以上都对。
2、如果要研究100个选民在预选时的投票结果表明,我们的主要兴趣应该是:A、推断他们将会把票投给谁B、推断所有选民的投票情况;C、估计什么样的个人会投票;D、以上都是;E、以上都不是。
3、如果我们从一个已知的总体中抽取大量的样本,我们将毫不惊讶地得到:A、样本统计结果值之间有差异;B、样本统计结果分布在一个中心值附近;C、许多样本平均数不等于总体平均数;D、以上都可能;E、以上都不可能。
4、对零假设的拒绝通常是:A、直接的;B、间接的;C、建立对研究假设的拒绝的基础上;D、建立在对研究假设的直接证明上;E、以上都不对。
5、研究者考察了生字密度高低两种条件下各30名学生阅读成绩的情况,得到两种条件下两组被试的成绩分别为:78±10和84±8,从中你可以得到:A、两种条件下学生成绩的差异非常显著;B、因为84≠78,所以两种条件下学生成绩差异非常显著;C、因为84>78,所以生字密度低的条件下学生成绩非常显著地高于生字密度高的条件下学生的成绩;D、以上都对;E、以上都不对。
概论论与数理统计:第八章假设检验(浙大第四版)

χ2 =
(n − 1) s 2
σ 02
, 拒 绝 域 为 {χ >
2
2 χα (n − 1)} , 由
3
n = 9, s = 0.007, χ 02.05 (8) = 15.504 ,算得 χ 2 = 15.68 > 15.504, 因此拒绝原假设 H 0 ,即认
为这批导线的标准差显著地偏大. 6、解 设枪弹甲、乙的速度分别为 x, y ,并设 x ~ N ( μ1 , σ 1 ), y ~ N ( μ 2 , σ 2 ) .
x−y 1 1 + n1 n2
其中
2 sw =
2 (n1 − 1) s12 + (n2 − 1) s 2 n1 + n2 − 2
拒绝域为 C = ⎨| t |≥ t α (n1 + n 2 − 2)⎬ .
⎧ ⎩
⎫ ⎭
2
由于 n1 , n 2 很大,故有 t 0.025 (218) ≈ z 0.025 = 1.96 将 x = 2805, y = 2680, 以上数据代入上式 计算可得 | t |= 8.206 > 1.96 ,故拒绝原假设 H 0 ,可以认为两个总体的平均值有显著差异, 即 两种枪弹在速度方面有显著差异. 综上所述,两种枪弹在速度方面有显著差异但在均匀性方面没有显著差异. 7、解 设马克吐温与思诺特格拉斯的小品文中由 3 个字母组成的词的比例分别为 x, y ,并且 由题意可设 x ~ N ( μ1 , σ ) , y ~ N ( μ 2 , σ ) ,本题是在显著性水平 α = 0.05 下检验假设:
⎧ ⎩
⎫ ⎭
2
已 知 n1 = 8, n 2 = 10 , 查 表 得 t 0.025 (16) = 2.1199, , 经 计 算 得 , x = 0.2319, s1 = 0.01456,
(完整版)统计学假设检验习题答案

1.假设某产品的重量服从正态分布,现在从一批产品中随机抽取16件,测得平均重量为820克,标准差为60克,试以显著性水平α=0.01与α=0.05,分别检验这批产品的平均重量是否是800克。
解:假设检验为800:,800:0100≠=μμH H (产品重量应该使用双侧 检验)。
采用t 分布的检验统计量nx t /0σμ-=。
查出α=0.05和0.01两个水平下的临界值(df=n-1=15)为2.131和2.947。
667.116/60800820=-=t 。
因为t <2.131<2.947,所以在两个水平下都接受原假设。
2.某牌号彩电规定无故障时间为10 000小时,厂家采取改进措施,现在从新批量彩电中抽取100台,测得平均无故障时间为10 150小时,标准差为500小时,能否据此判断该彩电无故障时间有显著增加(α=0.01)?解:假设检验为10000:,10000:0100>=μμH H (使用寿命有无显著增加,应该使用右侧检验)。
n=100可近似采用正态分布的检验统计量nx z /0σμ-=。
查出α=0.01水平下的反查正态概率表得到临界值2.32到2.34之间(因为表中给出的是双侧检验的接受域临界值,因此本题的单侧检验显著性水平应先乘以2,再查到对应的临界值)。
计算统计量值3100/5001000010150=-=z 。
因为z=3>2.34(>2.32),所以拒绝原假设,无故障时间有显著增加。
3.设某产品的指标服从正态分布,它的标准差σ已知为150,今抽了一个容量为26的样本,计算得平均值为1637。
问在5%的显著水平下,能否认为这批产品的指标的期望值μ为1600?解: 01:1600, :1600,H H μμ=≠标准差σ已知,拒绝域为2Z z α>,取0.05,α=26,n =0.0250.9752 1.96z z z α===,由检验统计量1.25 1.96Z ===<,接受0:1600H μ=, 即,以95%的把握认为这批产品的指标的期望值μ为1600.4.某电器零件的平均电阻一直保持在2.64Ω,改变加工工艺后,测得100个零件的平均电阻为2.62Ω,如改变工艺前后电阻的标准差保持在O.06Ω,问新工艺对此零件的电阻有无显著影响(α=0.05)?解: 01: 2.64, : 2.64,H H μμ=≠已知标准差σ=0.16,拒绝域为2Z z α>,取0.02520.05, 1.96z z αα===,100,n =由检验统计量3.33 1.96Z ===>,接受1: 2.64H μ≠, 即, 以95%的把握认为新工艺对此零件的电阻有显著影响.5.某食品厂用自动装罐机装罐头食品,每罐标准重量为500克,每隔一定时间需要检查机器工作情况。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
设公司1,公司 的胶片的放映时间分别服从正 设公司 ,公司2的胶片的放映时间分别服从正 态分布N( ),试 态分布 (μ1 σ12,)N( μ2 ,σ22 ),试 ( 检验均值及方差是否存在显著差异。 取α=0.1检验均值及方差是否存在显著差异。 检验均值及方差是否存在显著差异
双样本T 双样本T检验
结束
习题4-11
两种不同配方A和 制造的汽车轮胎 制造的汽车轮胎15对 两种不同配方 和B制造的汽车轮胎 对, 分别安装在15部汽车前轴的两边 部汽车前轴的两边, 分别安装在 部汽车前轴的两边,进行耐 磨性能测验。经五万公里行驶后, 磨性能测验。经五万公里行驶后,测量磨 损的厚度,数据如下表所示。试测验配方A 损的厚度,数据如下表所示。试测验配方 的磨损程度是否有显著差异。 与B的磨损程度是否有显著差异。 的磨损程度是否有显著差异
习题4-3
某制药厂生产复合维生 素丸,要求每50g维生素 2400mg, 中含2400mg, 从某次生 产过程中随机抽取部分 试样进行五次测定,得 铁含量为2372,2409, 2395,2399及2411 mgFe/50g,问这批产品 的含铁量是否合规格?
单样本 T检验
习题4-4
某人在不同月份用同一方法分析某合金样品中的铜, 所得结果如下,问两批结果有无显著性差异? 一月份:93.08,91.36,91.60,91.91,92.79,92.80, 91.03 七月份:93.95,93.42,92.20,92.46,92.73,94.31, 93.95 93.42 92.20 92.46 92.73 94.31 92.94,93.66,92.05
习题4-13
某药厂研制出一种减肥药,将其分发给 个肥胖志愿者试用 个肥胖志愿者试用。 某药厂研制出一种减肥药,将其分发给20个肥胖志愿者试用。 服用一疗程后,测量他们的体重减少量,如下表所示。 服用一疗程后,测量他们的体重减少量,如下表所示。请据此 资料检验: 资料检验: 服用了此药物之后,肥胖患者体重是否能显著减少。 ⑴ 服用了此药物之后,肥胖患者体重是否能显著减少。 服用了此药物之后,肥胖患者体重减少量是否大于9 。 ⑵ 服用了此药物之后,肥胖患者体重减少量是否大于 kg。
习题4-7
乙二人分析同一试样,结果如下 甲,乙二人分析同一试样 结果如下 乙二人分析同一试样 结果如下: 甲 95.6, 94.9, 96.2, 95.1, 95.8, 96.3, 96.0; 乙 93.3, 95.1, 94.1, 95.1, 95.6, 94.0; 试问甲乙两人分析结果的均值及标准偏差有无显著差异? 试问甲乙两人分析结果的均值及标准偏差有无显著差异
编号 试验前 试验后 d 1 87 74 13 2 92 83 9 3 96 88 8 4 86 71 15 5 91 79 12 6 99 89 10 7 97 89 8 8 89 82 7 9 88 75 13 10 86 76 10 11 94 85 9 12 93 81 12 13 89 86 3 14 79 68 11 15 87 78 9 16 99 91 8 17 89 79 10 18 86 71 15 19 95 91 4 20 90 76 14
假设检验习题
习题4-1
测定水中的硒脲,测得量为 测定水中的硒脲,测得量为50.4,50.7, , , 49.1,49.0,51.1ng/ml,加入量为 , , ,加入量为50ng/ml, 问是否存在显著系统误差? 问是否存在显著系统误差?
习题4-2
对两组测试人员血液中的硫醇进行分析,第一组为“正常 人员”,第二组为风湿性关节病人。 正常组:1.84,1.92,1.94,1.97,3.27,3.76 问这两组人员之间血液中硫醇溶液是否存在显著性的差异?
99.9 97.4
试用95%置信度测验这批温度表读数的方差是否显著 置信度测验这批温度表读数的方差是否显著 试用 大于该指标的规定极限值1 大于该指标的规定极限值1。
习题4-9
测量了两种牌号香烟的尼古丁含量(mm),得结 果如下 : 牌号 牌号 24 27 26 28 25 25 22 29 23 26
习题4-8
从一批温度表中随机抽取13 从一批温度表中随机抽取 支,放在恒温水浴的同一 位置。当水沸腾时,同时记下它们的读数如下表所示。 位置。当水沸腾时,同时记下它们的读数如下表所示。
编号 读数 1 100.3 2 98.4 3 99.3 4 100.7 5 101.2 6 99.8 7 100.0 8 101.4 9 100.6 10 11 12 99.2 13 101.3
设这两个总体都服从正态分布,方差相等,且 两样本独立,问在水平α=0.05下是否可以认为 两种牌号香烟尼古丁含量有显著差异。
双样本T 双样本T检验
习题4-10
下面给出两个电影公司生产的电影胶片的放映 时间( 时间(分)。
公司1 公司 公司2 公司2 102 81 86 165 98 97 109 134 92 92 87 114
习题4-14
两个实验室用同样的色谱方法对农药杀螟丹的同一样 品的含量进行定量分析,所得的结果如下,试比较和 评价两个实验室分析结果。 第一个实验室进行7次测定,结果为(%):93.08, 91.36,91.60,91.91,92.79,92.80,91.03。 第二个实验室进行9次测定,结果为(%):93.95, 93.42,92.20,92.46,92.73,94.31,92.94,93.66, 92.05。
习题4-5
用发射光谱法检查某高纯材料中的微量硼,6次测 定的黑度值分别为13,7,8,8,11,13,平均值10.空碳电 极的硼空白值,5次测定的黑度值分别为4,5,12,8,6, 平均为7.试问某材料是否确实含有硼?
双样本T 双样本T检验
习题4-6
纯氧顶吹转炉炼某种型号高碳钢,在 正常情况下已知含碳量遵从正态分 布N(1.405,0.0482),某班炼5炉钢,测得 其C(%)=1.32,1.55,1.36,1.40,1.44.问 这一班生产情况是否正常(已知分析 数据是可靠的)? 单样本Z检验 单样本 检验
习题4-15
尿中胆固醇的分析测定方法过去是采用气相色谱法, 样品萃取后需用乙酸酐或氯乙酰进行乙酰化处理,然 后再用气相色谱分析测定。现在多用高效液相色谱法 直接分析测定。下面列出了用这两种分析测定方法对 13个不同样品同时进行分析测定的结果(微克/升), 试比较两种测定方法有无显著差异? 1 2 3 4 5 6 7 GC 0.78 0.52 0.72 0.45 0.68 0.42 0.79 HPLC 0.76 0.49 0.68 0.40 0.73 0.40 0.74 8 9 10 11 12 13 GC 0.90 0.87 0.54 0.94 0.71 1.06 HPLC 0.92 0.90 0.52 0.88 0.74 1.02
成对T 成对T检验
习题4-12
调查某农场每亩30万苗水稻田6块和每亩35万苗的水稻田7 块,得产量下表所示(单位:斤)。现在检验两种密度水稻平 均亩产之间是否有显著差异。
x1(30 万苗) 930 920 890 850 910 870 x2(35 万苗) 860 920 830 900 850 890 875