考研题型经典总结高数部分

合集下载

考研数学高数:常考十大题型全解析

考研数学高数:常考十大题型全解析

考研数学高数:常考十大题型全解析2023年考研数学高数:常考十大题型全解析2023年考研数学高数备考已经开始,掌握常考的十大题型是非常重要的。

这些题型涵盖了整个高数课程,并突出了重要的概念、公式和技巧。

下面是我们整理的常考十大题型解析,希望能帮助大家顺利备考。

1. 极限计算型题目极限计算型题目是高数考试的基本题型,不仅在高数课堂上经常出现,而且在高数考试中的分值通常较高。

这种题型一般需要理解极限的定义、性质和计算方法,同时需要掌握重要的变换和技巧,如代数运算、分式分解、换元等。

2. 连续定义型题目连续定义型题目常出于微积分的章节中,主要考查学生是否掌握连续函数的定义和性质,以及相关的推论和定理。

需要特别注意的是,有许多连续定义型题目需要结合导数的概念来解决。

3. 导数计算型题目导数计算型题目需要掌握导函数、导数的四则运算法则、高阶导数、隐函数公式、参数方程求导等基本知识,同时需要注意不同类型的函数的特殊性质和特殊的导数计算方法。

4. 函数图像分析型题目函数图像分析型题目经常出现在很多高数课程的章节中,需要掌握函数的基本性质、图像特征、渐进线和极限,以及掌握函数变换的方法和图像的作法。

同时,还需要了解如何应用导数分析函数图像的特征。

5. 平面解析几何型题目平面解析几何型题目主要考查平面向量、点线面的基本概念和性质,以及各种向量的计算、几何关系的判断和使用解析几何方法去解决实际问题。

6. 空间解析几何型题目空间解析几何型题目常出现在立体几何、空间向量以及曲面理论等章节中。

需要熟悉三维坐标系、点、向量、直线和平面的表示方法和相互关系,以及空间几何的基本概念和性质。

7. 微分方程型题目微分方程型题目主要考查一阶微分方程、二阶微分方程和常微分方程的求解方法和特殊类型的微分方程,如齐次方程、变量分离方程、一阶非齐次方程等。

8. 重积分型题目重积分型题目主要考查重积分的定义、性质、计算方法和应用,需要掌握极坐标、球坐标和柱坐标下的重积分计算。

考研高等数学的重点内容和常见题型

考研高等数学的重点内容和常见题型

考研高等数学的重点内容和常见题型考研高等数学是考研数学科目中的一部分,也是考研数学中的一个重要组成部分。

高等数学内容繁多,涵盖面广,知识点多,需要考生花费大量时间进行学习和领悟。

本文将主要介绍考研高等数学的重点内容和常见题型,帮助考生更好地复习和备考。

一、高等数学的重点内容1. 微积分微积分是高等数学的重要内容,包括导数、微分、积分等。

在考研数学中,微积分的题目涉及面广,涉及的知识点多。

考生需要掌握函数的极限、连续性、导数和微分、不定积分和定积分等内容,并能够灵活运用相关知识解决问题。

2. 线性代数线性代数是高等数学的另一个重要内容,包括矩阵、行列式、向量、空间、线性方程组等。

线性代数在考研数学中占有重要地位,与微积分一样,涉及的知识点也比较多。

考生需要掌握矩阵的运算、特征值和特征向量、向量空间和线性变换等内容,理解相关概念和定理,并能够灵活运用。

3. 概率论与数理统计概率论与数理统计是高等数学的另一个重点内容,包括事件的概率、随机变量、概率分布、统计量及估计、假设检验等。

在考研数学中,概率论与数理统计的题目也比较常见,考生需要掌握相关概念和定理,并能够灵活运用相关知识解决实际问题。

4. 偏微分方程偏微分方程也是高等数学的重要内容之一,包括一阶偏微分方程、二阶线性偏微分方程及其解法等。

在考研数学中,偏微分方程的题目也比较常见,考生需要掌握相关的概念和解法,并能够熟练解题。

5. 复变函数复变函数是高等数学中的重点内容之一,包括复数的基本运算、复函数的连续性和可导性、柯西-黎曼方程等。

在考研数学中,复变函数的题目也有一定的出现频率,考生需要掌握相关的概念和定理,并能够熟练解题。

二、高等数学的常见题型定积分的计算是考研数学中比较常见的题型之一,通常涉及到一些特殊函数的定积分、参数方程的定积分、广义积分等,考生需要熟练掌握定积分的计算方法,并能够灵活应用。

线性代数在考研数学中也有一定的出现频率,题型涉及到矩阵的秩、特征值和特征向量、线性方程组的解法等。

考研数学:高数讲义重点题型解答(二)

考研数学:高数讲义重点题型解答(二)

由 2m ≤ f ′′′(ξ1 ) + f ′′′(ξ2 ) ≤ 2M 得 m ≤ 3 ≤ M ,由介值定理,存在ξ ∈[ξ1,ξ2 ] ⊂ (−1,1) ,
使得 f ′′(ξ ) = 3 。
【例题 3】设 a1 < a2 < " < an 为 n 个不同的实数,函数 f (x) 在[a1, an ] 上有 n 阶导数,并
【例题 3】设 f (x) ∈ C[0,1] ,在 (0,1) 内可导,且 f (0) = 0, f (1) = 1 ,证明:对任意的正数 a, b ,
存在ξ ,η ∈ (0,1) ,使得
a+ f ′(ξ )
b f ′(η)
=
a+b。
【解答】因为 f (0) < a < f (1) ,所以存在 c ∈ (0,1) ,使得 f (c) = a 。
【 例 题 2 】 设 f (x) 二 阶 连 续 可 导 , 且 f ′′(x) ≠ 0 , 又 f (x + h) = f (x) + f ′(x + θh)h
( 0 < θ < 1 )。
证明: limθ = 1 。
h→0
2
【解答】由泰勒公式得
f (x + h) =
f (x) +
f ′(x)h +
两边取极限再由二阶连续可导得
lim
h→0
θ
=
1 2

题型二:证明 f (n) (ξ ) = 0
常见思路:(1)罗尔定理; (2)极值法; (3)泰勒公式
【例题 1】设 f (x) ∈ C[0,3] ,在 (0,3) 内可导,且 f (0) + f (1) + f (2) = 3, f (3) = 1 ,证明:

考研数学高数复习有些常考内容及题型

考研数学高数复习有些常考内容及题型

考研数学高数复习有些常考内容及题型高等数学是考研数学重中之重自不必说,高数知识点不少,考生要捋清孰轻孰重,可参照去年大纲复习。

为大家精心准备了考研数学高数复习常考内容及题型的资料,欢送大家前来阅读。

1、考试内容(1)几何级数与级数及其收敛性;(2)常数项级数的收敛与发散的概念;(3)收敛级数的和的概念;(4)交织级数与莱布尼茨定理;(5)级数的根本性质与收敛的必要条件;(6)正项级数收敛性的判别法;(7)函数项级数的收敛域与和函数的概念;(8)任意项级数的绝对收敛与条件收敛;(9)幂级数的和函数;(10)简单幂级数的和函数的求法;(11)幂级数在其收敛区间内的根本性质;(12)幂级数及其收敛半径、收敛区间(指开区间)和收敛域;(13)初等函数的幂级数展开式;(14)狄利克雷(Dirichlet)定理;(15)“无穷级数”考点和常考题型上的正弦级数和余弦级数。

(其中14-17只要求数一考生掌握,数三考试不要求掌握)。

(16)函数的傅里叶(Fourier)系数与傅里叶级数;(17)“无穷级数”考点和常考题型上的傅里叶级数;2、考试要求(1)了解任意项级数绝对收敛与条件收敛的概念以及绝对收敛与收敛的关系;(2)理解常数项级数收敛、发散以及收敛级数的和的概念,掌握级数的根本性质及收敛的必要条件;(3)掌握正项级数收敛性的比拟判别法和比值判别法,会用根值判别法;(4)掌握几何级数与级数的收敛与发散的条件;(5)掌握交织级数的莱布尼茨判别法;(6)了解函数项级数的收敛域及和函数的概念;(7)了解幂级数在其收敛区间内的根本性质(和函数的连续性、逐项求导和逐项积分),会求一些幂级数在收敛区间内的和函数,并会由此求出某些数项级数的和;(8)理解幂级数收敛半径的概念、并掌握幂级数的收敛半径、收敛区间及收敛域的求法;(9)了解函数展开为泰勒级数的充分必要条件;(10)了解傅里叶级数的概念和狄利克雷收敛定理,会将定义在上的函数展开为傅里叶级数,会将定义在上的函数展开为正弦级数与余弦级数,会写出傅里叶级数的和函数的表达式.(其中11只要求数一考生掌握,数二、数三考试不要求掌握)(11)掌握“无穷级数”考点和常考题型的麦克劳林(Maclaurin)展开式,会用它们将一些简单函数间接展开成幂级数;3、常考题型(1)把函数展开成傅立叶级数、正弦级数、余弦级数;(2)求幂级数的和函数;(3)狄利克雷定理(4)判定级数的敛散性;(5)把函数展开成幂级数;(6)求幂级数的收敛域和收敛半径;(7)特殊的常数项级数的求和。

考研高数题型总结

考研高数题型总结

考研高数题型总结考研高等数学题型总结考研高等数学是考研数学中的一门重要课程,占据了相当大的比重。

它涵盖了诸多数学的基础知识和重要概念,考查的题型也非常丰富多样。

以下是对考研高等数学题型的总结,以供考生参考。

一、函数与极限部分1. 函数的概念与性质:要求掌握诸如定义域、值域、单调性、奇偶性、周期性、反函数等等函数的基本性质。

2. 极限与连续:需要熟练掌握函数极限的概念、性质及相关定理,以及函数连续的概念、性质及相关定理。

3. 无穷级数:包括数项级数的概念、收敛性的判定及常见级数的和等相关内容。

二、导数与微分部分1. 导数的概念与性质:包括导数的定义、几何意义、导数的运算法则等。

2. 基本求导法则:考查对常见基本函数的求导运算,如常数函数、幂函数、指数函数、对数函数、三角函数等。

3. 高阶导数与隐函数求导:要求熟悉高阶导数的概念与计算方法,能够灵活运用链式法则、参数方程与极坐标的导数计算等。

4. 微分中值定理:要能够熟练运用拉格朗日中值定理、柯西中值定理等定理来解题。

三、积分部分1. 定积分:要求掌握定积分的定义、性质及求解方法,如牛顿-莱布尼茨公式等。

2. 不定积分:考查对常见函数的不定积分运算,如幂函数、指数函数、对数函数、三角函数等。

3. 定积分的应用:包括面积的计算、曲线长度的计算、旋转体的体积、质心、物理应用等相关内容。

四、级数与常微分方程部分1. 函数项级数:考查级数的收敛性、收敛半径及级数运算、函数项级数的收敛性及相关定理。

2. 常微分方程:包括一阶与二阶常系数齐次与非齐次线性方程、常系数线性方程的解法、以及常微分方程的应用等。

3. 潜水艇问题:需要灵活运用常微分方程进行建模与求解,考查对常微分方程的计算及应用能力。

五、空间解析几何与多元函数微分学部分1. 空间几何与向量:需要熟练掌握向量的定义、数量积、向量积、混合积及相关几何应用。

2. 多元函数微分学:考查多元函数的偏导数、全微分、极值条件、隐函数、条件极值、拉格朗日乘数法等相关内容。

考研高等数学复习:典型题型归纳

考研高等数学复习:典型题型归纳

凯程考研历史悠久,专注考研,科学应试,严格管理,成就学员!考研高等数学复习:典型题型归纳一、一元函数微分学求给定函数的导数与微分(包括高阶导数),隐函数和由参数方程所确定的函数求导,特别是分段函数和带有绝对值的函数可导性的讨论;利用洛比达法则求不定式极限;讨论函数极值,方程的根,证明函数不等式;利用罗尔定理、拉格朗日中值定理、柯西中值定理和泰勒中值定理证明有关命题,如“证明在开区间内至少存在一点满足……”,此类问题证明经常需要构造辅助函数;几何、物理、经济等方面的最大值、最小值应用问题,解这类问题,主要是确定目标函数和约束条件,判定所讨论区间;利用导数研究函数性态和描绘函数图形,求曲线渐近线。

二、一元函数积分学计算题:计算不定积分、定积分及广义积分;关于变上限积分的题:如求导、求极限等;有关积分中值定理和积分性质的证明题;定积分应用题:计算面积,旋转体体积,平面曲线弧长,旋转面面积,压力,引力,变力作功等;综合性试题。

三、函数、极限与连续求分段函数的复合函数;求极限或已知极限确定原式中的常数;讨论函数的连续性,判断间断点的类型;无穷小阶的比较;讨论连续函数在给定区间上零点的个数,或确定方程在给定区间上有无实根。

四、向量代数和空间解析几何凯程考研历史悠久,专注考研,科学应试,严格管理,成就学员!计算题:求向量的数量积,向量积及混合积;求直线方程,平面方程;判定平面与直线间平行、垂直的关系,求夹角;建立旋转面的方程;与多元函数微分学在几何上的应用或与线性代数相关联的题目。

五、多元函数的微分学判定一个二元函数在一点是否连续,偏导数是否存在、是否可微,偏导数是否连续;求多元函数(特别是含有抽象函数)的一阶、二阶偏导数,求隐函数的一阶、二阶偏导数;求二元、三元函数的方向导数和梯度;求曲面的切平面和法线,求空间曲线的切线与法平面,该类型题是多元函数的微分学与前面向量代数与空间解析几何的综合题,应结合起来复习;多元函数的极值或条件极值在几何、物理与经济上的应用题;求一个二元连续函数在一个有界平面区域上的最大值和最小值。

考研数学解析高等数学中的微积分与线性代数的典型题型

考研数学解析高等数学中的微积分与线性代数的典型题型

考研数学解析高等数学中的微积分与线性代数的典型题型考研数学是很多考生必考科目之一,其中涉及的高等数学包括微积分和线性代数两个部分。

微积分和线性代数都是数学的基础学科,对于考研数学的学习和理解至关重要。

本文将解析高等数学中微积分与线性代数的典型题型,帮助考生更好地掌握和应对考试。

一、微积分的典型题型解析1. 导数与微分在微积分中,导数和微分是非常重要的概念。

导数描述了函数在某一点上的变化率,而微分则是导数的计算结果。

考生需要掌握导数和微分的定义、计算方法和性质,并能够灵活运用。

典型题型1:计算函数f(x) = 2x^3 - 3x^2 + 4x - 1在x = 2处的导数和微分。

解析:首先求导数,根据导数的定义,我们有f'(x) = 6x^2 - 6x + 4。

然后计算微分,根据微分的定义,我们有df(x) = f'(x)dx = (6x^2 - 6x + 4)dx。

代入x = 2,得到f'(2) = 20和df(2) = 20dx。

2. 极限极限是微积分中另一个重要的概念,描述了函数在某一点或无穷远处的趋势。

考生需要掌握极限的定义、计算方法和性质,并能够正确判断函数的极限存在与否。

典型题型2:判断函数f(x) = (x^2 - 1)/(x - 1)的极限是否存在,并计算存在时的极限值。

解析:观察这个函数,我们可以看到当x趋近于1时,分母趋于0,因此需要进一步化简。

将分子进行因式分解得f(x) = x + 1,此时可以看出函数在x = 1处没有定义,因此极限不存在。

3. 不定积分不定积分是微积分中的重要概念,也是求解函数的积分的方法。

考生需要掌握不定积分的定义、计算方法和性质,并能够灵活运用。

典型题型3:求函数f(x) = 3x^2 - 2x + 1的不定积分。

解析:根据不定积分的性质,我们可以逐项积分得到F(x) = x^3 - x^2 + x + C,其中C为常数项。

二、线性代数的典型题型解析1. 矩阵运算与线性方程组矩阵运算和线性方程组是线性代数中最基础的内容。

考研高等数学的重点内容和常见题型

考研高等数学的重点内容和常见题型

考研高等数学的重点内容和常见题型考研高等数学是考研数学一门重要的学科,它是一门数学基础的核心课程,也是考研数学中的一大难点。

考研高等数学的学习对于考研学生来说至关重要。

下面将介绍考研高等数学的重点内容和常见题型,希望能够帮助考生更好地备考。

一、重点内容1. 空间解析几何空间解析几何是高等数学的一个难点和重点,它包括空间直角坐标系、向量及其运算、空间曲线的参数方程与一般方程、空间平面方程及其性质、空间曲面的方程与性质等内容。

考生需要熟练掌握这些内容,尤其是向量的线性运算和数量积、向量积的基本运算法则和应用。

2. 线性代数线性代数是数学的一个重要分支,它包括线性方程组、矩阵与行列式、向量空间、线性变换、特征值与特征向量等内容。

考生需要重点掌握线性方程组的解法,特别是矩阵的初等变换、矩阵的秩与逆、线性方程组的解法和应用等方面的知识。

3. 微积分微积分是数学分析的一部分,它包括微分学和积分学。

考生需要重点掌握函数的极限、导数与微分、不定积分与定积分、微分方程等内容,特别是函数的极限和导数的计算与应用,不定积分的计算与应用等方面的知识。

4. 概率论与数理统计概率论与数理统计是数学的一个重要分支,它包括随机事件与概率、随机变量与概率分布、数理统计基本概念等内容。

考生需要重点掌握随机事件的概率、随机变量的概率分布、大数定律和中心极限定理等内容,特别是概率分布的计算与应用,数理统计的基本概念和应用等方面的知识。

5. 傅立叶级数与傅立叶变换傅立叶级数与傅立叶变换是数学分析的一个重要分支,它是数学中的一大难点。

考生需要重点掌握周期函数的傅立叶级数展开和非周期函数的傅立叶变换,特别是傅立叶级数和傅立叶变换的性质和计算方法等内容。

二、常见题型1. 计算题计算题是高等数学考试中的常见题型,它包括向量的运算、矩阵的运算、函数的极限和导数的计算、不定积分和定积分的计算、概率分布和数理统计的计算、傅立叶级数和傅立叶变换的计算等内容。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2011考研必备:超经典的考研数学考点与题型归类分析总结1高数部分1.1 高数第一章《函数、极限、连续》1.2 求极限题最常用的解题方向:1.利用等价无穷小;2.利用洛必达法则,对于00型和∞∞型的题目直接用洛必达法则,对于∞0、0∞、∞1型的题目则是先转化为00型或∞∞型,再使用洛比达法则;3.利用重要极限,包括1sin lim 0=→x x x 、e x x x =+→10)1(lim 、e x x x =+∞→)1(1lim ;4.夹逼定理。

1.3 高数第二章《导数与微分》、第三章《不定积分》、第四章《定积分》第二章《导数与微分》与前面的第一章《函数、极限、连续》、后面的第三章《不定积分》、第四章《定积分》都是基础性知识,一方面有单独出题的情况,如历年真题的填空题第一题常常是求极限;更重要的是在其它题目中需要做大量的灵活运用,故非常有必要打牢基础。

对于第三章《不定积分》,陈文灯复习指南分类讨论的非常全面,范围远大于考试可能涉及的范围。

在此只提醒一点:不定积分⎰+=C x F dx x f )()(中的积分常数C 容易被忽略,而考试时如果在答案中少写这个C 会失一分。

所以可以这样建立起二者之间的联系以加深印象:定积分⎰dx x f )(的结果可以写为F(x)+1,1指的就是那一分,把它折弯后就是⎰+=C x F dx x f )()(中的那个C,漏掉了C 也就漏掉了这1分。

第四章《定积分及广义积分》可以看作是对第三章中解不定积分方法的应用,解题的关键除了运用各种积分方法以外还要注意定积分与不定积分的差异——出题人在定积分题目中首先可能在积分上下限上做文章:对于⎰-a a dx x f )(型定积分,若f(x)是奇函数则有⎰-aa dx x f )(=0;若f(x)为偶函数则有⎰-a a dx x f )(=2⎰a dx x f 0)(;对于⎰20)(πdx x f 型积分,f(x)一般含三角函数,此时用x t -=2π的代换是常用方法。

所以解这一部分题的思路应该是先看是否能从积分上下限中入手,对于对称区间上的积分要同时考虑到利用变量替换x=-u 和利用性质0=⎰-aa 奇函数 、⎰⎰=-aa a 02偶函数偶函数。

在处理完积分上下限的问题后就使用第三章不定积分的套路化方法求解。

这种思路对于证明定积分等式的题目也同样有效。

1.4 高数第五章《中值定理的证明技巧》由本章《中值定理的证明技巧》讨论一下证明题的应对方法。

用以下这组逻辑公式来作模型:假如有逻辑推导公式A ⇒E 、(A B)⇒C 、(C D E)⇒F,由这样一组逻辑关系可以构造出若干难易程度不等的证明题,其中一个可以是这样的:条件给出A 、B 、D ,求证F 成立。

为了证明F 成立可以从条件、结论两个方向入手,我们把从条件入手证明称之为正方向,把从结论入手证明称之为反方向。

正方向入手时可能遇到的问题有以下几类:1.已知的逻辑推导公式太多,难以从中找出有用的一个。

如对于证明F 成立必备逻辑公式中的A ⇒E 就可能有A ⇒H 、A ⇒(I K)、(A B) ⇒M 等等公式同时存在,有的逻辑公式看起来最有可能用到,如(A B) ⇒M ,因为其中涉及了题目所给的3个条件中的2个,但这恰恰走不通; 2.对于解题必须的关键逻辑推导关系不清楚,在该用到的时候想不起来或者弄错。

如对于模型中的(A B) ⇒C ,如果不知道或弄错则一定无法得出结论。

从反方向入手证明时也会遇到同样的问题。

通过对这个模型的分析可以看出,对可用知识点掌握的不牢固、不熟练和无法有效地从众多解题思路中找出答案是我们解决不了证明题的两大原因。

针对以上分析,解证明题时其一要灵活,在一条思路走不通时必须迅速转换思路,而不应该再从头开始反复地想自己的这条思路是不是哪里出了问题;另外更重要的一点是如何从题目中尽可能多地获取信息。

当我们解证明题遇到困难时,最常见的情况是拿到题莫名其妙,感觉条件与欲证结论简直是风马牛不相及的东西,长时间无法入手;好不容易找到一个大致方向,在做若干步以后却再也无法与结论拉近距离了。

从出题人的角度来看,这是因为没能够有效地从条件中获取信息。

“尽可能多地从条件中获取信息”是最明显的一条解题思路,同时出题老师也正是这样安排的,但从题目的“欲证结论”中获取信息有时也非常有效。

如在上面提到的模型中,如果做题时一开始就想到了公式(C D E) ⇒F 再倒推想到 (A B) ⇒C 、 A ⇒E 就可以证明了。

如果把主要靠分析条件入手的证明题叫做“条件启发型”的证明题,那么主要靠“倒推结论”入手的“结论启发型”证明题在中值定理证明问题中有很典型的表现。

其中的规律性很明显,甚至可以以表格的形式表示出来。

下表列出了中值定理证明问题的几种类型:的条件是一样的,同时A 也只多了一条“可导性”而已;所以在面对这一部分的题目时,如果把与证结论与可能用到的几个定理的的结论作一比较,会比从题目条件上挖掘信息更容易找到入手处。

故对于本部分的定理如介值、最值、零值、洛尔和拉格朗日中值定理的掌握重点应该放在熟记定理的结论部分上;如果能够做到想到介值定理时就能同时想起结论“存在一个ε使得k f =)(ε”、看到题目欲证结论中出现类似“存在一个ε使得k f =)(ε”的形式时也能立刻想到介值定理;想到洛尔定理时就能想到式子0)(='εf ;而见到式子)()()()()()(a g b g a f b f g f --=''εε也如同见到拉格朗日中值定理一样,那么在处理本部分的题目时就会轻松的多,时常还会收到“豁然开朗”的效果。

所以说,“牢记定理的结论部分”对作证明题的好处在中值定理的证明问题上体现的最为明显。

综上所述,针对包括中值定理证明在内的证明题的大策略应该是“尽一切可能挖掘题目的信息,不仅仅要从条件上充分考虑,也要重视题目欲证结论的提示作用,正推和倒推相结合;同时保持清醒理智,降低出错的可能”。

希望这些想法对你能有一点启发。

不过仅仅弄明白这些离实战要求还差得很远,因为在实战中证明题难就难在答案中用到的变形转换技巧、性质甚至定理我们当时想不到;很多结论、性质和定理自己感觉确实是弄懂了、也差不多记住了,但是在做题时那种没有提示、或者提示很少的条件下还是无法做到灵活运用;这也就是自身感觉与实战要求之间的差别。

这就像在记英语单词时,看到英语能想到汉语与看到汉语能想到英语的掌握程度是不同的一样,对于考研数学大纲中“理解”和“掌握”这两个词的认识其实是在做题的过程中才慢慢清晰的。

我们需要做的就是靠足量、高效的练习来透彻掌握定理性质及熟练运用各种变形转换技巧,从而达到大纲的相应要求,提高实战条件下解题的胜算。

依我看,最大的技巧就是不依赖技巧,做题的问题必须要靠做题来解决。

1.5 高数第六章《常微分方程》本章常微分方程部分的结构简单,陈文灯复习指南对一阶微分方程、可降阶的高阶方程、高阶方程都列出了方程类型与解法对应的表格。

历年真题中对于一阶微分方程和可降阶方程至少是以小题出现的,也经常以大题的形式出现,一般是通过函数在某点处的切线、法线、积分方程等问题来引出;从历年考察情况和大纲要求来看,高阶部分不太可能考大题,而且考察到的类型一般都不是很复杂。

对于本章的题目,第一步应该是辨明类型,实践证明这是必须放在第一位的;分清类型以后按照对应的求解方法按部就班求解即可。

这是因为其实并非所有的微分方程都是可解的,在大学高等数学中只讨论了有限的可解类型,所以出题的灵活度有限,很难将不同的知识点紧密结合或是灵活转换。

这样的知识点特点就决定了我们可以采取相对机械的“辨明类型——〉套用对应方法求解”的套路 ,而且各种类型的求解方法正好也都是格式化的,便于以这样的方式使用。

先讨论一下一阶方程部分。

这一部分结构清晰,对于各种方程的通式必须牢记,还要能够对易混淆的题目做出准确判断。

各种类型都有自己对应的格式化解题方法,这些方法死记硬背并不容易,但有规律可循——这些方法最后的目的都是统一的,就是把以各种形式出现的方程都化为f(x)dx=f(y)dy 这样的形式,再积分得到答案。

对于可分离变量型方程0)()()()(2211=+dy y g x f dx y g x f ,就是变形为dx x f x f )()(21=-dy y g y g )()(12,再积分求解;对于齐次方程)(x yf y ='则做变量替换x y u =,则y '化为dxdu x u +,原方程就可化为关于x u 和的可分离变量方程,变形积分即可解;对于一阶线性方程)()(x q y x p y =+'第一步先求0)(=+'y x p y 的通解,然后将变形得到的dx x p y dy)(-=积分,第二步将通解中的C 变为C(x)代入原方程)()(x q y x p y =+'解出C(x)后代入即可得解;对于贝努利方程)()(x q y x p y =+'n y ,先做变量代换n y z -=1代入可得到关于z 、x 的一阶线性方程,求解以后将z 还原即可;全微分方程M(x,y)dx+N(x,y)dy 比较特殊,因为其有条件x N y M ∂∂∂∂=,而且解题时直接套用通解公式⎰+xx dx y x M 0),(0⎰=y y C dy y x N 0),(.所以,对于一阶方程的解法有规律可循,不用死记硬背步骤和最后结果公式。

对于求解可降阶的高阶方程也有类似的规律。

对于)()(x f y n =型方程,就是先把)1(-n y 当作未知函数Z ,则Z y n '=)( 原方程就化为 dx x f dz )(= 的一阶方程形式,积分即得;再对)2(-n y 、)3(-n y 依次做上述处理即可求解;),(y x f y '='' 叫不显含 y 的二阶方程,解法是通过变量替换 p y ='、p y '='' (p 为x 的函数)将原方程化为一阶方程;),(y y f y '=''叫不显含x 的二阶方程,变量替换也是令p y ='(但此中的p 为y 的函数),则p p p y dy dp dx dydy dp '==='',也可化为一阶形式。

所以就像在前面解一阶方程部分记“求解齐次方程就用变量替换u xy =”,“求解贝努利方程就用变量替换n y z-=1”一样,在这里也要记住“求解不显含y 的二阶方程就用变量替换p y ='、p y '='' ”、“求解不显含x 的二阶方程就用变量替换p y ='、p p y '=''”。

相关文档
最新文档