数学:第二章《统计》测试(5)(新人教A版必修3)
高一数学人教A版必修三练习:第二章统计2.2.1含解析

(本栏目内容,在学生用书中以独立形式分册装订!)一、选择题(每小题5分,共20分)1.对于样本频率分布折线图与总体密度曲线的关系,下列说法中正确的是()A.频率分布折线图与总体密度曲线无关B.频率分布折线图就是总体密度曲线C.样本容量很大的频率分布折线图就是总体密度曲线D.如果样本容量无限增大、分组的组距无限减小,那么频率分布折线图就会无限接近总体密度曲线解析:总体密度曲线通常是用样本频率分布估计出来的.而频率分布折线图在样本容量无限增大,分组的组距无限减小的情况下会无限接近于一条光滑曲线,这条光滑曲线就是总体密度曲线.答案: D2.下面是甲、乙两名运动员某赛季一些场次得分的茎叶图,据图可知()A.甲运动员的成绩好于乙运动员B.乙运动员的成绩好于甲运动员C.甲、乙两名运动员的成绩没有明显的差异D.甲运动员的最低得分为0分解析:从茎叶图可以看出,甲运动员的成绩集中在大茎上的叶多,故成绩好.故选A.答案: A3.某班的全体学生参加英语测试,成绩的频率分布直方图如图,数据的分组依次为[20,40),[40,60),[60,80),[80,100].若低于60分的人数是15,则该班的学生人数是( )A .45B .50C .55D .60解析: 设该班人数为n ,则20×(0.005+0.01)n =15,n =50,故选B. 答案: B4.观察新生婴儿的体重,其频率分布直方图如图所示,则新生婴儿体重在[2 700,3 000)内的频率为( )A .0.001B .0.1C .0.2D .0.3解析: 由频率分布直方图的意义可知,各小长方形的面积=组距×频率组距=频率,即各小长方形的面积等于相应各组的频率.在区间[2 700,3 000)内频率的取值为(3 000-2 700)×0.001=0.3.故选D.答案: D二、填空题(每小题5分,共15分)5.一个社会调查机构就某地居民的月收入调查了10 000人,并根据所得数据画了样本的频率分布直方图(如图).为了分析居民的收入与年龄、学历、职业等方面的关系,要从这10 000人中再用分层抽样方法抽出100人作进一步调查,则在[2 500,3 000)(元)月收入段应抽出________人.解析:由题意得在[2500,3000)(元)月收入段应抽出的人数为0.0005×500×100=25.答案:256.某省选拔运动员参加2015年的全运会,测得7名选手的身高(单位:cm)分布茎叶图如图所示,记录的平均身高为177 cm,其中有一名候选人的身高记录不清,其末位数为x,那么x的值为________.解析:依题意得180×2+1+170×5+3+x+8+9=177×7,x=8.答案:87.下面是某中学期末考试各分数段的考生人数分布表:则分数在[700,800)的人数为________人.解析:由于在分数段[400,500)内的频数是90,频率是0.075,则该中学共有考生900.075=1 200,则在分数段[600,700)内的频数是1 200×0.425=510,则分数在[700,800)内的频数,即人数为1 200-(5+90+499+510+8)=88.答案:88三、解答题(每小题10分,共20分)8.下表给出了某校500名12岁男孩中用随机抽样得出的120人的身高(单位:cm).(1)列出样本频率分布表;(2)画出频率分布直方图;(3)估计身高小于134 cm的人数占总人数的百分比.解析:(1)样本频率分布表如下:(2)其频率分布直方图如下:(3)由样本频率分布表可知身高小于134 cm 的男孩出现的频率为0.04+0.07+0.08=0.19,所以我们估计身高小于134 cm 的人数占总人数的19%.9.为了调查甲、乙两个交通站的车流量,随机选取了14天,统计每天上午8:00~12:00间各自的车流量(单位:百辆),得如图所示的统计图,试求:(1)甲、乙两个交通站的车流量的极差分别是多少? (2)甲交通站的车流量在[10,40]间的频率是多少? (3)甲、乙两个交通站哪个站更繁忙?并说明理由.解析: (1)甲交通站的车流量的极差为73-8=65(百辆),乙交通站的车流量的极差为71-5=66(百辆).(2)甲交通站的车流量在[10,40]间的频率为414=27.(3)甲交通站的车流量集中在茎叶图的下方,而乙交通站的车流量集中在茎叶图的上方,从数据的分布情况来看,甲交通站更繁忙.。
人教A版高中数学必修三试卷第二章统计2.1.3.docx

高中数学学习材料马鸣风萧萧*整理制作2.1.3 分层抽样 课时目标 1.理解分层抽样的概念.2.掌握分层抽样的使用条件和操作步骤,会用分层抽样法进行抽样.1.分层抽样的概念在抽样时,将总体分成互不交叉的层,然后按照一定的比例,从各层独立地抽取一定数量的个体,将各层取出的个体合在一起作为样本,这种抽样方法是一种分层抽样.2.分层抽样的适用条件分层抽样尽量利用事先所掌握的各种信息,并充分考虑保持样本结构与总体结构的一致性,这对提高样本的代表性非常重要.当总体是由差异明显的几个部分组成时,往往选用分层抽样的方法.一、选择题1.有40件产品,其中一等品10件,二等品25件,次品5件,现从中抽出8件进行质量分析,问应采取何种抽样方法( )A .抽签法B .随机数表法C .系统抽样D .分层抽样 答案 D2.某城市有学校700所.其中大学20所,中学200所,小学480所,现用分层抽样方法从中抽取一个容量为70的样本,进行某项调查,则应抽取中学数为( )A .70B .20C .48D .2答案 B解析 由于70070=10,即每10所学校抽取一所, 又因中学200所,所以抽取200÷10=20(所).3.某工厂生产A 、B 、C 三种不同型号的产品,产品的数量之比依次为3∶4∶7,现在用分层抽样的方法抽出容量为n 的样本,样本中A 型号产品有15件,那么样本容量n 为( )A .50B .60C .70D .80答案 C解析 由分层抽样方法得:33+4+7×n =15, 解得n =70.4.下列问题中,最适合用分层抽样方法抽样的是( )A .某电影院有32排座位,每排有40个座位,座位号是1~40.有一次报告会坐满了听众,报告会结束以后为听取意见,要留下32名听众进行座谈B .从10台冰箱中抽出3台进行质量检查C .某乡农田有山地8 000亩,丘陵12 000亩,平地24 000亩,洼地4 000亩,现抽取农田480亩估计全乡农田平均产量D .从50个零件中抽取5个做质量检验答案 C解析 A 的总体容量较大,宜采用系统抽样方法;B 的总体容量较小,用简单随机抽样法比较方便;C 总体容量较大,且各类田地的产量差别很大,宜采用分层抽样方法;D 与B 类似.5.要从其中有50个红球的1 000个球中,采用按颜色分层抽样的方法抽取100个进行分析,则应抽取红球的个数为( )A .5个B .10个C .20个D .45个答案 A解析 由题意知每1000100=10(个)球中抽取一个,现有50个红球,应抽取5010=5(个). 6.某小学三个年级共有学生270人,其中一年级108人,二、三年级各81人,现要用抽样方法抽取10人形成样本,将学生按一、二、三年级依次统一编号为1,2,…,270,如果 抽得号码有下列四种情况:①5,9,100,107,111,121,180,195,200,265;②7,34,61,88,115,142,169,196,223,250;③30,57,84,111,138,165,192,219,246,270;④11,38,60,90,119,146,173,200,227,254;其中可能是由分层抽样得到,而不可能是由系统抽样得到的一组号码为( )A .①②B .②③C .①③D .①④答案 D解析 按照分层抽样的方法抽取样本,一、二、三年级抽取的人数分别为:10827,8127,8127,即4人,3人,3人;不是系统抽样即编号的间隔不同,观察①、②、③、④知:①④符合题意,②是系统抽样,③中三年级人数为4人,不是分层抽样.二、填空题7.某农场在三种地上种玉米,其中平地210亩,河沟地120亩,山坡地180亩,估计产量时要从中抽取17亩作为样本,则平地、河沟地、山坡地应抽取的亩数分别是________.答案 7,4,6解析 应抽取的亩数分别为210×17510=7,120×17510=4,180×17510=6. 8.将一个总体分为A 、B 、C 三层,其个体数之比为5∶3∶2.若用分层抽样方法抽取容量为100的样本,则应从C 中抽取________个个体.答案 20解析 由题意可设A 、B 、C 中个体数分别为5k,3k,2k ,所以C 中抽取个体数为2k 5k +3k +2k×100=20.9.某工厂生产A 、B 、C 、D 四种不同型号的产品,产品数量之比依次为2∶3∶5∶1.现用分层抽样方法抽出一个容量为n 的样本,样本中A 种型号有16件,那么此样本的容量n 为________.答案 88解析 在分层抽样中,每一层所抽的个体数的比例与总体中各层个体数的比例是一致的.所以,样本容量n =2+3+5+12×16=88. 三、解答题10.某小学有1 800名学生,6个年级中每个年级的人数大致相同,男女生的比例也大致相同,要从中抽取48名学生,测试学生100米跑的成绩.你认为应该用什么样的方法?怎样抽样?为什么要用这个方法?解 应该用分层抽样的方法.因为小学的不同年级之间,男女生之间百米跑的成绩有较大差异,所以将1 800名学生按不同年级、性别分成12组,每组随机抽取4名,一共抽取48名学生.这样的抽样方法可使样本的结构与总体的结构保持一致.11.某工厂有3条生产同一产品的流水线,每天生产的产品件数分别是3 000件,4 000件,8 000件.若要用分层抽样的方法从中抽取一个容量为150件产品的样本,应该如何抽样?解 总体中的个体数N =3 000+4 000+8 000=15 000,样本容量n =150,抽样比例为n N =15015 000=1100,所以应该在第1条流水线生产的产品中随机抽取3 000×1100=30(件)产品,在第2条流水线生产的产品中随机抽取4 000×1100=40(件)产品,在第3条流水线生产的产品中随机抽取8 000×1100=80(件)产品.这里因为每条流水线所生产的产品数都较多,所以,在每条流水线的产品中抽取样品时,宜采用系统抽样方法. 能力提升12.某单位有技师18人,技术员12人,工程师6人,需要从这些人中抽取一个容量为n 的样本,如果采用系统抽样和分层抽样方法抽取,都不用剔除个体;如果样本容量增加1,则在采用系统抽样时,需要在总体中剔除1个个体,求样本容量n.解 因为采用系统抽样和分层抽样时不用剔除个体,所以n 是36的约数,且36n是6的约数,即n 又是6的倍数,n =6,12,18或36,又n +1是35的约数,故n 只能是4,6,34,综合得n =6,即样本容量为6.13.选择合适的抽样方法抽样,写出抽样过程.(1)有甲厂生产的30个篮球,其中一箱21个,另一箱9个,抽取3个.(2)有30个篮球,其中甲厂生产的有21个,乙厂生产的有9个,抽取10个.(3)有甲厂生产的300个篮球,抽取10个.(4)有甲厂生产的300个篮球,抽取30个.解 (1)总体容量较小,用抽签法.①将30个篮球编号,号码为00,01, (29)②将以上30个编号分别写在完全一样的小纸条上,揉成小球,制成号签;③把号签放入一个不透明的袋子中,充分搅拌;④从袋子中逐个抽取3个号签,并记录上面的号码;⑤找出和所得号码对应的篮球即可得到样本.(2)总体由差异明显的两个层次组成,需选用分层抽样法.①确定抽取个数.因为3010=3,所以甲厂生产的应抽取213=7(个),乙厂生产的应抽取93=3(个);②用抽签法分别抽取甲厂生产的篮球7个,乙厂生产的篮球3个.这些篮球便组成了我们要抽取的样本.(3)总体容量较大,样本容量较小,宜用随机数法.①将300个篮球用随机方式编号,编号为000,001, (299)②在随机数表中随机的确定一个数作为开始,如第8行第29列的数“7”开始.任选一个方向作为读数方向,比如向右读;③从数“7”开始向右读,每次读三位,凡不在000~299中的数跳过去不读,遇到已经读过的数也跳过去不读,便可依次得到10个号码,这就是所要抽取的10个样本个体的号码.(4)总体容量较大,样本容量也较大宜用系统抽样法.①将300个篮球用随机方式编号,编号为001,002,003,…,300,并分成30段,其中每一段包含30030=10(个)个体; ②在第一段001,002,003,…,010这十个编号中用简单随机抽样抽出一个(如002)作为起始号码;③将编号为002,012,022,…,292的个体抽出,组成样本1.分层抽样的概念和特点当总体由有明显差别的几部分组成时,为了使抽取的样本更好地反映总体的情况,常采用分层抽样.分层抽样的优点是使样本具有较强的代表性,而且在各层抽样时又可灵活地选用不同的抽样法.2.三种抽样方法的选择简单随机抽样、系统抽样及分层抽样的共同特点是在抽样过程中每一个个体被抽取的机会都相等,体现了抽样方法的公平性和客观性.其中简单随机抽样是最基本的抽样方法,在系统抽样和分层抽样中都要用到简单随机抽样.当总体中的个体数较少时,常采用简单随机抽样;当总体中的个体数较多时,常采用系统抽样;当已知总体是由差异明显的几部分组成时,常采用分层抽样.。
必修三第二章统计单元测试题及答案

必修三统计试题一、选择题(每小题 5分,共60分) 1①某学校高二年级共有526人,为了调查学生每天用于休息的时间,决定抽取10%勺学生进行调查;②一次数学月考中,某班有 10人在100分以上,32人在90〜100分,12人低 于90分,现从中抽取9人了解有关情况;③运动会工作人员为参加 4 X 100 m 接力赛的6 支队伍安排跑道•就这三件事,恰当的抽样方法分别为( )A. 分层抽样、分层抽样、简单随机抽样B. 系统抽样、系统抽样、简单随机抽样C. 分层抽样、简单随机抽样、简单随机抽样D. 系统抽样、分层抽样、简单随机抽样2.某单位有840名职工,现采用系统抽样方法抽取 42人做问卷调查,将840人按1,2,…, 840随机编号,则抽取的 42人中,编号落入区间 481,720的人数为( )A . 11B . 12C . 13D . 143从2007名学生中选取50名参加全国数学联赛,若采用下面的方法选取:先用简单随机抽 样从2007人中剔除7人,剩下的2000人再按系统抽样的方法抽取,则每人入选的可能性()4.某大学数学系共有学生 5 000人,其中一、二、三、四年级的人数比为 4 : 3 : 2 : 1,要用分层抽样的方法从数学系所有学生中抽取一个容量为 200的样本,则应抽取三年级的学生人数为()A.80B.40C.605•下列数字特征一定是数据组中数据的是( )_ 26. 某公司10位员工的月工资(单位:元)为X 1.X 2.X 3.X 4,其均值和方差分别为 x 和s ,若从下 月起每位员工的月工资增加 100元,则这10位员工下月工资的均值和方差分别为( )7.—组数据中的每一个数据都乘以 2,再减去80,得到一组新数据,若求得新的数据的平均数是1.2,方差是4.4,则原来数据的平均数和方差分别是( )B . 48.8,4.4C . 81.2,44.4D . 78.8,75.6 8.如图所示的茎叶图记录了甲、 乙两组各5名工人某日的产量数据(单位:件).若这两组数据y 与X 之间的回归直线方程是()A. = x + 1.9B. = 1.04x + 1.910 .将容量为n 的样本中的数据分成 6组,若第一组至第六组的频率之比为2 :3 :4 : 6 :A •不全相等B .均不相等C .都相等,且为 1 40D .都相等,且为502007D.20 A .众数B .中位数C .标准差D .平均数A.X.s 2 100B. X + 100.S 2 1002C.X.s 2D.X+100.S 2A . 40.6,1.1 的中位数相等,且平均值也相等,则X 和y 的值分别为().A.3 和 5B.5 和 5C.3 和 7D.5 和 7甲组567B(2,3.8), C(3,5.2), D(4,6),C. = 0.95x + 1.04D. = 1.05x — 0.94 : 1,且前三组数据的频数之和等于27,则n的值为()16. 为了解某校今年准备报考飞行员的学生的体重情况,将所得的数据整理后,画出了频率 分布直方图(如图),已知图中从左到右的前 3个小组的频率之比为 1 : 2 : 3,其中第2小组A . 50B . 60C . 70D . 8011.关于统计数据的分析,有以下几个结论:①一组数不可能有两个众数;②将一组数据中的每个数据都减去同一个数后,方差没有变化;③调查剧院中观众观看感受时, 从50排(每排人数相同)中任意抽取一排的人进行调查, 属于分层抽样;④一组数据的方差- ,定是 正结论错误的个数为()12..为了了解某校高三学生的视力情况,随机抽查了该校100名高三学生的视力情况,得到的数据频率分布直方图如图所示 •由于不慎将部分数据丢失,仅知道后五组频数和为 62,最大频率为0.32,设视力在4.6到4.8之间的学生人数为a,则a 的值为(A.64B.54C.48D.27、填空题(每小题5分,共20 分) 13. 已知样本 9,10,11,x, 14. 若 a 1, a 2,21个数据的方差为15. 从某小区抽取 y 的平均数是10,标准差是 2,则xy _____a 20这20个数据的平均数为 x ,方差为0.21,则a 1, a 2,…,a 20, x 这100户居民进行月用电量调查,发现其用电量都在 率分布直方图如图所示.(1) 直方图中x 的值为一 (2)在这些用户中,用电量落在区间100,250的频数为12,则报考飞行员的总人数是三、解答题(共70 分)17. (10分)对甲、乙的学习成绩进行抽样分析,各抽5门功课,得到的观测值如下;).50至350度之间,频甲 60 80 70 90 70 乙8060708075问:甲、乙谁的平均成绩最好?谁的各门功课发展较平衡?18. (12分)在每年的春节后,某市政府都会发动公务员参与到植树绿化活动中去.林业管理部门在植树前,为了保证树苗的质量,都会在植树前对树苗进行检测•现从 甲、乙两种树苗中各抽测了 10株树苗,量出它们的高度如下 (单位:厘米甲:37, 21, 31, 20, 29, 19, 32, 23, 25, 33; 乙:10, 30, 47, 27, 46, 14, 26, 10, 44, 46.(1) 画出两组数据的茎叶图,并根据茎叶图对甲、乙两种树苗的高度作比较,写出两个统计结论; (2)设抽测的10株甲种树苗高度平均值为,将这10株树苗的高度依次输入,按程序框(如图)进行运算,问输出的 S 大小 为多少?并说明S 的统计学意义.19.(:使用年限x 2 3 4 5 6 维修费用y 2. 23. 85. 56. 57. 0(1)画出散点图;(2)求支出的维修费用 与使用年限的回归方程;(3)估计使用年限为10年时,维修费用是多少),苟曰I20. 某校从参加高一年级期末考试的学生中抽出40名学生,将其成绩(均为整数)分成六段40,50 , 50,60…90,100后画出如下部分频率分布直方图,观察图形的信息,回答下列问题:(1)求第四小组的频率,并补全频率分布直方图;(2)估计这次考试的及格率(60分及以上为及格)和平均分;21. 某校高二某班的一次数学测试成绩的茎叶图和频率分布直方图都受到不同程度的破坏, 其可见部分如图 C26所示•据此解答如下问题:(1) 计算频率分布直方图中[80, 90)间的矩形的高; (2) 根据茎叶图和频率分布直方图估计这次测试的平均分.22•某地统计局就该地居民的月收入调查了 10 000人,并根据所得数据画了样本的频率分布 直方图(每个分组包括左端点,不包括右端点,如第一组表示收入在 [1 000,1 500)) • (1)求居民月收入在[2000,2500)的频率; ⑵根据频率分布直方图算出样本数据的中位数; ⑶在月收入为[2500,3000),[3000,3500),[3500,4000]的三组居民中,采用分层抽样方法抽出 人作进一步分析,则月收入在 [3000,3 500)的这段应抽多少人?答案1-5 D B D B A 6-10 D A A B B 11-12 C B 13. 96_ 14. 0.215. 0.00447016. 48____5 68623356897 1 2234 5678S 89 5 890517.解:X 甲=_(60 80 70 90 70) 74, (2分) X 乙 1 -(80 560 70 80 75) 73, (4 分)2 (142 62 42 162 42) 104, (6 分)52A 132 32 72 22) 56 (8 分)QX 甲 X 乙 ®2邑2甲的平均成绩较好,乙的各门功课发展较平衡18.解:⑴茎叶图:ip乙9 1 0 4 05 3 9 0 12 7 63 217牛n47 6 4 6统计结论:(答案不唯一,任意两个即可 ) ① 甲种树苗的平均高度小于乙种树苗的平均高度; ② 甲种树苗比乙种树苗长得整齐;③ 甲种树苗的中位数为 27,乙种树苗的中位数为 28.5 ;④ 甲种树苗的高度基本上是对称的, 而且大多数集中在平均数附近, 布比较分散.(2) = 27, S = 35, S 表示10株甲种树苗高度的方差.S 越小,表示长得越整齐, S 值越大,表示长得越参差不齐.19. 解:(1)散点图如图:10 分)乙种树苗的高度分(2) X2.23.8 5.5 6.575X i Y ii 12 2.23 3.84 5.55 6o567 112.3.(4分)形框知,m = 0.008X 10,得到m = 25,所以频率分布直方图中[80, 90)间的矩形的高为 X⑵设这次测试的平均分为 ,贝U = 55X 0.08 + 65X 0.28 + 75X 0.4+ 85X 0.16 + 95 X0.08= 73.8,所以,根据茎叶图和频率分布直方图估计这次测试的平均分为73.8分.22. (1) 0.0005 500=0.25(2)设中位数为x500 0.0002 500 0.0004 (x 2000) 500 0.5X i y i 5xyi 1 52 Xi-25x112.3 5 4 590 5 42123a y bx 5 1.23 4 0.08.所求的线性回归方程为? 1.23x(3) 维修费用=12.38 (15分) 20. (1)由频率分布直方图可知第 1、2、3、5、6小组的频率分别为:0.1、0.15、0.15、0.25、0.05,所以第4小组的频率为:1-0.1-0.15-0.15-0.25-0.05=0.3 ..•.在频率分布直方图中第 4小组的对应的矩0 30.08. (12 分)(2) 考试的及格率即 60分及以上的频率•••及格率为 0.15+0.3+0.25+0.05=0.75 又由频率分布直方图有平均分为:0.1 45 0.15 55 0.15 65 0.3 75 0.25 85 0.05 95 7121. (1)设该班的数学测试成绩统计的人数为m ,则由茎叶图及频率分布直方图第一个矩110 0.016.解得x 2400中位数的估计值为2400(3)收入在[2500,3000)的人数为500 0.0005 10000=2500 收入在[3000,3500)的人数为500 0.0003 10000=1500 收入在[3500,4000]的人数为500 0.0001 10000=500 分层抽样,在月收入在[3000,3500)这段应抽取的人数为:150090 302500 1500 500。
人教版高中数学必修三第二章《统计》质量检测

(时间90分钟,满分120分)一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.我校在检查学生作业时,抽出每班学号尾数为5的学生作业进行检查,这里运用的是()A.分层抽样B.抽签抽样C.随机抽样D.系统抽样答案:D2.下列各选项中的两个变量具有相关关系的是()A.长方体的体积与边长B.大气压强与水的沸点C.人们着装越鲜艳,经济越景气D.球的半径与表面积解析:A、B、D均为函数关系,C是相关关系.答案:C3.为了调查全国人口的寿命,抽查了十一个省(市)的2 500名城镇居民.这2 500名城镇居民的寿命的全体是()A.总体B.个体C.样本D.样本容量答案:C4.已知总体容量为106,若用随机数表法抽取一个容量为10的样本.下面对总体的编号最方便的是()A.1,2,…,106 B.0,1,2,…,105C.00,01,…,105 D.000,001,…,105解析:由随机数抽取原则可知选D.答案:D5.(2011·湖北高考)有一个容量为200的样本,其频率分布直方图如图所示.根据样本的频率分布直方图估计,样本数据落在区间[10,12)内的频数为()A.18 B.36C.54 D.72解析:易得样本数据在区间[10,12)内的频率为0.18,则样本数据在区间[10,12)内的频数为36. 答案:B6.对一组数据x i (i =1,2,3,…,n ),如果将它们改变为x i +c (i =1,2,3,…,n ),其中c ≠0,则下面结论中正确的是( ) A .平均数与方差均不变 B .平均数变了,而方差保持不变 C .平均数不变,而方差变了 D .平均数与方差均发生了变化解析:设原来数据的平均数为x -,将它们改变为x i +c 后平均数为x ′,则x ′=x -+c ,而方差s ′2=1n [(x 1+c -x --c )2+…+(x n +c -x --c )2]=s 2.答案:B7.如果是甲、乙两名运动员某赛季一些场次得分的茎叶图,据图可知( )A .甲运动员的成绩好于乙运动员B .乙运动员的成绩好于甲运动员C .甲、乙两名运动员的成绩没有明显的差异D .甲运动员的最低得分为0分解析:从这个茎叶图可以看出运动员得分大致对称,平均得分及中位数都是30多分;乙运动员的得分除一个52外,也大致对称,平均得分及中位数都是20多分,因此,甲运动员发挥比较稳定,总体得分情况比乙好. 答案:A8.(2011·江西高考)为了解儿子身高与其父亲身高的关系,随机抽取5对父子的身高数据如下:父亲身高x (cm) 174 176 176 176 178 儿子身高y (cm)175175176177177则y 对x 的线性回归方程为( ) A.y ^=x -1 B.y ^=x +1 C.y ^=88+12xD.y ^=176 解析:设y 对x 的线性回归方程为y ^=bx +a ,因为b=-2×(-1)+0×(-1)+0×0+0×1+2×1(-2)2+22=12,a=176-12×176=88,所以y对x的线性回归方程为y^=12x+88.答案:C9.甲、乙两支女子曲棍球队在去年的国际联赛中,甲队平均每场进球数是3.2,全年进球数的标准差为3;乙队平均每场进球数是1.8,全年进球数的标准差为0.3.下列说法中,正确的个数为()①甲队的技术比乙队好;②乙队发挥比甲队稳定;③乙队几乎每场都进球;④甲队的表现时好时坏.A.1个B.2个C.3个D.4个解析:因为甲队的平均进球数比乙队多,所以甲队技术较好,①正确;乙队的标准差比甲队小,标准差越小越稳定,所以乙队发挥稳定,②也正确;乙队平均每场进球数为1.8,所以乙队几乎每场都进球,③正确;由于s甲=3,s乙=0.3,所以甲队与乙队相比,不稳定,所以甲队的表现时好时坏,④正确.答案:D10.已知数据:①18,32,-6,14,8,12;②21,4,7,14,-3,11;③5,4,6,5,7,3;④-1,3,1,0,0,-3.各组数据中平均数和中位数相等的是()A.①B.②C.③D.①②③④解析:运用计算公式x=1n(x1+x2+…+x n),可知四组数据的平均数分别为13,9,5,0.根据中位数的定义:把每组数据从小到大排列,取中间一位数(或两位的平均数)即为该组数据的中位数,可知四组数据的中位数分别为13,9,5,0.故每组数据的平均数和中位数均对应相等.答案:D二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上.) 11.(2012·银川模拟)将一个总体分为A、B、C三层,其个体数之比为5∶3∶2.若用分层抽样方法抽取容量为100的样本,则应从C中抽取________个个体.解析:由题意,应从C中抽取100×25+3+2=20个个体.答案:2012.从某小学随机抽取100名同学,将他们的身高(单位:厘米)数据绘制成频率分布直方图如图所示,由图中数据可知a=________.若要从身高在[120,130),[130,140),[140,150]三组内的学生中,用分层抽样的方法选取18人参加一项活动,则从身高在[140,150]内的学生中选取的人数应为________.解析:因为直方图中的各个矩形的面积之和为1,所以有10×(0.005+0.035+a +0.020+0.010)=1,解得a =0.03.由直方图可知三个区域的学生总数为100×10×(0.030+0.020+0.010)=60,其中身高在[140,150]内的学生人数为10,所以从身高在[140,150]内抽取的学生人数为1860×10=3.答案:0.03 313.某校甲、乙两个班级各有5名编号为1,2,3,4,5的学生进行投蓝练习,每人投10次,投中的次数如下表:学生 1号 2号 3号 4号 5号 甲班 6 7 7 8 7 乙班67679则以上两组数据的方差中较小的一个为s 2=________.解析:甲班的平均数为7,方差s ?=15[(6-7) 2+02+02+(8-7) 2+02]=25;乙班的平均数为7,方差 s 2=2(6-7)2+2(7-7)2+(9-7)25=65.答案:2514.某班12位学生父母年龄的茎叶图如图所示,则12位同学母亲的年龄的中位数是________,父亲的平均年龄比母亲的平均年龄多________岁.解析:由41+432=42,得中位数是42.母亲平均年龄=42.5,父亲平均年龄为45.5,因而父亲平均年龄比母亲平均年龄多3岁.答案:42 3三、解答题(本大题共4小题,共50分.解答时应写出必要的文字说明、证明过程或演算步骤)15.(12分)某花木公司为了调查某种树苗的生长情况,抽取了一个容量为100的样本,测得树苗的高度(cm)数据的分组及相应频数如下:[107,109)3株;[109,111)9株;[111,113)13株;[113,115)16株;[115,117)26株;[117,119)20株;[119,121)7株;[121,123)4株;[123,125]2株.(1)列出频率分布表;(2)画出频率分布直方图;(3)据上述图表,估计数据在[109,121)范围内的可能性是百分之几?解:分组频数频率累积频率[107,109)30.030.03[109,111)90.090.12[111,113)130.130.25[113,115)160.160.41[115,117)260.260.67[117,119)200.200.87[119,121)70.070.94[121,123)40.040.98[123,125]20.02 1.00合计100 1.00(2)频率分布直方图如下:(3)由上述图表可知数据落在[109,121)范围内的频率为:0.94-0.03=0.91,即数据落在[109,121)范围内的可能性是91%.16.(12分)(2012·福建六校联考)甲、乙两位学生参加数学竞赛培训,现分别从他们在培训期间参加的若干次预赛成绩中随机抽取8次,记录如下:甲8281797895889384乙9295807583809085(1)用茎叶图表示这两组数据;(2)现要从中选派一人参加数学竞赛,从统计学的角度(在平均数、方差或标准差中选两个)考虑,你认为选派哪位学生参加合适?请说明理由?解:(1)作出茎叶图如下:(2)x甲=18(78+79+81+82+84+88+93+95)=85,x乙=18(75+80+80+83+85+90+92+95)=85.2s甲=18[(78-85)2+(79-85)2+(81-85)2+(82-85)2+(84-85)2+(88-85)2+(93-85) 2+(95-85) 2]=35.5,2s乙=18[(75-85)2+(80-85)2+(80-85)2+(83-85)2+(85-85)2+(90-85)2+(92-85) 2+(95-85) 2]=41,∵x甲=x乙,2s甲<2s乙,∴甲的成绩较稳定,派甲参赛比较合适.17.(12分)某个服装店经营某种服装,在某周内获纯利y(元)与该周每天销售这些服装件数x之间有如下一组数据:x 3456789y 66697381899091已知∑i=17x2i=280,∑i=17x i y i=3 487,(1)求x,y;(2)求纯利y与每天销售件数x之间的回归直线方程;(3)每天多销售1件,纯利y增加多少元?解:(1)x=17(3+4+5+…+9)=6,y=17(66+69+…+91)≈79.86.(2)设回归直线方程为y ^=a ^+b ^x ,则b ^=∑i =17x i y i -7x - y-∑i =17x 2i -7x2=3 487-7×6×79.86280-7×6?≈4.75.a ^=y -b x -≈79.86-4.75×6=51.36. ∴所求的回归直线方程为y ^=51.36+4.75x .(3)由回归直线方程知,每天多销售1件,纯利增加4.75元.18.(14分)某地统计局就该地居民的月收入调查了10 000人,并根据所得数据画了样本的频率分布直方图(每个分组包括左端点,不包括右端点,如第一组表示收入在[1 000,1 500)).(1)求居民月收入在[3 000,3 500)的频率; (2)根据频率分布直方图算出样本数据的中位数;(3)为了分析居民的收入与年龄、职业等方面的关系,必须按月收入再从这10 000人中用]分层抽样方法抽出100人作进一步分析,则月收入在[2 500,3 000)的这段应抽多少人?解:(1)月收入在[3 000,3 500)的频率为0.000 3×(3 500-3 000)=0.15. (2)∵0.000 2×(1 500-1 000)=0.1, 0.000 4×(2 000-1 500)=0.2, 0.000 5×(2 500-2 000)=0.25, 0.1+0.2+0.25=0.55>0.5. ∴样本数据的中位数为2 000+0.5-(0.1+0.2)0.000 5=2 000+400=2 400(元).(3)居民月收入在[2 500,3 000)的频率为0.000 5×(3 000-2 500)=0.25, 所以10 000人中月收入在[2 500,3 000)的人数为0.25×10 000=2 500(人).再从10 000人中分层抽样方法抽出100人,则月收入在[2 500,3 000)的这段应抽取100×2 50010 000=25人.。
2020学年高中数学第二章统计单元质量测评新人教A版必修3(2021-2022学年)

第二章统计单元质量测评本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分150分,考试时间120分钟.第Ⅰ卷(选择题,共60分)一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知总体的个数为111,若用随机数表法抽取一个容量为12的样本,则下列对总体的编号正确的是()A.1,2,…,111ﻩB.0,1,…,111C.000,002,…,111ﻩD.001,002,…,111答案D解析在使用随机数表法抽取样本时,必须保证编号的位数一致,同时要规范编号,不能多也不能少,结合所给选项,选D.2.如图所示的4个散点图中,两个变量具有相关关系的是()A.①② B.①③ C.②④D.③④答案C解析由图可知①是一次函数关系,不是相关关系;②的所有点在一条直线附近波动,是线性相关关系;③不具有相关关系;④在某曲线附近波动,是非线性相关关系.所以两个变量具有相关关系的是②④。
3.我国古代数学名著《数书九章》有“米谷粒分”题:粮仓开仓收粮,有人送来米1534石,验得米内夹谷,抽样取米一把,数得254粒内夹谷28粒,则这批米内夹谷约为( ) A.134石 B.169石 C.338石 D.1365石答案Bﻬ解析根据样本估计总体,可得这批米内夹谷约为错误!未定义书签。
×1534≈169(石),故选B.4.对一个样本容量为100的数据分组,各组的频数如下:估计小于29的数据大约占总体的()A.42% B.58% C.40% D.16%答案A解析小于29的数据频数为1+1+3+3+18+16=42,所以小于29的数据大约占总体的42×100%=42%。
1005.如图是某赛季甲、乙两名篮球运动员5场比赛得分的茎叶图,已知甲的成绩的极差为31,乙的成绩的平均值为24,则下列结论错误的是()A.x=9B.y=9C.乙的成绩的中位数为26D.乙的成绩的方差小于甲的成绩的方差答案B解析因为甲的成绩的极差为31,所以其最高成绩为39,所以x=9;因为乙的成绩的平均值为24,所以y=24×5-(12+25+26+31)-20=6;由茎叶图知乙的成绩的中位数为26;对比甲、乙的成绩分布发现,乙的成绩比较集中,故其方差较小.6.某出租汽车公司为了了解本公司司机的交通违章情况,随机调查了50名司机,得到了他们某月交通违章次数的数据,结果制成了如图所示的统计图,根据此统计图可得这50名出租车司机该月平均违章的次数为( )A.1B.1.8 C.2.4 D.3答案B解析错误!=1。
(完整版)人教版高一数学必修三第二章统计全部教案和测试题

人教版高一数学必修三第二章统计目录简单随机抽样(新讲课)系统抽样(新讲课)分层抽样(新讲课)2用样本的频次散布预计整体散布(2 课时 ) (新讲课)用样本的数字特色预计整体的数字特色(2 课时 ) (新讲课)变量之间的有关关系(新讲课)两个变量的线性有关(第一课时)(新讲课)两个变量的线性有关(第二课时)(新讲课)生活中线性有关实例(第三课时)(新讲课)第二章统计单元检测题(一)第二章统计单元检测题(一)参照答案第二章统计单元检测题(二)第二章统计单元检测题(二)参照答案第二章统计单元检测题(三)第二章统计单元检测题(三)参照答案第二章统计一、课程目标:本章主要介绍最基本的获得样本数据的方法,以及集中从样本数据中提守信息的统计方法,此中包含用样本预计整体散布、数字特色和线性回归等内容。
本章经过实质问题,进一步介绍随机抽样、样本预计整体、线性回归的基本方法。
二、学习目标:1、随机抽样(1)能从现实生活或其余学科中提出拥有一订价值的统计问题。
(2)联合详细的实质问题情境,理解随机抽样的必需性和重要性。
(3)在参加解决统计问题的过程中,学会用简单随机抽样从整体中抽取样本;经过对实例的剖析,认识分层抽样和系统抽样方法。
(4)经过试验、查阅资料、设计检盘问卷等方法采集数据。
2、用样本预计整体(1)经过实例领会散布的意义和作用,在表示样本数据的过程中,学会列频次散布彪、花频次散布直方图、频次折线图、茎叶土,领会它们各自的特色。
(2)经过实例理解样本数据标准差的意义和作用,学会计算数据样本差。
(3)能依据实质问题的需求合理地选用样本,从样本数据中提取基本的数字特色,并做出合理的解说。
(4)进一步领会用样本预计整体的思想。
(5)会用随机抽样的基本方法和样本预计整体的思想,解决一些简单的实质问题。
(6)形成对数据办理过程进行初步评论的意识。
3、变量的有关性(1)经过采集现实问题中两个有关系变量的数据作出散点图,并利用散点图直观认识变量间的有关关系。
人教A版高中数学必修三 第2章 统计 单元检测(A)

人教A版高中数学必修三第2章《统计》单元检测(A)一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.从某年级1 000名学生中抽取125名学生进行体重的统计分析,就这个问题来说,下列说法正确的是()A.1 000名学生是总体B.每个被抽查的学生是个体C.抽查的125名学生的体重是一个样本D.抽取的125名学生的体重是样本容量2.为了解某地区的中小学生的视力情况,拟从该地区的中小学生中抽取部分学生进行调查,事先已了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,而男女生视力情况差异不大.在下面的抽样方法中,最合理的抽样方法是()A.简单随机抽样B.按性别分层抽样C.按学段分层抽样D.系统抽样3.为了调查参加运动会的500名运动员的身高情况,从中抽查了50名运动员的身高,就这个问题来说,下列说法正确的是()A.50名运动员是总体B.每个运动员是个体C.抽取的50名运动员是样本D.样本容量是504.某篮球队甲、乙两名运动员练习罚球,每人练习10组,每组罚球40个.命中个数的茎叶图如右图,则下面结论中错误的一个是()A.甲的极差是29 B.乙的众数是21C.甲罚球命中率比乙高D.甲的中位数是245.对变量x,y有观测数据(x i,y i)(i=1,2,…,10),得散点图1;对变量u,v 有观测数据(u i,v i)(i=1,2,…,10),得散点图2.由这两个散点图可以判断()A.变量x与y正相关,u与v正相关B.变量x与y正相关,u与v负相关C.变量x与y负相关,u与v正相关D.变量x与y负相关,u与v负相关6.高三某班有学生56人,现将所有同学随机编号,用系统抽样的方法抽取一个容量为4的样本,已知5号、33号、47号学生在样本中,则样本中还有一个学生的编号为()A.13 B.17 C.19 D.217.两个变量之间的相关关系是一种()A.确定性关系B.线性关系C.非确定性关系D.非线性关系8.下列有关线性回归的说法,不正确的是()A.相关关系的两个变量不一定是因果关系B.散点图能直观地反映数据的相关程度C.回归直线最能代表线性相关的两个变量之间的关系D.任一组数据都有回归直线方程9.某年级有1 000名学生,现从中抽取100人作为样本,采用系统抽样的方法,将全体学生按照1~1 000编号,并按照编号顺序平均分成100组(1~10号,11~20号,…,991~1 000号).若从第1组抽出的编号为6,则从第10组抽出的编号为()A.86 B.96 C.106 D.97 10.从存放号码分别为1,2,…,10的卡片的盒子中,有放回地取100次,每次取一张卡片并记下号码,统计结果如下:卡片号码 1 2 3 4 5 6 7 8 9 10取到的次数13 8 5 7 6 13 18 10 11 9A.0.53 B.0.5 C.0.47 D.0.37 11.观察新生婴儿的体重,其频率分布直方图如图所示,则新生婴儿的体重在[2700,3 000]的频率为( )A .0.001B .0.01C .0.003D .0.3 12.下图是根据《**统计年鉴2010》中的资料作成的2000年至2009年某省城镇居民百户家庭人口数的茎叶图.图中左边的数字从左到右分别表示城镇居民百户家庭人口数的百位数字和十位数字,右边的数字表示城镇居民百户家庭人口数的个位数字.从图中可以得到2000年至2009年我省城镇居民百户家庭人口数的平均数为( )A .304.6B .303.6C .302.6D .301.6 二、填空题(本大题共5小题,每小题4分,共20分)13.已知一个回归直线方程为y ^=1.5x +45(x i ∈{1,5,7,13,19}),则y =________. 14.某单位有职工750人,其中青年职工350人,中年职工250人,老年职工150人,为了了解该单位职工的健康情况,用分层抽样的方法从中抽取样本,若样本中的青年职工为7人,则样本容量为________.15.某市居民2005~2009年家庭年平均收入x(单位:万元)与年平均支出Y(单位:万元)年份 2005 2006 2007 2008 2009 收入x 11.5 12.1 13 13.3 15 支出Y6.88.89.81012家庭年平均收入与年平均支出有________线性相关关系.16.某公司有员工49人,其中30岁以上的员工有14人,没超过30岁的员工有35人,为了解员工的健康情况,用分层抽样方法抽一个容量为7的样本,其中30岁以上的员工应抽取________人.17.某企业三个分厂生产同一种电子产品,三个分厂产量分布如图所示.现在用分层抽样方法从三个分厂生产的产品中共抽取100件做使用寿命的测试,则第一分厂应抽取的产品件数为________.由所得样品的测试结果计算出一、二、三分厂取出的产品的使用寿命平均值分别为1 020小时、980小时、1 030小时,估计这个企业所生产的该产品的平均使用寿命为________小时.三、解答题(本大题共6小题,共70分)18.(10分)某产品的广告支出x(单位:万元)与销售收入y(单位:万元)之间有下表所对应的数据:广告支出x(单位:万元) 1 2 3 4销售收入y(单位:万元) 12 28 42 56(1)(2)求出y对x的回归直线方程;(3)若广告费为9万元,则销售收入约为多少万元?19.(12分)为了了解学生的体能情况,某校抽取部分学生进行一分钟跳绳次数测试,所得数据整理后,画出频率分布直方图(如图所示),图中从左到右各小长方形面积之比为2∶4∶17∶15∶9∶3,第二小组频数为12.(1)学生跳绳次数的中位数落在哪个小组内?(2)第二小组的频率是多少?样本容量是多少?(3)若次数在110以上(含110次)为良好,试估计该学校全体高一学生的良好率是多少?20.(12分)从一批苹果中,随机抽取50个,其重量(单位:克)的频数分布表如下:分组(重量) [80,85) [85,90) [90,95) [95,100)频数(个) 5 10 20 15(2)用分层抽样的方法从重量在[80,85)和[95,100)的苹果中共抽取4个,其中重量在[80,85)的有几个?(3)在(2)中抽出的4个苹果中,任取2个,求重量在[80,85)和[90,100)中各有1个的概率.21.(12分)随着我国经济的快速发展,城乡居民的生活水平不断提高,为研究某市家庭平均收入与月平均生活支出的关系,该市统计部门随机调查了10个家庭,得数据如下:家庭编号 1 2 3 4 5 6 7 8 9 10x i收入)0.8 1.1 1.3 1.5 1.5 1.8 2.0 2.2 2.4 2.8千元y i(支出)0.7 1.0 1.2 1.0 1.3 1.5 1.3 1.7 2.0 2.5千元(1)(2)若二者线性相关,求回归直线方程.22成绩1.50 1.60 1.65 1.70 1.75 1.80 1.85 1.90(单位m)人数 2 3 2 3 4 1 1 1;(2)分析这些数据的含义.23.(12分)农科院的专家为了了解新培育的甲、乙两种麦苗的长势情况,从甲、乙两种麦苗的试验田中各抽取6株麦苗测量麦苗的株高,数据如下:(单位:cm)甲:9,10,11,12,10,20乙:8,14,13,10,12,21.(1)在右面给出的方框内绘出所抽取的甲、乙两种麦苗株高的茎叶图;(2)分别计算所抽取的甲、乙两种麦苗株高的平均数与方差,并由此判断甲、乙两种麦苗的长势情况.第2章《统计》单元检测(A)解答一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.从某年级1 000名学生中抽取125名学生进行体重的统计分析,就这个问题来说,下列说法正确的是()A.1 000名学生是总体B.每个被抽查的学生是个体C.抽查的125名学生的体重是一个样本D.抽取的125名学生的体重是样本容量[答案] C[解析] 在初中学过:“在统计中,所有考察对象的全体叫做总体,其中每一个所要考察的对象叫做个体,从总体中抽取的一部分个体叫做总体的一个样本,样本中个体的数目叫做样本容量.”因此题中所指的对象应是体重,故A、B错误,样本容量应为125,故D错误.2.为了解某地区的中小学生的视力情况,拟从该地区的中小学生中抽取部分学生进行调查,事先已了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,而男女生视力情况差异不大.在下面的抽样方法中,最合理的抽样方法是()A.简单随机抽样B.按性别分层抽样C.按学段分层抽样D.系统抽样[答案] C[解析] 由分层抽样的定义知,合理的抽样方法是分层抽样,要按学段分层,故选C.3.为了调查参加运动会的500名运动员的身高情况,从中抽查了50名运动员的身高,就这个问题来说,下列说法正确的是()A.50名运动员是总体B.每个运动员是个体C.抽取的50名运动员是样本D.样本容量是50[答案] D[解析] 在这个问题中所要考察的对象是身高,另一方面,样本容量是指样本中的个体数目.4.某篮球队甲、乙两名运动员练习罚球,每人练习10组,每组罚球40个.命中个数的茎叶图如右图,则下面结论中错误的一个是()A.甲的极差是29 B.乙的众数是21C.甲罚球命中率比乙高D.甲的中位数是24[答案] D[解析] 甲的极差是37-8=29;乙的众数显然是21;甲的平均数显然高于乙,即C成立;甲的中位数应该是22+242=23.5.对变量x,y有观测数据(x i,y i)(i=1,2,…,10),得散点图1;对变量u,v 有观测数据(u i,v i)(i=1,2,…,10),得散点图2.由这两个散点图可以判断()A.变量x与y正相关,u与v正相关B.变量x与y正相关,u与v负相关C.变量x与y负相关,u与v正相关D.变量x与y负相关,u与v负相关[答案] C[解析] 由点的分布知x与y负相关,u与v正相关.6.高三某班有学生56人,现将所有同学随机编号,用系统抽样的方法抽取一个容量为4的样本,已知5号、33号、47号学生在样本中,则样本中还有一个学生的编号为()A.13 B.17 C.19 D.21[答案] C[解析] 用系统抽样法从56名学生中抽取4人,则分段间隔为14,若第一段抽出的号为5,则其他段抽取的号应为:19,33,47,故选C.7.两个变量之间的相关关系是一种()A.确定性关系B.线性关系C.非确定性关系D.非线性关系[答案] C8.下列有关线性回归的说法,不正确的是()A.相关关系的两个变量不一定是因果关系B.散点图能直观地反映数据的相关程度C.回归直线最能代表线性相关的两个变量之间的关系D.任一组数据都有回归直线方程[答案] D[解析]根据两个变量具有相关关系的概念,可知A正确,散点图能直观地描述呈相关关系的两个变量的相关程度,且回归直线最能代表它们之间的相关关系,所以B、C正确.只有线性相关的数据才有回归直线方程,所以D不正确.9.某年级有1 000名学生,现从中抽取100人作为样本,采用系统抽样的方法,将全体学生按照1~1 000编号,并按照编号顺序平均分成100组(1~10号,11~20号,…,991~1 000号).若从第1组抽出的编号为6,则从第10组抽出的编号为()A.86 B.96 C.106 D.97[答案] B[解析] 由题意,可知系统抽样的组数为100,间隔为10,由第一组抽出的号码为6,则由系统抽样的法则,可知第n组抽出个数的号码应为6+10(n-1),所以第10组应抽出的号码为6+10×(10-1)=96.10.从存放号码分别为1,2,…,10的卡片的盒子中,有放回地取100次,每次取一张卡片并记下号码,统计结果如下:卡片号码 1 2 3 4 5 6 7 8 9 10取到的次数13 8 5 7 6 13 18 10 11 9A.0.53 B.0.5 C.0.47 D.0.37 [答案] A[解析]1100(13+5+6+18+11)=0.53.11.观察新生婴儿的体重,其频率分布直方图如图所示,则新生婴儿的体重在[2 700,3 000]的频率为()A.0.001 B.0.01 C.0.003 D.0.3[答案] D[解析] 频率=频率组距×组距,由图易知:频率组距=0.001,组距=3 000-2 700=300,∴频率=0.001×300=0.312.下图是根据《**统计年鉴2010》中的资料作成的2000年至2009年某省城镇居民百户家庭人口数的茎叶图.图中左边的数字从左到右分别表示城镇居民百户家庭人口数的百位数字和十位数字,右边的数字表示城镇居民百户家庭人口数的个位数字.从图中可以得到2000年至2009年我省城镇居民百户家庭人口数的平均数为( )A .304.6B .303.6C .302.6D .301.6 [答案] B二、填空题(本大题共4小题,每小题5分,共20分)13.已知一个回归直线方程为y ^=1.5x +45(x i ∈{1,5,7,13,19}),则y =________. [答案] 58.5[解析] 回归直线方程为y ^=1.5x +45经过点(x ,y ),由x =9,知y =58.5. 14.某单位有职工750人,其中青年职工350人,中年职工250人,老年职工150人,为了了解该单位职工的健康情况,用分层抽样的方法从中抽取样本,若样本中的青年职工为7人,则样本容量为________. [答案] 15[解析] 由题意知,青年职工人数中年职工人数老年职工人数=350250150=753.由样本中青年职工为7人得样本容量为15.15.某市居民2005~2009年家庭年平均收入x(单位:万元)与年平均支出Y(单位:万元)年份 2005 2006 2007 2008 2009 收入x 11.5 12.1 13 13.3 15 支出Y6.88.89.81012家庭年平均收入与年平均支出有________线性相关关系. [答案] 13 正16.某公司有员工49人,其中30岁以上的员工有14人,没超过30岁的员工有35人,为了解员工的健康情况,用分层抽样方法抽一个容量为7的样本,其中30岁以上的员工应抽取________人.[答案] 217.某企业三个分厂生产同一种电子产品,三个分厂产量分布如图所示.现在用分层抽样方法从三个分厂生产的产品中共抽取100件做使用寿命的测试,则第一分厂应抽取的产品件数为________.由所得样品的测试结果计算出一、二、三分厂取出的产品的使用寿命平均值分别为1 020小时、980小时、1 030小时,估计这个企业所生产的该产品的平均使用寿命为________小时.[答案] 50 1015[解析]第一分厂应抽取的产品件数为100×50%=50.该产品的平均使用寿命为1 020×0.5+980×0.2+1 030×0.3=1 015(小时).三、解答题(本大题共6小题,共70分)18.(10分)某产品的广告支出x(单位:万元)与销售收入y(单位:万元)之间有下表所对应的数据:广告支出x(单位:万元) 1 2 3 4销售收入y(单位:万元) 12 28 42 56(1)(2)求出y对x的回归直线方程;(3)若广告费为9万元,则销售收入约为多少万元?解(1)作出的散点图如图所示(2)序号x y x2xy1 1 12 1 122 2 28 4 563 3 42 9 1264 4 56 16 224∑10 138 30 418易得x =52,y =692,所以b ^=∑4i =1x i y i-4x y ∑4i =1x 2i-4x 2=418-4×52×69230-4×⎝ ⎛⎭⎪⎫522=735,a ^=y -b ^x =692-735×52=-2. 故y 对x 的回归直线方程为y ^=735x -2.(3)当x =9时,y ^=735×9-2=129.4.故当广告费为9万元时,销售收入约为129.4万元.19.(12分)为了了解学生的体能情况,某校抽取部分学生进行一分钟跳绳次数测试,所得数据整理后,画出频率分布直方图(如图所示),图中从左到右各小长方形面积之比为2∶4∶17∶15∶9∶3,第二小组频数为12.(1)学生跳绳次数的中位数落在哪个小组内? (2)第二小组的频率是多少?样本容量是多少?(3)若次数在110以上(含110次)为良好,试估计该学校全体高一学生的良好率是多少?解 (1)∵前三组的频率和为2+4+1750=2350<12,前四组的频率之和为2+4+17+1550=3850>12,∴中位数落在第四小组内.(2)频率为:42+4+17+15+9+3=0.08,又∵频率=第二小组频数样本容量,∴样本容量=频数频率=120.08=150.(3)由图可估计所求良好率约为:17+15+9+32+4+17+15+9+3×100%=88%.20.(12分)从一批苹果中,随机抽取50个,其重量(单位:克)的频数分布表如下:分组(重量) [80,85) [85,90) [90,95) [95,100) 频数(个)5102015(1)根据频数分布表计算苹果的重量在[90,95)的频率;(2)用分层抽样的方法从重量在[80,85)和[95,100)的苹果中共抽取4个,其中重量在[80,85)的有几个?(3)在(2)中抽出的4个苹果中,任取2个,求重量在[80,85)和[90,100)中各有1个的概率.解:(1)由题意知苹果的样本总数n =50,在[90,95)的频数是20,所以苹果的重量在[90,95)的频率是2050=0.4.(2)设从重量在[80,85)的苹果中抽取x 个,则从重量在[95,100)的苹果中抽取(4-x)个.因为表格中[80,85),[95,100)的频数分别是5,15,所以515=x (4-x),解得x =1.即重量在[80,85)的有1个.(3)在(2)中抽出的4个苹果中,重量在[80,85)的有1个,记为a ,重量在[95,100)的有3个,记为b 1,b 2,b 3,任取2个,有ab 1,ab 2,ab 3,b 1b 2,b 1b 3,b 2b 3共6种不同方法.重量在[80,85)和[95,100)中各有1个的事件记为A ,事件A 包含的基本事件为ab 1,ab 2,ab 3,共3个,由古典概型的概率计算公式得P(A)=36=12.21.(12分)随着我国经济的快速发展,城乡居民的生活水平不断提高,为研究某市家庭平均收入与月平均生活支出的关系,该市统计部门随机调查了10个家庭,得数据如下:家庭编号 1 2 3 4 5 6 7 8 9 10 x i 收入)千元 0.8 1.1 1.3 1.5 1.5 1.8 2.0 2.2 2.4 2.8y i (支出)千元0.7 1.0 1.2 1.0 1.3 1.5 1.3 1.7 2.0 2.5(1)(2)若二者线性相关,求回归直线方程.解 (1)作出散点图:观察发现各个数据对应的点都在一条直线附近,所以二者呈线性相关关系.(2)x =110(0.8+1.1+1.3+1.5+1.5+1.8+2.0+2.2+2.4+2.8)=1.74,y =110(0.7+1.0+1.2+1.0+1.3+1.5+1.3+1.7+2.0+2.5)=1.42,∑10i =1x i y i =27.51,∑10i =1x 2i=33.72, b ^=∑10i =1x i y i -10x y ∑10i =1x 2i-10x 2≈0.813 6,a ^=1.42-1.74×0.813 6≈0.004 3,∴回归方程为y ^=0.813 6x +0.004 3.22成绩 (单位m) 1.50 1.60 1.65 1.70 1.75 1.80 1.85 1.90 人数23234111; (2)分析这些数据的含义.解 (1)在17个数据中,1.75出现了4次,次数最多,即众数是1.75; 把成绩从小到大排列,中间一个数即第9个数据是1.70中的一个,即中位数是1.70;平均数x =117(1.50×2+1.60×3+…+1.90×1)≈1.69(m)因此,17名运动员成绩的众数、中位数、平均数依次为1.75 m ,1.70 m,1.69 m.(2)众数是1.75说明了跳1.75 m 的人数最多;中位数是1.70 m 说明了1.70 m 以下和1.70 m 以上的成绩个数相等;平均数是1.69 m 说明了所有参赛运动员平均成绩是1.69 m.23.(12分)农科院的专家为了了解新培育的甲、乙两种麦苗的长势情况,从甲、乙两种麦苗的试验田中各抽取6株麦苗测量麦苗的株高,数据如下:(单位:cm)甲:9,10,11,12,10,20 乙:8,14,13,10,12,21.(1)在右面给出的方框内绘出所抽取的甲、乙两种麦苗株高的茎叶图; (2)分别计算所抽取的甲、乙两种麦苗株高的平均数与方差,并由此判断甲、乙两种麦苗的长势情况.解 (1)茎叶图如图所示:(2)x 甲=9+10+11+12+10+206=12,x 乙=8+14+13+10+12+216=13,s 2甲=16×[(9-12)2+(10-12)2+(11-12)2+(12-12)2+(10-12)2+(20-12)2]≈13.67,s 2乙=16×[(8-13)2+(14-13)2+(13-13)2+(10-13)2+(12-13)2+(21-13)2]≈16.67.因为x 甲<x 乙,所以乙种麦苗平均株高较高,又因为s 2甲<s 2乙,所以甲种麦苗长的较为整齐.。
(完整版)人教版高一数学必修三第二章统计全部教案和测试题

人教版高一数学必修三第二章统计目录2.1.1 简单随机抽样(新授课)2.1.2 系统抽样(新授课)2.1.3 分层抽样(新授课)2.2.1用样本的频率分布估计总体分布(2课时)(新授课)2.2.2用样本的数字特征估计总体的数字特征(2课时)(新授课)2.3.1 变量之间的相关关系(新授课)2.3.2 两个变量的线性相关(第一课时)(新授课)2.3.2 两个变量的线性相关(第二课时)(新授课)2.3.2 生活中线性相关实例(第三课时)(新授课)第二章统计单元检测题(一)第二章统计单元检测题(一)参考答案第二章统计单元检测题(二)第二章统计单元检测题(二)参考答案第二章统计单元检测题(三)第二章统计单元检测题(三)参考答案第二章统计一、课程目标:本章主要介绍最基本的获取样本数据的方法,以及集中从样本数据中提取信息的统计方法,其中包括用样本估计总体分布、数字特征和线性回归等内容。
本章通过实际问题,进一步介绍随机抽样、样本估计总体、线性回归的基本方法。
二、学习目标:1、随机抽样(1)能从现实生活或其他学科中提出具有一定价值的统计问题。
(2)结合具体的实际问题情境,理解随机抽样的必要性和重要性。
(3)在参与解决统计问题的过程中,学会用简单随机抽样从总体中抽取样本;通过对实例的分析,了解分层抽样和系统抽样方法。
(4)通过试验、查阅资料、设计调查问卷等方法收集数据。
2、用样本估计总体(1)通过实例体会分布的意义和作用,在表示样本数据的过程中,学会列频率分布彪、花频率分布直方图、频率折线图、茎叶土,体会它们各自的特点。
(2)通过实例理解样本数据标准差的意义和作用,学会计算数据样本差。
(3)能根据实际问题的需求合理地选取样本,从样本数据中提取基本的数字特征,并做出合理的解释。
(4)进一步体会用样本估计总体的思想。
(5)会用随机抽样的基本方法和样本估计总体的思想,解决一些简单的实际问题。
(6)形成对数据处理过程进行初步评价的意识。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
统计
1、 某单位有老年人28人,中年人54人,青年人81人.为了调查他们的身体状况,需从他
们中抽取一个容量为36的样本,最适合抽取样本的方法是( ) A .简单随机抽样 B .系统抽样
C .分层抽样
D .先从老年人中剔除一人,然后分层抽样 2、下列说法中,正确的是( )
(1)数据4、6、6、7、9、4的众数是4。
(2)平均数、众数与中位数从不同的角度描述了一组数据的集中趋势。
(3)平均数是频率分布直方图的“重心”。
(4)频率分布直方图中各小长方形的面积等于相应各组的频数。
A .(1)(2)(3) B.(2)(3) C.(2)(4) D.(1)(3)(4)
3、某地区共有10万户居民,该地区城市住户与农村住户之比为4:6,根据分层抽样方法,调查了该地区1000户居民冰箱拥有情况,调查结果如表所示,那么可以估计该地区农村住户
A .1.6万户
B .4.4万户
C .1.76万户
D .0.24万户 4、下列正确的个数是( )
(1) 在频率分布直方图中,中位数左边和右边的直方图的面积相等。
(2) 如果一组数中每个数减去同一个非零常数,则这一组数的平均数改变,方差不改变。
(3)一个样本的方差是_s 2
=1/20[(x 1一3)2
+-(X 2—3) 2
+…+( X n 一3) 2
],则这组数据等总和等于60.
(4) 数据123,,,...,n a a a a 的方差为2σ,则数据1232,2,2,...,2n a a a a 的方差为24σ
A . 4 B. 3 C .2 D . 1 5、 为了解某校高三学生的视力情况,
随机地抽查了该校200名高三学生的视力情况,得到频率分布直方图,如右,由于不慎将部分数据丢失,但知道前4组的频数成等比数列,后6组的频数成等差数列,设最多一组学生数为a ,视力在4.6到5.0
之间的频率为b ,则a , b 的值分别为( ) A .0.27, 78 B .54 , 0.78
C .27, 0.78
D .54, 78
6、在调查高一年级1500名学生的身高的过程中,抽取了一个样本并将其分组画成频率颁直方图,[160cm ,165cm]组的小矩形的高为a ,[165cm ,170cm]组小矩形的高为b,试估计该高一年集学生身高在[160cm ,170cm]范围内的人数
7、从某鱼池中捕得120条鱼,做了记号之后,再放回池中,经过适当的时间后,再从池中捕得100条鱼,计算其中有记号的鱼为10条,试估计鱼池中共有鱼的条数为
8、一个社会调查机构就某地居民的月收入调查了10 000人,并根据所得数据画了样本的频率分布直方图(如下图).为了分析居民的收入与年龄、学历、职业等方面的关系,要从这10 000人中再用分层抽样方法抽出200人作进一步调查,则在[1500,3000](元)月收入段应抽出 人. 9、用随机数表法从100名学生(男生25人)中抽取20人进行评教,某男生被抽取的机率是
10、进行系统抽样时,若确定分段间隔为k ,在第1段用简单随机抽样确定第一个个体编号为
l ,则第n 个个体编号为 11、已知右图所示的一组数据:
y 与x 之间的线性回归方程ˆy
a bx =+必过定点
(精确到小数后面两位)。
(横坐标为X 平均数,纵坐标为Y 平均数)
12、 对某电子元件进行寿命追踪调查,情况如下.
(1)列出频率分布表;(2)画出频率分布直方图及频率分布折线图; (3)估计元件寿命在100~400 h 以内的在总体中占的比例; (4)从频率分布直方图可以看出电子元件寿命的众数是多少
13、甲、乙两台机床在相同的技术条件下,同时生产一种零件,现在从中抽测10个,它们的尺寸分别如下(单位:mm ).
甲机床:10.2 10.1 10 9.8 9.9 10.3 9.7 10 9.9 10.1; 乙机床:10.3 10.4 9.6 9.9 10.1 10.9 8.9 9.7 10.2 10. (1)用茎叶图表示甲,乙台机床尺寸;
(2)分别计算上面两个样本的平均数和方差.如图纸规定零件的尺寸为10 mm ,从计算的结果来看哪台机床加工这种零件较合适?(要求写出公式,并利用公式笔算)
14、已知关于某设备的使用年限x 与所支出的维修费用y (万元),有如下统计资料:
设y 对x 呈线性相关关系,试求:
(1)线性回归方程a bx y +=
的回归系数b a ,; (2)估计使用年限为10年时,维修费用是多少?
(线性回归方程a bx y += 中的系数b a ,可以用公式⎪⎪⎪
⎩⎪⎪
⎪
⎨⎧
-=--=∑∑==x
b y a x n x y x n y x b n i i i i i 21
21
)。