人教版七年级数学下册专题训练
七年级数学下册专题训练3二元一次方程组的实际应用作业新版新人教版

=1062,解得:m=6.答:商店是打
6
折出售这两
种商品.
类 型 5 几何图形与图表信息问题
12.(玉环期中)根据如图提供的信息,可知一个热水瓶的价格
是( C )
A.7 元
B.35 元
C.45 元
D.50 元
13.如图,用 12 块相同的小长方形瓷砖拼成一个大的长方形,
则每个小长方形瓷砖的面积是( B )
专题训练(三)
二元一次方程组的实际应用
类 型 1 和、差、倍、分问题
1.某校七年级(1)班 50 名同学为灾区捐款,共捐款 200 元,捐 款情况如下表:
表中捐款 2 元和 3 元的人数不小心被墨水污染已看不清楚,若
设捐款 2 元的有 x 名同学,捐款 3 元的有 y 名同学,根据题意,
可列方程组( A )
B.x9+0x+y=112020y=,22200
C.xx++yy==2222020,0
D.x11+0xy=+92020y=,22200
15.本地某快递公司规定:寄件不超过 1 千克的部分按起步价 计费;寄件超过 1 千克的部分按千克计费.小丽分别寄快递到 上海和北京,收费标准及实际收费如下表:
求 a,b 的值.
解:设改进加工方法前用了 x 天,改进加工方法后用了 y 天, 依题意,得x3+x+y=5y=6,22, 解得xy==24,, 答:该合作社改进加 工方法前用了 4 天,改进加工方法后用了 2 天.
3.为响应国家节能减排的号召,鼓励居民节约用电,各省先 后出台了居民用电“阶梯价格”制度,如表中是某省的电价标准 (每月).例如:方女士家 5 月份用电 500 度,电费=180×0.6+220× 二档电价+100×三档电价=352 元;李先生家 5 月份用电 460 度,交费 316 元,请问表中二档电价、三档电价各是多少?
2022—2023学年人教版数学七年级下册专题训练二——平行线的性质和判定的应用

专题训练二平行线的性质和判定的应用1.如图,∠MCN=45°,且AB∥CD,AC∥BD,BE⊥CN于点E.求∠DBE的度数.2.已知:如图,AD⊥BC,FG⊥BC,垂足分别为D,G,且∠ADE=∠CFG.求证:DE∥AC.3.【2022·南宁三中模拟】如图,AE∥CF,∠A=∠C.(1)若∠1=35°,求∠2的度数;(2)判断BC与AD的位置关系,并说明理由;(3)若DA平分∠BDF,求证:BC平分∠DBE.4.已知AB∥CD,点E为AB、CD之外任意一点.(1)如图①,探究∠BED与∠B、∠D的数量关系,并说明理由;(2)如图②,探究∠CDE与∠B、∠E的数量关系,并说明理由5.如图,已知l1∥l2,直线l3和直线l1、l2分别交于点C和点D,P为直线l3上一点,A、B分别是直线l1、l2上的定点.(1)若P点在线段CD(C、D两点除外)上运动时,问∠1、∠2、∠3之间的关系是什么?这种关系是否发生变化?(2)若P点在线段CD之外时,∠1、∠2、∠3之间的关系又怎样?说明理由.6.如图①所示,AB∥CD,∠PAB=130°,∠PCD=120°,求∠APC的度数.小明的思路是:过点P作PE∥AB,通过平行线性质来求∠APC.(1)按小明的思路,易求得∠APC的度数为;(2)如图②所示,AB∥CD,点P在射线OM上运动,记作∠PAB=∠α,∠DCP=∠β.当点P在B、D两点之间运动时,∠APC与∠α、∠β之间有何数量关系?请说明理由;(3)在(2)的条件下,如果点P在B、D两点外侧运动时(点P与点O、B、D三点不重合),请你直接写出∠APC、∠α、∠β间的数量关系.7.如图,已知AB∥CD,点E是直线AB,CD之间的任意一点,锐角∠DCE和钝角∠ABE的平分线所在直线相交于点F,CD与FB交于点N.(1)当∠ECD=60°和∠ABE=100°时,求∠CFN的度数;(2)若BF∥CE,∠F=α,求∠ABE的度数(用含α的式子表示).参考答案1.如图,∠MCN =45°,且AB ∥CD ,AC ∥BD ,BE ⊥CN 于点E .求∠DBE 的度数.解:∵AB ∥CD ,∴∠MAB =∠MCN ,∠ABE =∠BEN .∵∠MCN =45°,BE ⊥CN ,∴∠MAB =45°,∠ABE =90°.∵AC ∥BD ,∴∠ABD =∠MAB .∴∠ABD =45°.∴∠DBE =∠ABE -∠ABD =45°.2.已知:如图,AD ⊥BC ,FG ⊥BC ,垂足分别为D ,G ,且∠ADE =∠CFG .求证:DE ∥AC .证明:∵AD ⊥BC ,FG ⊥BC ,∴∠C +∠CFG =90°,∠BDE +∠ADE =90°.∵∠ADE =∠CFG ,∴∠BDE =∠C .∴DE ∥AC .3.【2022·南宁三中模拟】如图,AE ∥CF ,∠A =∠C .(1)若∠1=35°,求∠2的度数;解:∵AE ∥CF ,∴∠CDB =∠1=35°.∴∠2=180°-∠CDB =145°.(2)判断BC 与AD 的位置关系,并说明理由;解:BC ∥AD .理由如下:∵AE ∥CF ,∴∠A +∠ADC =180°.又∵∠A =∠C ,∴∠C +∠ADC =180°.∴BC ∥AD .(3)若DA 平分∠BDF ,求证:BC 平分∠DBE .证明:∵AE ∥CF ,∴∠BDF =∠DBE .∵AD ∥BC ,∴∠ADB =∠DBC .∵DA 平分∠BDF ,∴∠ADB =12∠BDF . ∴∠DBC =12∠DBE .∴BC平分∠DBE.【点方法】几何推理的方法主要有两种:一种是综合法,即由“因”导“果”,由已知条件逐步推导出结论;另一种是分析法,即执“果”索“因”,根据要推出的结论,必须找到什么样的条件,一步一步反向找到条件.解答问题时一般用综合法,分析问题时一般用分析法,有时也可以两种方法综合应用.4.已知AB∥CD,点E为AB、CD之外任意一点.(1)如图①,探究∠BED与∠B、∠D的数量关系,并说明理由;(2)如图②,探究∠CDE与∠B、∠E的数量关系,并说明理由解:(1)∠B=∠BDE+∠D.理由如下:过点E作EF∥AB.又∵AB∥CD,∴EF∥AB∥CD.∴∠BEF=∠B,∠D=∠DEF.∵∠BEF=∠BED+∠DEF,∴∠B=∠BED+∠D;(2)∠CDE=∠B+∠BED.理由如下:过点E作EF∥AB. 又∵AB∥CD,∴EF∥AB∥CD.∴∠B+∠BEF =180°,∠CDE+∠DEF=180°.又∵∠DEF=∠BEF-∠BED,∴∠CDE+∠BEF-∠BED=∠B+∠BEF,即∠CDE=∠B+∠BED.5.如图,已知l1∥l2,直线l3和直线l1、l2分别交于点C和点D,P为直线l3上一点,A、B分别是直线l1、l2上的定点.(1)若P点在线段CD(C、D两点除外)上运动时,问∠1、∠2、∠3之间的关系是什么?这种关系是否发生变化?(2)若P点在线段CD之外时,∠1、∠2、∠3之间的关系又怎样?说明理由.解:(1)∠2=∠1+∠3.不变化;(2)当点P在线段DC的延长线上时,∠2=∠3-∠1.理由:过点P作PF∥l1,∠FPA=∠1.∵l1∥l2,∴PF∥l2,∴∠FPB=∠3,∴∠2=∠FPB-∠FPA=∠3-∠1;同理,当点P在线段CD的延长线上时,∠2=∠1-∠3.6.如图①所示,AB∥CD,∠PAB=130°,∠PCD=120°,求∠APC的度数.小明的思路是:过点P作PE∥AB,通过平行线性质来求∠APC.(1)按小明的思路,易求得∠APC的度数为;(2)如图②所示,AB∥CD,点P在射线OM上运动,记作∠PAB=∠α,∠DCP=∠β.当点P在B、D两点之间运动时,∠APC与∠α、∠β之间有何数量关系?请说明理由;(3)在(2)的条件下,如果点P 在B 、D 两点外侧运动时(点P 与点O 、B 、D 三点不重合),请你直接写出∠APC 、∠α、∠β间的数量关系.解:(1)110°;(2)∠APC =∠α+∠β.理由如下:过P 作PE ∥AB 交AC 于E ,∵AB ∥CD ,∴AB ∥PE ∥CD ,∴∠α=∠APE ,∠β=∠CPE.∴∠APC =∠APE +∠CPE =∠α+∠β;(3)当P 在BD 延长线上时,∠CPA =∠α-∠β.当P 在DB 延长线上时,∠CPA =∠β-∠α.7.如图,已知AB ∥CD ,点E 是直线AB ,CD 之间的任意一点,锐角∠DCE 和钝角∠ABE 的平分线所在直线相交于点F ,CD 与FB 交于点N .(1)当∠ECD =60°和∠ABE =100°时,求∠CFN 的度数;解:(1)如图,过点F 作FH ∥CD .∵AB ∥CD ,∴FH ∥AB .∵CM 平分∠ECD ,∠ECD =60°,∴∠ECM =∠DCM =12∠ECD =30°. ∵BN 平分∠ABE ,∠ABE =100°,∴∠ABN =∠EBN =12∠ABE =50°. ∵FH ∥AB ,FH ∥CD ,∴∠HFB =∠ABN =50°,∠HFC =∠DCM =30°.∴∠CFN =∠HFB -∠HFC =20°.(2)若BF ∥CE ,∠F =α,求∠ABE 的度数(用含α的式子表示).∵BF ∥CE ,∴∠ECM =∠BFM =α.∵CM 平分∠ECD ,∴∠DCE =2∠ECM =2α.∵BF ∥CE ,∴∠BNC =∠ECD =2α.∵AB ∥CD ,∴∠ABN =∠BNC =2α.∵BN 平分∠ABE ,∴∠ABE =2∠ABN =4α.。
人教版七年级下册:数学思想方法专题练习

七年级下册数学思想方法专题练习目录一、转化思想...................................... 错误!未定义书签。
1.“新知识”向“旧知识”转化.................... 错误!未定义书签。
a.将三元一次方程组转化为二元一次方程组. .......... 错误!未定义书签。
b.将新定义转化为所学知识解题............................. 错误!未定义书签。
c.多项式乘多项式转化为单项式乘多项式............... 错误!未定义书签。
2.“未知”向“已知”转化........................ 错误!未定义书签。
a.将判断线段相等或角相等问题转化为判定三角形全等问题错误!未定义书签。
b.添加辅助线应用平行线的性质解题............ 错误!未定义书签。
3.“复杂”向“简单”转化........................ 错误!未定义书签。
a.利用平移的性质进行平移转化................ 错误!未定义书签。
b.将不规则图形面积转化为规则图形的面积...... 错误!未定义书签。
二、分类讨论思想.................................. 错误!未定义书签。
1.对字母、未知数的取值范围分不同情况讨论........ 错误!未定义书签。
2.对图形的位置、类型的分类讨论.................. 错误!未定义书签。
3.对问题的题设条件需分类讨论.................... 错误!未定义书签。
4.从图象中获取信息进行分类讨论 (9)5.对求解过程中不便统一表述的问题进行分类讨论.... 错误!未定义书签。
三、数形结合思想................................. 错误!未定义书签。
1.数转化为形.................................... 错误!未定义书签。
人教版数学七年级下册:第五章 相交线与平行线——专题练习(附答案)

小专题(一)平行线中的“拐点”问题模型1 M型【例1】如图,已知AB∥CD,则∠B,∠BED,∠D之间有何数量关系?请说明理由.【思路点拨】由已知条件知,AB∥CD,但图形中没有截这两条平行线的第三条直线,因而不能直接用平行线的性质解决.为此可构造第三条直线,即过点E 作EF∥AB,于是BE,DE就可以作为第三条直线了.变式当点E运动到平行线的外侧1.已知AB∥CD,点E为AB,CD之外任意一点.(1)如图1,探究∠BED与∠B,∠D的数量关系,并说明理由;(2)如图2,探究∠CDE与∠B,∠BED的数量关系,并说明理由.2.(1)如图1中,AB∥CD,则∠E+∠G与∠B+∠F+∠D有何关系?(2)在图2中,若AB∥CD,又能得到什么结论?如果出现多个拐点时,可以作多条平行线,从而将多拐点问题转化为一个拐点问题来处理.M型最终的结论为:朝左的角之和等于朝右的角之和.模型2 铅笔型【例2】如图,直线AB∥CD,∠B,∠BED,∠D之间有什么关系呢?为什么?3.(1)①如图1,MA1∥NA2,则∠A1+∠A2=度;②如图2,MA1∥NA3,则∠A1+∠A2+∠A3=度;③如图3,MA1∥NA4,则∠A1+∠A2+∠A3+∠A4=度;④图4,MA1∥NA5,则∠A1+∠A2+∠A3+∠A4+∠A5=度;从上述结论中你发现了什么规律?(2)如图5,MA1∥NAn,则∠A1+∠A2+∠A3+…+∠An=度.小专题(二) 利用平行线的性质求角的度数类型1 直接利用平行线的性质与判定求角度1.如图,OC是∠AOB的平分线,l∥OB.若∠1=52°,则∠2的度数为( ) A.52° B.54° C.64° D.69°2.如图,CD∥AB,点O在AB上,OE平分∠BOD,OF⊥OE,∠D=110°,则∠AOF 的度数是( )A.20° B.25° C.30° D.35°3.如图,AB∥CD,CB∥DE,∠B=50°,则∠D=.4.如图,已知EF∥AD,∠1=∠2,∠BAC=80°,求∠AGD的度数.类型2 借助学具的特征求角度5.如图,将直尺与30°角的三角尺叠放在一起.若∠1=40°,则∠2的大小是( )A.40° B.60° C.70° D.80°6.如图,一块直角三角板的两锐角的顶点刚好落在平行线l1,l2上,已知∠C是直角,则∠1+∠2的度数等于( )A.75° B.90° C.105° D.120°类型3 折叠问题中求角度7.将一个长方形纸片折叠成如图所示的图形.若∠ABC=26°,则∠ACD=.8.如图,一个四边形纸片ABCD,∠B=∠D=90°,∠C=130°.把纸片按如图所示折叠,使点B落在AD边上的B′点,AE是折痕,则∠AEB的度数是.类型4 抽象出平行线模型求角度(建模思想)9.如图,∠AOB的一边OA为平面镜,∠AOB=38°,一束光线(与水平线OB平行)从点C射入经平面镜反射后,反射光线落在OB上的点E处,已知∠ADC=∠ODE.则∠DEB的度数是度.10.如图1是我们常用的折叠式小刀,图2中刀柄外形是一个梯形挖去一个小半圆,其中刀片的两条边缘线可看成两条平行的线段,转动刀片时会形成如图2所示的∠1与∠2,则∠1与∠2的度数和是.小专题(三) 平行线的性质与判定的综合运用——教材P37T13的变式与应用教材母题(教材P37T13):完成下面的证明.(1)如图1,点D,E,F分别是三角形ABC的边BC,CA,AB上的点,DE∥BA,DF ∥CA.求证:∠FDE=∠A.证明:∵DE∥BA,∴∠FDE=.∵DF∥CA,∴∠A=.∴∠FDE=∠A.(2)如图2,AB和CD相交于点O,∠C=∠COA,∠D=∠BOD.求证AC∥BD.证明:∵∠C=∠COA,∠D=∠BOD,又∠COA=∠BOD( ),∴∠C=.∴AC∥BD(内错角相等,两直线平行).(1)判定两直线平行的方法有五种:①平行线的定义;②平行公理的推论;③同位角相等,两直线平行;④内错角相等,两直线平行;⑤同旁内角互补,两直线平行.(2)判定两直线平行时,定义一般不常用,其他四种方法要灵活运用,推理时要注意书写格式.(3)由两条直线平行得到同位角相等、内错角相等或同旁内角互补,解题时应结合图形先确认所成的角是不是两平行线被第三条直线所截得的同位角或内错角或同旁内角,同时要学会简单的几何说理,做到每一步有理有据.1.如图,已知AD⊥BC,EF⊥BC,垂足分别为D,F,∠2+∠3=180°.试说明:∠GDC=∠B.下面是不完整的说理过程,请你将横线上的过程和括号里的理由补充完整.解:因为AD⊥BC,EF⊥BC(已知),①所以∠ADB=∠EFB= (垂直的定义).②所以 (同位角相等,两直线平行).③所以∠1+∠2= (两直线平行,同旁内角互补).④又因为∠2+∠3=180°( ),⑤所以∠1=∠3( ).⑥所以AB∥DG( ).⑦所以∠GDC=∠B( ).2.如图,点G在射线BC上,射线DE与AB,AG分别交于点H,M.若DF∥AB,∠B=75°,∠D=105°,求证:∠AME=∠AGC.3.如图,AB∥CD,AE平分∠BAD,CD与AE相交于点F,∠CFE=∠E.求证:AD ∥BC.4.如图,∠E=∠1,∠3+∠ABC=180°,BE是∠ABC的平分线.你能判断DF 与AB的位置关系吗?请说明理由.5.如图,AB⊥BD于点B,点E是BD上的点,AE平分∠BAC,CE平分∠ACD,且∠1+∠2=90°.求证:CD⊥BD.6.如图,把一张长方形ABCD的纸片沿EF折叠后,ED与BC的交点为G,点D,C分别落在D′,C′的位置上.若∠EFG=55°,求∠1,∠2的度数.7.如图,已知BC∥GE,∠AFG=∠1=50°.(1)求证:AF∥DE;(2)若AQ平分∠FAC,交BC于点Q,且∠Q=15°,求∠ACQ的度数.参考答案:小专题(一)平行线中的“拐点”问题模型1 M型【例1】如图,已知AB∥CD,则∠B,∠BED,∠D之间有何数量关系?请说明理由.【思路点拨】由已知条件知,AB∥CD,但图形中没有截这两条平行线的第三条直线,因而不能直接用平行线的性质解决.为此可构造第三条直线,即过点E 作EF∥AB,于是BE,DE就可以作为第三条直线了.【解答】∠BED=∠B+∠D.理由:过点E作EF∥AB,则EF∥CD.∴∠B=∠BEF,∠D=∠DEF.∴∠BED=∠BEF+∠DEF=∠B+∠D.变式当点E运动到平行线的外侧1.已知AB∥CD,点E为AB,CD之外任意一点.(1)如图1,探究∠BED与∠B,∠D的数量关系,并说明理由;(2)如图2,探究∠CDE与∠B,∠BED的数量关系,并说明理由.解:(1)∠B=∠BED+∠D.理由如下:过点E作EF∥AB,则AB∥CD∥EF.∴∠BEF=∠B,∠D=∠DEF.∵∠BEF=∠BED+∠DEF,∴∠B=∠BED+∠D.(2)∠CDE=∠B+∠BED.理由如下:过点E作EF∥AB,则AB∥CD∥EF.∴∠B+∠BEF=180°,∠CDE+∠DEF=180°.又∵∠DEF=∠BEF-∠BED,∴∠CDE+∠BEF-∠BED=∠B+∠BEF,即∠CDE=∠B+∠BED.拓展平行线间有多个拐点2.(1)如图1中,AB∥CD,则∠E+∠G与∠B+∠F+∠D有何关系?(2)在图2中,若AB∥CD,又能得到什么结论?解:(1)∠BEF+∠FGD=∠B+∠EFG+∠D.理由:过点E,F,G分别作EM∥AB,FN∥AB,GH∥AB,由AB∥CD,得AB∥EM∥FN∥GH∥CD.∴∠BEM=∠B,∠MEF=∠EFN,∠NFG=∠FGH,∠HGD=∠D.∴∠BEF+∠FGD=∠BEM+∠MEF+∠FGH+∠HGD=∠B+∠EFN+∠NFG+∠D=∠B+∠EFG+∠D.(2)在图2中,有∠E1+∠E2+∠E3+…+∠En=∠B+∠F1+∠F2+…+∠Fn-1+∠D.如果出现多个拐点时,可以作多条平行线,从而将多拐点问题转化为一个拐点问题来处理.M型最终的结论为:朝左的角之和等于朝右的角之和.模型2 铅笔型【例2】如图,直线AB∥CD,∠B,∠BED,∠D之间有什么关系呢?为什么?【解答】∠B+∠BED+∠D=360°.理由:过点E作EF∥AB.∵AB∥CD,∴AB∥CD∥EF.∴∠B+∠BEF=180°,∠D+∠DEF=180°. ∴∠B+∠BEF+∠D+∠DEF=360°,即∠B+∠BED+∠D=360°.拓展平行线间有多个拐点3.(1)①如图1,MA1∥NA2,则∠A1+∠A2=180度;②如图2,MA1∥NA3,则∠A1+∠A2+∠A3=360度;③如图3,MA1∥NA4,则∠A1+∠A2+∠A3+∠A4=540度;④图4,MA1∥NA5,则∠A1+∠A2+∠A3+∠A4+∠A5=720度;从上述结论中你发现了什么规律?(2)如图5,MA1∥NAn,则∠A1+∠A2+∠A3+…+∠An=180(n-1)度.解:每增加一个角,度数增加180°.小专题(二) 利用平行线的性质求角的度数类型1 直接利用平行线的性质与判定求角度1.如图,OC是∠AOB的平分线,l∥OB.若∠1=52°,则∠2的度数为( C ) A.52° B.54° C.64° D.69°2.如图,CD∥AB,点O在AB上,OE平分∠BOD,OF⊥OE,∠D=110°,则∠AOF 的度数是( D )A.20° B.25° C.30°D.35°3.如图,AB∥CD,CB∥DE,∠B=50°,则∠D=130°.4.如图,已知EF∥AD,∠1=∠2,∠BAC=80°,求∠AGD的度数.解:∵EF∥AD,∴∠2=∠3(两直线平行,同位角相等).∵∠1=∠2,∴∠1=∠3(等量代换).∴AB∥DG(内错角相等,两直线平行).∴∠BAC+∠AGD=180°(两直线平行,同旁内角互补).∵∠BAC=80°,∴∠AGD=100°.类型2 借助学具的特征求角度5.如图,将直尺与30°角的三角尺叠放在一起.若∠1=40°,则∠2的大小是( D )A.40° B.60° C.70° D.80°6.如图,一块直角三角板的两锐角的顶点刚好落在平行线l1,l2上,已知∠C是直角,则∠1+∠2的度数等于( B )A.75° B.90° C.105° D.120°类型3 折叠问题中求角度7.将一个长方形纸片折叠成如图所示的图形.若∠ABC=26°,则∠ACD=128°.8.如图,一个四边形纸片ABCD,∠B=∠D=90°,∠C=130°.把纸片按如图所示折叠,使点B落在AD边上的B′点,AE是折痕,则∠AEB的度数是65°.类型4 抽象出平行线模型求角度(建模思想)9.如图,∠AOB的一边OA为平面镜,∠AOB=38°,一束光线(与水平线OB平行)从点C射入经平面镜反射后,反射光线落在OB上的点E处,已知∠ADC=∠ODE.则∠DEB的度数是76度.10.如图1是我们常用的折叠式小刀,图2中刀柄外形是一个梯形挖去一个小半圆,其中刀片的两条边缘线可看成两条平行的线段,转动刀片时会形成如图2所示的∠1与∠2,则∠1与∠2的度数和是90°.小专题(三) 平行线的性质与判定的综合运用——教材P37T13的变式与应用教材母题(教材P37T13):完成下面的证明.(1)如图1,点D,E,F分别是三角形ABC的边BC,CA,AB上的点,DE∥BA,DF ∥CA.求证:∠FDE=∠A.证明:∵DE∥BA,∴∠FDE=∠BFD(两直线平行,内错角相等).∵DF∥CA,∴∠A=∠BFD(两直线平行,同位角相等).∴∠FDE=∠A.(2)如图2,AB和CD相交于点O,∠C=∠COA,∠D=∠BOD.求证AC∥BD.证明:∵∠C=∠COA,∠D=∠BOD,又∠COA=∠BOD(对顶角相等),∴∠C=∠D.∴AC∥BD(内错角相等,两直线平行).(1)判定两直线平行的方法有五种:①平行线的定义;②平行公理的推论;③同位角相等,两直线平行;④内错角相等,两直线平行;⑤同旁内角互补,两直线平行.(2)判定两直线平行时,定义一般不常用,其他四种方法要灵活运用,推理时要注意书写格式.(3)由两条直线平行得到同位角相等、内错角相等或同旁内角互补,解题时应结合图形先确认所成的角是不是两平行线被第三条直线所截得的同位角或内错角或同旁内角,同时要学会简单的几何说理,做到每一步有理有据.1.如图,已知AD⊥BC,EF⊥BC,垂足分别为D,F,∠2+∠3=180°.试说明:∠GDC=∠B.下面是不完整的说理过程,请你将横线上的过程和括号里的理由补充完整.解:因为AD⊥BC,EF⊥BC(已知),①所以∠ADB=∠EFB=90°(垂直的定义).②所以AD∥EF(同位角相等,两直线平行).③所以∠1+∠2=180°(两直线平行,同旁内角互补).④又因为∠2+∠3=180°(已知),⑤所以∠1=∠3(同角的补角相等).⑥所以AB∥DG(内错角相等,两直线平行).⑦所以∠GDC=∠B(两直线平行,同位角相等).2.如图,点G在射线BC上,射线DE与AB,AG分别交于点H,M.若DF∥AB,∠B=75°,∠D=105°,求证:∠AME=∠AGC.证明:∵DF∥AB(已知),∴∠D=∠BHM(两直线平行,同位角相等).又∵∠B=75°,∠D=105°(已知),∴∠B+∠BHM=75°+105°=180°.∴DE∥BC(同旁内角互补,两直线平行).∴∠AME=∠AGC(两直线平行,同位角相等).3.如图,AB∥CD,AE平分∠BAD,CD与AE相交于点F,∠CFE=∠E.求证:AD ∥BC.证明:∵AE平分∠BAD(已知),∴∠1=∠2(角平分线的定义).∵AB∥CD(已知),∴∠1=∠CFE(两直线平行,同位角相等).又∵∠1=∠2(已证),∠CFE=∠E(已知),∴∠2=∠E(等量代换).∴AD∥BC(内错角相等,两直线平行).4.如图,∠E=∠1,∠3+∠ABC=180°,BE是∠ABC的平分线.你能判断DF 与AB的位置关系吗?请说明理由.解:DF∥AB.理由:∵BE是∠ABC的平分线,∴∠1=∠2(角平分线的定义).∵∠E=∠1(已知),∴∠E=∠2(等量代换).∴AE∥BC(内错角相等,两直线平行).∴∠A+∠ABC=180°(两直线平行,同旁内角互补).∵∠3+∠ABC=180°(已知),∴∠A=∠3(等量代换).∴DF∥AB(同位角相等,两直线平行).5.如图,AB⊥BD于点B,点E是BD上的点,AE平分∠BAC,CE平分∠ACD,且∠1+∠2=90°.求证:CD⊥BD.证明:∵AE平分∠BAC,CE平分∠ACD(已知),∴∠BAC=2∠1,∠ACD=2∠2(角平分线的性质).∴∠BAC+∠ACD=2∠1+2∠2=2(∠1+∠2).∵∠1+∠2=90°(已知),∴∠BAC+∠ACD=180°.∴AB∥CD(同旁内角互补,两直线平行).∴∠B+∠D=180°(两直线平行,同旁内角互补).∴∠D=180°-∠B(等式的性质).∵AB⊥BD(已知),∴∠B=90°(垂直的定义).∴∠D=90°,即CD⊥BD.6.如图,把一张长方形ABCD的纸片沿EF折叠后,ED与BC的交点为G,点D,C分别落在D′,C′的位置上.若∠EFG=55°,求∠1,∠2的度数.解:∵AD∥BC,∠EFG=55°,∴∠2=∠GED,∠DEF=∠EFG=55°(两直线平行,内错角相等).由折叠,知∠GEF=∠DEF=55°.∴∠GED=110°.∴∠2=110°.∴∠1=180°-∠2=70°(两直线平行,同旁内角互补).7.如图,已知BC∥GE,∠AFG=∠1=50°.(1)求证:AF∥DE;(2)若AQ平分∠FAC,交BC于点Q,且∠Q=15°,求∠ACQ的度数.解:(1)证明:∵BC∥GE,∴∠E=∠1=50°.∵∠AFG=∠1=50°,∴∠E=∠AFG=50°.∴AF∥DE.(2)过点A作AP∥GE,∵BC∥GE,∴AP∥GE∥BC.∴∠FAP=∠AFG=50°,∠PAQ=∠Q=15°.∴∠FAQ=∠FAP+∠PAQ=65°.∵AQ平分∠FAC,∴∠CAQ=∠FAQ=65°.∴∠CAP=80°.∴∠ACQ=180°-∠CAP=100°.。
人教版七年级下册数学实际问题专项训练

实际问题专项初中数学试卷学校:___________姓名:___________班级:___________考号:___________一、单选题1.某校举行篮球赛,每场比赛都要分出胜负,每队胜一场得2分,负一场得1分.八年级一班在16场比赛中得26分设该班胜x场,负y场,则根据题意,下列方程组中正确的是( )A.26216x yx y+=⎧⎨+=⎩B.26216x yx y+=⎧⎨+=⎩C.16226x yx y+=⎧⎨+=⎩D.16226x yx y+=⎧⎨+=⎩2.《九章算术》是人类科学史上应用数学的“算经之首”,书中记载:今有三人共车,二车空;二人共车,九人步.问:人与车各几何?译文:若3人坐一辆车,则两辆车是空的;若2人坐一辆车,则9人需要步行.问:人与车各多少?设有x辆车,人数为y,根据题意可列方程组为( )A.32,29y xy x=-⎧⎨=+⎩B.3(2),29y xy x=-⎧⎨=+⎩C.32,29y xy x=-⎧⎨=-⎩D.3(2),29y xy x=-⎧⎨=-⎩3.某旅店一共有70个房间,大房间每间住8个人,小房间每间住6个人,一共480个学生刚好住满,设大房间有x个,小房间有y个.下列方程组正确的是( )A.7086480x yx y+=⎧⎨+=⎩B.7068480x yx y+=⎧⎨+=⎩C.4806870x yx y+=⎧⎨+=⎩D.4808670x yx y+=⎧⎨+=⎩4.篮球联赛中,每场比赛都要分出胜负,每队胜1场得2分,负1场得1分,某队在10场比赛中得到16分.若设该队胜的场数为x,负的场数为y,则可列方程组为( )A.10216x yx y+=⎧⎨+=⎩B.10216x yx y+=⎧⎨-=⎩C.10216x yx y+=⎧⎨-=⎩D.10216x yx y+=⎧⎨+=⎩5.《九章算术》在中国古代数学上有其独到的成就,不仅最早提到了分数问题,首先记录了“盈不足”等问题.如有一道阐述“盈不足”的问题,原文如下:今有共买鸡,人出九,盈十一;人出六,不足十六,问人数、鸡价各几何?译文为:现有若干人合伙出钱买鸡,如果每人出9文钱,就会多11文钱;如果每人出6文钱,又会缺16文钱,问买鸡的人数、鸡的价格各是多少?通过计算可得买鸡的人数是( )A.6B.7C.8D.96.中国清代算书《御制数理精蕴》中有这样一题:“马四匹、牛六头,共价四十八两(我国古代货币单位);马三匹、牛五头,共价三十八两.问马、牛各价几何?”设马每匹x两,牛每头y两,根据题意可列方程组为( )A.46383548x yx y+=⎧⎨+=⎩B.46483538y xy x+=⎧⎨+=⎩C.46485338x yx y+=⎧⎨+=⎩D.46483538x yx y+=⎧⎨+=⎩7.我国古代数学名著《孙子算经》中记载了一道题,大意是:100匹马恰好拉了100片瓦,已知3匹小马能拉1片瓦,1匹大马能拉3片瓦,求小马,大马各有多少匹,若设小马有x 匹,大马有y 匹,则下列方程组中正确的是( ) A.100,3.x y y x +=⎧⎨=⎩B.100,3.x y x y +=⎧⎨=⎩C.10013100.3x y x y +=⎧⎪⎨+=⎪⎩,D.10013100.3x y y x +=⎧⎪⎨+=⎪⎩,8.我国古代数学经典著作《九章算术》中有这样一题:“今有共买物,人出八,盈三;人出七,不足四.问人数、物价各几何.”意思是:今有人合伙购物,每人出八钱,会多三钱;每人出七钱,又差四钱.问:人数、物价各多少?设人数为x 人,物价为y 钱,下列方程组正确的是( ) A.83,74y x y x =-⎧⎨=+⎩B.83,74y x y x =+⎧⎨=+⎩C.83,74y x y x =-⎧⎨=-⎩D.83,74y x y x =+⎧⎨=-⎩9.如图,10块相同的小长方形墙砖拼成一个长方形,设小长方形墙砖的长和宽分别为x 厘米和y 厘米,则依题意列方程正确的是( )A.275,3x y y x +=⎧⎨=⎩B.275,3x y x y +=⎧⎨=⎩C.275,3x y y x +=⎧⎨=⎩D.275,3x y x y +=⎧⎨=⎩10.如图的两台天平保持平衡,已知每块巧克力的质量相等,且每个果冻的质量也相等,则每块巧克力和每个果冻的质量分别为( )A.10 g ,40 gB.15 g ,35 gC.20 g ,30gD.30 g ,20 g11.篮球联赛中,每场比赛都要分出胜负,每队胜1场得2分,负1场得1分,某队在10场比赛中得16分.若设该队胜的场数为x ,负的场数为y ,则可列方程组为( ) A.10216x y x y +=⎧⎨+=⎩,B.10216x y x y +=⎧⎨-=⎩,C.10216x y x y +=⎧⎨-=⎩,D.10216x y x y +=⎧⎨+=⎩,12.《九章算术》是我国东汉初年编订的一部数学经典著作.在它的“方程”一章里,一次方程组是由算筹布置而成的《九章算术》中的算筹图是竖排的,现在我们把它改为横排,如图1、图2.图中各行从左到右列出的算筹数分别表示未知数x,y的系数与相应的常数项.把图1所示的算筹图用我们现在所熟悉的方程组形式表述出来,就是2327214x yx y+=⎧⎨+=⎩,类似地,图2所示的算筹图我们可以表述为( )A.2164322x yx y+=⎧⎨+=⎩B.2164327x yx y+=⎧⎨+=⎩C.2114327x yx y+=⎧⎨+=⎩D.2114322x yx y+=⎧⎨+=⎩二、解答题13.寒梅中学为了丰富学生的课余生活,计划购买围棋和中国象棋供棋类兴趣小组活动使用.若购买3副围棋和5副中国象棋需用98元;若购买8副围棋和3副中国象棋需用158元.(1)求每副围棋和每副中国象棋各多少元.(2)寒梅中学决定购买围棋和中国象棋共40副,总费用不超过550元,那么寒梅中学最多可以购买多少副围棋?14.为加快复工复产,某企业需运输一批物资,据调查得知,2辆大货车与3辆小货车一次可以运输600箱;5辆大货车与6辆小货车一次可以运输1 350箱.(1)求1辆大货车和1辆小货车一次分别运输多少箱物资;(2)计划用两种货车共12辆运输这批货物,每辆大货车一次需费用5 000元,每辆小货车一次需要3 000元.若运输物资不少于1 500箱,且总费用小于54 000元.请你列出所有运输方案,并指出哪种方案所需费用最少,最少费用为多少元.15.今年6月以来,我国多地遭遇强降雨,引发洪涝灾害,人民的生活受到极大的影响,“一方有难,八方支援”,某市筹集了大量的生活物资,用A、B两种型号的货车分两批运往受灾严重的地区,具体运输情况如下:(2)该市后续又筹集了62.4吨生活物资,现已联系了3辆A种型号货车试问:至少还需联系多少辆B种型号货车才能一次性将这批生活物资运往目的地?16.“绿水青山就是金山银山”,为保护生态环境,,A B两村准备各自清理所属区域养鱼网箱和捕鱼网箱,每村参加清理人数及总开支如下表:元;(2)在人均支出费用不变的情况下,为节约开支,两村准备抽调40人共同清理养鱼网箱和捕鱼网箱,要使总支出不超过102 000元,且清理养鱼网箱人数小于清理捕鱼网箱人数,则有哪几种分配清理人员的方案?17.某旗舰网店用8000元购进甲、乙两种型号的口罩,销售完后共获利2800元,进价和售价如表:进价(元/袋)(1)求该网店购进甲、乙两种型号口罩各多少袋;(2)该网店第二次以原价购进甲、乙两种型号口罩,购进乙种型号口罩袋数不变,而购进甲种型号口罩袋数是第一次的2倍.甲种口罩按原售价出售,而乙种口罩让利销售.若两种型号的口罩都售完,要使第二次销售活动获利不少于3680元,乙种型号的口罩最低售价为每袋多少元?18.小欣打算购买气球装扮学校“毕业典礼”活动会场,气球的种类有笑脸和爱心两种,两种气球的价格不同,但同一种气球的价格相同.由于会场布置需要,购买时以一束(4个气球)为单位.已知第一、二束气球的价格如图,求第三束气球的价格.参考答案1.答案:D解析:由比赛场次为16可列方程16x y+=,由16场比赛中得26分可列方程226x y+=.故选D.2.答案:B解析:由“若3人坐一辆车,则两辆车是空的”得3(2)y x=-,由“若2人坐一辆车,则9人需要步行”得29y x=+,联立这两个方程即可.故选B.3.答案:A解析:由“旅店一共有70个房间”可得70x y+=,由“大房间每间住8个人,小房间每间住6个人,一共480个学生刚好住满”可得86480x y+=,故选A.4.答案:A解析:根据在10场比赛中得到16分,可列方程组为10,216,x yx y+=⎧⎨+=⎩,故选A.5.答案:D解析:设合伙买鸡者有x人,鸡的价格为y文钱,根据“如果每人出9文钱,就会多11文钱;如果每人出6文钱,又会缺16文钱”可得911,616,y xy x=-⎧⎨=+⎩解得9,70.xy=⎧⎨=⎩所以合伙买鸡者有9人,鸡的价格为70文钱.故选D.6.答案:D解析:根据“马四匹、牛六头,共价四十八两(我国古代货币单位);马三匹、牛五头,共价三十八两”,可列方程组为4648, 3538.x yx y+=⎧⎨+=⎩故选D.7.答案:C解析:本题考查列二元一次方程组、数学文化.根据题中的相等关系得100,13100,3x yx y+=⎧⎪⎨+=⎪⎩故选C.8.答案:A解析:由“每人出八钱,会多三钱”列方程,得83y x=-;由“每人出七钱,又差四钱”列方程,得74y x=+,联立两个方程得83,7 4.y xy x=-⎧⎨=+⎩故选A.9.答案:D解析:根据图示可得,275,3x yx y+=⎧⎨=⎩故选D.10.答案:C解析:设每块巧克力的质量为x g,每个果冻的质量为y g.由题意,得32,50,x y x y =⎧⎨+=⎩解得20,30.x y =⎧⎨=⎩故选C.11.答案:A解析:这个队胜x 场,负y 场, 根据题意,得10,216.x y x y +=⎧⎨+=⎩故选A.12.答案:C 解析:13.答案:(1)16,10 (2)25解析:(1)设每副围棋x 元,每副中国象棋y 元: 由题意,得3598,83158,x y x y +=⎧⎨+=⎩解得16,10.x y =⎧⎨=⎩∴每副围棋16元,每副中国象棋10元. (2)设购买围棋z 副,则购买中国象棋()40z -副. 由题意,得()161040550z z +-≤,解得25z ≤. ∴最多可以购买25副围棋. 14.答案:(1)150,100(2)共有3种运输方案,分别为6辆大货车,6辆小货车;7辆大货车,5辆小货车;8辆大货车,4辆小货车;当租6辆大货车,6辆小货车时所需费用最少,最少费用为48 000元 解析:(1)设1辆大货车一次运输x 箱物资,1辆小货车一次运输y 箱物资. 由题意,得23600,561350,x y x y +=⎧⎨+=⎩解得150,100.x y =⎧⎨=⎩∴1辆大货车一次运输150箱物资,1辆小货车一次运输100箱物资. (2)设计划用m 辆大货车,则小货车需()12m -辆. 由题意,得50003000(12)54000,150100(12)1500,m m m m +-<⎧⎨+-≥⎩解得69m ≤<.m 为正整数,6,7,8m ∴=.∴共有3种运输方案,分别为6辆大货车,6辆小货车;7辆大货车,5辆小货车;8辆大货车,4辆小货车. 设租车总费用为w 元,则50003000(12)200036000w m m m =+-=+, 20000,w >∴的值随m 值的增大而增大,∴当6m =时,w 取得最小值,最小值为48 000.∴共有3种运输方案,分别为6辆大货车,6辆小货车;7辆大货车,5辆小货车;8辆大货车,4辆小货车;当租6辆大货车,6辆小货车时所需费用最少,最少费用为48 000元.15.答案:(1)A 种型号货车每辆满载能运10吨生活物资,B 种型号货车每辆满载能运6吨生活物资.(2)至少还需联系6辆B 种型号货车才能满足要求.解析:(1)设A 种型号货车每辆满载能运x 吨生活物资,B 种型号货车每辆满载能运y 吨生活物资.由题意,得328,2550,x y x y +=⎧⎨+=⎩解得10,6.x y =⎧⎨=⎩∴A 种型号货车每辆满载能运10吨生活物资,B 种型号货车每辆满载能运6吨生活物资.(2)设还需联系m 辆B 种型号货车. 由题意,得310662.4m ⨯+≥,解得 5.4m ≥.m 为正整数,∴至少还需联系6辆B 种型号货车才能满足要求.16.答案:(1)清理养鱼网箱的人均支出费用为2 000元,清理捕鱼网箱的人均支出费用为3 000元 (2)有2种分配清理人员的方案,方案一:清理养鱼网箱人数为18,清理捕鱼网箱人数为22;方案二:清理养鱼网箱人数为19,清理捕鱼网箱人数为21解析:(1)设清理养鱼网箱的人均支出费用为x 元,清理捕鱼网箱的人均支出费用为y 元, 根据题意,列方程组得15957000,101668000,x y x y +=⎧⎨+=⎩解得2000,3000.x y =⎧⎨=⎩答:清理养鱼网箱的人均支出费用为2 000元,清理捕鱼网箱的人均支出费用为3 000元. (2)设清理养鱼网箱人数为m ,则清理捕鱼网箱人数为()40m -,根据题意,得20003000(40)102000,40,m m m m +-≤⎧⎨<-⎩解得1820m ≤<, m 是整数,18m ∴=或19,∴当18m =时,4022m -=,即清理养鱼网箱人数为18,清理捕鱼网箱人数为22;当19m =时,4021m -=,即清理养鱼网箱人数为19,清理捕鱼网箱人数为21.因此,有2种分配清理人员的方案,方案一:清理养鱼网箱人数为18,清理捕鱼网箱人数为22;方案二:清理养鱼网箱人数为19,清理捕鱼网箱人数为21.17.答案:(1)该网店购进甲种型号口罩200袋,乙种型号口罩160袋. (2)乙种型号的口罩最低售价为每袋33元.解析:(1)设该网店购进甲种型号口罩x 袋,乙种型号口罩y 袋, 依题意得20258000,(2620)(3525)2800,x y x y +=⎧⎨-+-=⎩解得200,160.x y =⎧⎨=⎩答:该网店购进甲种型号口罩200袋,乙种型号口罩160袋. (2)设乙种型号的口罩售价为每袋m 元, 依题意得(2620)2002(25)1603680m -⨯⨯+-⨯≥, 解得33m ≥.答:乙种型号的口罩最低售价为每袋33元.18.答案:设一个笑脸气球的单价为x 元,一个爱心气球的单价为y 元.根据题意得316,320.x y x y +=⎧⎨+=⎩①②()2÷①+②,得2218x y +=.故第三束气球选的价格为18元. 解析:。
人教版七年级数学下册章节重难点举一反三 专题6.3 实数的混合运算专项训练(60题)(原卷版+解析

专题6.3 实数的混合运算专项训练(60题)【人教版】考卷信息:本卷试题共60道大题,本卷试题针对性较高,覆盖面广,选题有深度,涵盖了实数的混合运算的所有情况!一.解答题(共60小题)1.(2022春•芜湖期末)计算:|1−√3|+|2−√3|+(−√9)2+√−643.2.(2022春•永城市期末)计算:√−273−√925+|√643−√49|.3.(2022春•杨浦区校级期末)计算:√314−1−√252−242+√(−8)23.4.(2022春•合阳县期末)计算:√36−√(−3)2+√−83×√14.5.(2022春•开福区校级期末)计算:√4+|√3−3|−√−273+(−2)3.6.(2022春•南丹县期末)计算:√36+√−273−√(−5)2−|√2−2|.7.(2022春•防城区校级期末)计算:√−273−√19+√3+|√3−√9|.8.(2022春•绵阳期末)计算:|√3−2|+√100×√0.0643−√3(√3−1).9.(2022春•齐齐哈尔期末)计算|1−√3|+√1916−√−1643+√(−2)2.10.(2022春•钦州期末)计算:√81+√−273−√(−2)2+|−√3|.11.(2022春•岳池县期末)计算:√−273+|2−√3|﹣(−√16)+2√3.12.(2022春•定南县期末)计算:√2783−√254−√3(√3−√3).13.(2022春•宣恩县期末)计算;√83−√3(√3−1)+|√3−2|+√(−3)2+(﹣1)2022.14.(2022春•华阴市期末)计算:√9−(﹣1)2022−√−83+|2−√6|.15.(2022春•剑阁县期末)计算:﹣12022+√16×(−3)2+(−6)÷√−83.16.(2022春•镜湖区校级期末)计算:﹣12022+√25−|1−√2|+√−83−√(−3)2.17.(2022春•朝天区期末)计算:|52−√9|+(﹣1)2022−√273+√(−6)2.18.(2022春•渭南期末)计算:√25−|1−√2|+√−273−√(−3)2.19.(2022春•中山市期末)计算:√16+√−83+|√5−3|﹣(2−√5).20.(2022春•谷城县期末)计算:|√3−2|−√−83+√3×(√3√3)−√16.21.(2022春•平邑县期末)计算: (1)√−83−√3+(√5)2+|1−√3|;(2)−23−|1−√2|−√−273×√(−3)2.22.(2022春•费县期末)计算: (1)√−83−√3+(√5)2+|1−√3|;(2)﹣23﹣|1−√2|−√−273×√(−3)2.23.(2022春•西平县期末)计算:(1)√183+√(−2)2+√14; (2)﹣12+√4+√−273+|√3−1|.24.(2022春•虞城县期末)(1)计算:(﹣1)2023+|2−√5|−√9;(2)求式中x 的值:(x +2)3=−1258.25.(2021春•新市区校级期末)计算:(1)√81+√−273+√(−2)2+|√3−2|;(2)求x 的值,2(x +3)3+54=0.26.(2022春•林州市校级期末)计算(1)√−83+|√3−3|+√(−3)2−(−√3);(2)(﹣2)2×√116+|√−83+√2|+√2.27.(2022春•泗水县期末)计算:(1)2√2+√25+√83−|√2−2|;(2)√214−√(−2)4+√1−19273+(−1)2022.28.(2022春•新市区期末)计算:(1)√0.25−√−273+√(−14)2; (2)|√3−√2|+|√3−2|﹣|√2−1|.29.(2022春•安次区校级期末)计算:(1)√4−√−83+√16+5;(2)|√3−2|−√14+√3(√3+1)−√−183.(1)√1−89−√643+√−1273; (2)√2.56−√0.2163+|1−√2|.31.(2022春•固始县期末)计算:(1)(−2)3×√(−4)2+√(−4)33+(−12)2−√273;(2)|1−√2|+|√2−√3|+|√3−2|+|2−√5|.32.(2022春•忠县期末)计算:(1)√32+√−273+√49; (2)−14×√4+|√9−5|+√214+√−0.1253.(1)求式子中x的值:√x2−243=1;(2)√3+√(−3)2−√−83−|√3−2|.34.(2022春•清丰县期末)计算:(1)(−2)3×18−√273×(−√19);(2)(3+3√3)√3−(2√3+√3).35.(2022春•潼南区期末)计算下列各式的值:(1)|−2|+√916−√83;(2)√0.25+|√5−3|+√−1253−(−√5).(1)计算:(﹣1)3+|−2√2|+√273−√4;(2)√9+|√5−3|+√−643+(﹣1)2022.37.(2022春•临沭县期中)(1)计算:√(−1)23+|1−√2|+√(−2)2;(2)求x 的值:(x +1)3=−278.38.(2022春•聂荣县期中)计算:(1)|√6−√2|+|√2−1|﹣|3−√6|;(2)√273+√(−3)2−√−13.39.(2022春•河北区校级期中)计算:(1)√16−√273+(√13)2+√(−1)33; (2)√3(√3−1)+|√2−√3|.40.(2022春•西城区校级期中)(1)计算:√81+√−273+√(−23)2;(2)计算:4√3−2(1+√3)+|2−√2|.41.(2022春•夏邑县期中)计算:(1)√(94)2+|2−√7|−√(78−1)3; (2)(−√6)2×12+√−273+√62+82.42.(2022春•海淀区校级期中)计算: (1)√25+√−643−|2−√5|+√(−3)2; (2)√2(2+√2)﹣2√2.43.(2022春•洛龙区期中)计算和解方程: (1)√0.04+√−83−√14+|√3−2|+2√3;(2)2(1﹣x )2=8.44.(2022春•随州期中)计算下列各式: ①√(−1)2+√14×(−2)2−√−643②|√3−√2|+|√3−√2|−|√2−1|−√−(−4);(1)√16+√149(2)√52−42−√62+82+√(−2)2.46.(2022春•渝北区月考)计算:3−√9+(−1)2021+(−√2)2;(1)√−8(2)(−3)2+2×(√2−1)−|−2√2|.47.(2022春•崇义县期中)计算:3+(﹣1)2022;(1)√4+|﹣2|+√−642÷2.(2)(−√3)2+√(−5)2−(﹣7)+√8(1)﹣(12)2−√2516−√−83; (2)|√2−√3|+|1−√2|+√3−(﹣1)2021.49.(2022春•渑池县期中)计算: (1)√214−√0.09+√(−3)2;(2)−43÷(−32)−√−83−(1−√9)+|1−√2|.50.(2022春•江北区校级月考)计算: (1)√0.2163−√1916+5×√1100;(2)|−√2|−√−83+|2−√3|+(−√9)2+√(−9)2.(1)﹣12022+√(−2)2−√643×√−27643+|√3−2|;(2)13(x ﹣2)2−427=0.52.(2022春•天门校级月考)计算 (1)|√5−2|+√25+√(−2)2+√−273;(2)﹣12﹣(﹣2)3×18−√273×|−13|+2÷(√2)2.53.(2022春•铁锋区期中)计算(1)√22−√214+√78−13−√−13; (2)|−√2|﹣(√3−√2)﹣|√3−2|.54.(2021春•涪城区校级期中)计算: (1)√49−√−643−(√2)2+√1+916;(2)√(−5)2−|√3−2|+|√5−3|+|−√5|.55.(2016秋•苏州期中)计算下列各题. (1)√0.16+√0.49−√0.81; (2)﹣16√0.25−4√1−653; (3)|−√549|−√210273+√19+116;(4)√1−0.9733×√(−10)2−2(√133−π)0.56.(2022春•林州市期末)计算:(1)计算:√(−2)2−√1253+|√3−2|+√3;(2)已知x 是﹣27的立方根,y 是13的算术平方根,求x +y 2+6的平方根.57.(2022春•无棣县期末)(1)计算:√94+√−183−|3−√2|+√(−2)2.(2)若实数a +5的一个平方根是﹣3,−14b ﹣a 的立方根是﹣2,求√a +√b 的值.58.(2022春•洛阳期中)已知实数a ,b ,c ,d ,e ,f ,且a ,b 互为倒数,c ,d 互为相反数,e 的绝对值为√2,f 的算术平方根是8,求12ab +c+d 5+e 2+√f 3的值.59.(2022春•秭归县期中)已知(x ﹣7)2=121,(y +1)3=﹣0.064,求代数式√x −2−√x +10y +√245y 3的值.60.(2022春•朔州月考)(1)计算:√14−√−0.1253+√(−4)2−|−6|;(2)解方程:25x 2﹣36=0;(3)已知√x +1+|y −2|=0,且√1−2z 3与√3z −53互为相反数,求yz ﹣x 的平方根.专题6.3 实数的混合运算专项训练(60题)【人教版】考卷信息:本卷试题共60道大题,本卷试题针对性较高,覆盖面广,选题有深度,涵盖了实数的混合运算的所有情况! 一.解答题(共60小题)1.(2022春•芜湖期末)计算:|1−√3|+|2−√3|+(−√9)2+√−643.【分析】利用绝对值的意义,实数的乘方法则和立方根的意义解答即可. 【解答】解:原式=√3−1+2−√3+9﹣4 =6.2.(2022春•永城市期末)计算:√−273−√925+|√643−√49|.【分析】首先计算开平方、开立方和绝对值,然后从左向右依次计算,求出算式的值即可.【解答】解:√−273−√925+|√643−√49|=﹣3−35+|4﹣7| =﹣3−35+|﹣3| =﹣3−35+3=−35.3.(2022春•杨浦区校级期末)计算:√314−1−√252−242+√(−8)23. 【分析】利用算术平方根和立方根的意义化简运算即可. 【解答】解:原式=√94−√49+√643=32−7+4=−32.4.(2022春•合阳县期末)计算:√36−√(−3)2+√−83×√14.【分析】先计算平方根、立方根,再计算乘法,后计算加减. 【解答】解:√36−√(−3)2+√−83×√14 =6−3+(−2)×12 =6﹣3﹣1 =2.5.(2022春•开福区校级期末)计算:√4+|√3−3|−√−273+(−2)3. 【分析】先计算开平方、开立方、立方和绝对值,后计算加减. 【解答】解:√4+|√3−3|−√−273+(−2)3 =2+3−√3+3﹣8 =−√3.6.(2022春•南丹县期末)计算:√36+√−273−√(−5)2−|√2−2|. 【分析】根据二次根式的加减运算法则以及绝对值的性质即可求出答案. 【解答】解:原式=6﹣3﹣5﹣(2−√2) =﹣2﹣2+√2 =﹣4+√2.7.(2022春•防城区校级期末)计算:√−273−√19+√3+|√3−√9|. 【分析】先计算开立方、开平方和绝对值,后计算加减. 【解答】解:√−273−√19+√3+|√3−√9|=﹣3−13+√3+3−√3 =−13.8.(2022春•绵阳期末)计算:|√3−2|+√100×√0.0643−√3(√3−1).【分析】首先计算开平方、开立方和绝对值,然后计算乘法,最后从左向右依次计算,求出算式的值即可.【解答】解:|√3−2|+√100×√0.0643−√3(√3−1) =2−√3+10×0.4﹣3+√3 =2−√3+4﹣3+√3 =3.9.(2022春•齐齐哈尔期末)计算|1−√3|+√1916−√−1643+√(−2)2.【分析】利用绝对值的意义,算术平方根的意义,立方根的意义和二次根式的性质化简运算即可.【解答】解:原式=√3−1+54−(−14)+2=√3−1+54+14+2 √3−1+32+2 =√3+52.10.(2022春•钦州期末)计算:√81+√−273−√(−2)2+|−√3|.【分析】先化简各式,然后再进行计算即可解答.【解答】解:√81+√−273−√(−2)2+|−√3|=9+(﹣3)﹣2+√3=9﹣3﹣2+√3=4+√3.11.(2022春•岳池县期末)计算:√−273+|2−√3|﹣(−√16)+2√3.【分析】直接利用二次根式的性质以及立方根的性质、绝对值的性质分别化简,进而合并得出答案.【解答】解:原式=﹣3+2−√3+4+2√3=3+√3.12.(2022春•定南县期末)计算:√2783−√254−√3(√3−√3).【分析】直接利用立方根的性质以及二次根式的性质、二次根式的乘法运算法则分别化简,进而得出答案. 【解答】解:原式=32−54−3+1 =−74. 13.(2022春•宣恩县期末)计算;√83−√3(√3−1)+|√3−2|+√(−3)2+(﹣1)2022.【分析】根据立方根、绝对值和有理数的乘法分别化简,再计算即可.【解答】解:原式=2﹣3+√3−(√3−2)+3+1=2﹣3+√3−√3+2+3+1=5.14.(2022春•华阴市期末)计算:√9−(﹣1)2022−√−83+|2−√6|.【分析】先算乘方和开方,再化简绝对值,最后算加减.【解答】解:原式=3﹣1﹣(﹣2)+√6−2=3﹣1+2+√6−2=2+√6.15.(2022春•剑阁县期末)计算:﹣12022+√16×(−3)2+(−6)÷√−83.【分析】先利用乘方,立方根,算术平方根进行运算,再进行实数的混合运算求解.【解答】解:原式=﹣1+4×9+(﹣6)÷(﹣2)=﹣1+36+3=38.16.(2022春•镜湖区校级期末)计算:﹣12022+√25−|1−√2|+√−83−√(−3)2.【分析】原式利用乘方的意义,算术平方根、立方根定义,绝对值的代数意义,以及二次根式性质计算即可求出值.【解答】解:原式=﹣1+5﹣(√2−1)﹣2﹣3=﹣1+5−√2+1﹣2﹣3=−√2.17.(2022春•朝天区期末)计算:|52−√9|+(﹣1)2022−√273+√(−6)2.【分析】先化简各式,然后再进行计算即可解答.【解答】解:|52−√9|+(﹣1)2022−√273+√(−6)2 =12+1﹣3+6 =92.18.(2022春•渭南期末)计算:√25−|1−√2|+√−273−√(−3)2.【分析】直接利用立方根的性质以及绝对值的性质、二次根式的性质分别化简,进而合并得出答案.【解答】解:√25−|1−√2|+√−273−√(−3)2=5−√2+1+(−3)−3=5−√2+1−3−3=−√2.19.(2022春•中山市期末)计算:√16+√−83+|√5−3|﹣(2−√5).【分析】直接利用立方根的性质以及绝对值的性质、二次根式的性质分别化简,进而合并得出答案.【解答】解:原式=4﹣2+3−√5−2+√5=3.20.(2022春•谷城县期末)计算:|√3−2|−√−83+√3×(√3√3)−√16.【分析】直接利用立方根的性质以及绝对值的性质、二次根式的性质分别化简,进而合并得出答案. 【解答】解:原式=2−√3+2+3+1﹣4 =4−√3.21.(2022春•平邑县期末)计算: (1)√−83−√3+(√5)2+|1−√3|;(2)−23−|1−√2|−√−273×√(−3)2.【分析】(1)直接利用立方根的性质以及绝对值的性质、二次根式的性质分别化简,进而合并得出答案;(2)直接利用立方根的性质以及绝对值的性质、二次根式的性质分别化简,进而合并得出答案.【解答】解:(1)原式=−2−√3+5+√3−1=2;(2)原式=−8+1−√2−(−3)×3=−8+1−√2+9=2−√2.22.(2022春•费县期末)计算:(1)√−83−√3+(√5)2+|1−√3|;(2)﹣23﹣|1−√2|−√−273×√(−3)2.【分析】(1)原式利用立方根定义,二次根式性质,以及绝对值的代数意义计算即可求出值;(2)原式利用乘方的意义,绝对值的代数意义,以及立方根,二次根式性质计算求出值.【解答】解:(1)原式=﹣2−√3+5+√3−1=2;(2)原式=﹣8﹣(√2−1)﹣(﹣3)×3=﹣8−√2+1+9=2−√2.23.(2022春•西平县期末)计算:(1)√183+√(−2)2+√14; (2)﹣12+√4+√−273+|√3−1|.【分析】(1)首先计算开平方和开立方,然后从左向右依次计算,求出算式的值即可.(2)首先计算乘方、开平方、开立方和绝对值,然后从左向右依次计算,求出算式的值即可.【解答】解:(1)√183+√(−2)2+√14 =12+2+12=3.(2)﹣12+√4+√−273+|√3−1|=﹣1+2+(﹣3)+(√3−1)=﹣1+2+(﹣3)+√3−1=√3−3.24.(2022春•虞城县期末)(1)计算:(﹣1)2023+|2−√5|−√9;(2)求式中x的值:(x+2)3=−1258.【分析】(1)根据乘方运算、绝对值的性质以及二次根式的加减运算法则即可求出答案.(2)根据立方根的定义即可求出答案.【解答】解:(1)原式=﹣1+√5−2﹣3=﹣6+√5.(2)(x+2)3=−1258,x+2=−52,x=−92.25.(2021春•新市区校级期末)计算:(1)√81+√−273+√(−2)2+|√3−2|;(2)求x的值,2(x+3)3+54=0.【分析】(1)根据求立方根、绝对值的意义、实数的运算法则等知识直接计算即可;(2)利用立方根的含义求解x+3,再求解x即可.【解答】解:(1)√81+√−273+√(−2)2+|√3−2|;=9+(−3)+2+2−√3=10−√3;(2)2(x+3)3+54=0,变形得(x+3)3=﹣27,即有x+3=﹣3,则x=﹣6.26.(2022春•林州市校级期末)计算(1)√−83+|√3−3|+√(−3)2−(−√3);(2)(﹣2)2×√116+|√−83+√2|+√2.【分析】(1)利用立方根、去绝对值、算术平方根、去括号定义求解即可.(2)利用数的平方、算术平方根、去绝对值化简求值即可.【解答】解:(1)原式=﹣2+3−√3+3+√3=4;(2)原式=4×14+2−√2+√2=1+2=3.27.(2022春•泗水县期末)计算:(1)2√2+√25+√83−|√2−2|;(2)√214−√(−2)4+√1−19273+(−1)2022.【分析】(1)直接利用二次根式的性质、立方根的性质、绝对值的性质分别化简,进而合并得出答案;(2)直接利用二次根式的性质、立方根的性质、有理数的乘方运算法则分别化简,进而合并得出答案.【解答】解:(1)原式=2√2+5+2﹣(2−√2)=2√2+5+2﹣2+√2=3√2+5;(2)原式=32−4+23+1=−56.28.(2022春•新市区期末)计算:(1)√0.25−√−273+√(−14)2;(2)|√3−√2|+|√3−2|﹣|√2−1|.【分析】(1)根据算术平方根、立方根的性质化简,再计算即可;(2)根据绝对值的性质化简,再合并即可.【解答】解:(1)原式=0.5+3+14 =334;(2)原式=(√3−√2)﹣(√3−2)﹣(√2−1)=√3−√2−√3+2−√2+1=3﹣2√2.29.(2022春•安次区校级期末)计算:(1)√4−√−83+√16+5;(2)|√3−2|−√14+√3(√3+1)−√−183. 【分析】(1)直接利用二次根式的性质以及立方根的性质分别化简,进而合并得出答案;(2)直接利用二次根式的性质以及立方根的性质、绝对值的性质分别化简,进而合并得出答案.【解答】解:(1)原式=2+2+4+5=13;(2)原式=2−√3−12+3+√3+12=5.30.(2022春•博兴县期末)计算:(1)√1−89−√643+√−1273; (2)√2.56−√0.2163+|1−√2|.【分析】(1)原式利用算术平方根及立方根定义计算即可求出值;(2)原式利用算术平方根,立方根定义,以及绝对值的代数意义计算即可求出值.【解答】解:(1)原式=√19−√643+√−1273=13−4−13=﹣4;(2)原式=1.6﹣0.6+√2−1=√2.31.(2022春•固始县期末)计算:(1)(−2)3×√(−4)2+√(−4)33+(−12)2−√273;(2)|1−√2|+|√2−√3|+|√3−2|+|2−√5|.【分析】(1)先化简各式,然后再进行计算即可解答;(2)先化简每一个绝对值,然后再进行计算即可解答.【解答】解:(1)(−2)3×√(−4)2+√(−4)33+(−12)2−√273=﹣8×4+(﹣4)+14−3=﹣32﹣4+14−3 =﹣3834;(2)|1−√2|+|√2−√3|+|√3−2|+|2−√5|=√2−1+√3−√2+2−√3+√5−2=√5−1.32.(2022春•忠县期末)计算:(1)√32+√−273+√49; (2)−14×√4+|√9−5|+√214+√−0.1253. 【分析】(1)利用算术平方根,立方根的意义化简运算即可;(2)注意各项的符号和运算法则.【解答】解:(1)原式=3﹣3+23=23,(2)原式=﹣1×2+5﹣3+32−12=﹣2+5﹣3+1=1.33.(2022春•天津期末)计算:(1)求式子中x的值:√x2−243=1;(2)√3+√(−3)2−√−83−|√3−2|.【分析】(1)利用立方根的意义和平方根的意义解答即可;(2)利用二次根式的性质,立方根的意义,绝对值的意义解答即可.【解答】解:(1)∵√x2−243=1,∴x2﹣24=1,∴x2=25.∴x=±5.(2)原式=√3+3﹣(﹣2)﹣(2−√3)=√3+3+2﹣2+√3=3+2√3.34.(2022春•清丰县期末)计算:(1)(−2)3×18−√273×(−√19);(2)(3+3√3)√3−(2√3+√3).【分析】(1)利用有理数的乘方法则,立方根的意义和平方根的意义化简计算即可;(2)利用二次根式的性质解答即可.【解答】解:(1)原式=﹣8×18−3×(−13)=﹣1﹣(﹣1)=0;(2)原式=3√3+9﹣3√3=9.35.(2022春•潼南区期末)计算下列各式的值:(1)|−2|+√916−√83;(2)√0.25+|√5−3|+√−1253−(−√5).【分析】先计算开方及绝对值,再合并即可.【解答】解:(1)原式=2+34−2=34;(2)原式=0.5+3−√5−5+√5=﹣1.5.36.(2022春•綦江区期末)计算.(1)计算:(﹣1)3+|−2√2|+√273−√4;(2)√9+|√5−3|+√−643+(﹣1)2022.【分析】(1)原式利用乘方的意义,绝对值的代数意义,以及算术平方根、立方根定义计算即可求出值;(2)原式利用算术平方根、立方根定义,绝对值的代数意义,以及乘方的意义计算即可求出值.【解答】解:(1)原式=﹣1+2√2+3﹣2=2√2;(2)原式=3+3−√5−4+1=3−√5.37.(2022春•临沭县期中)(1)计算:√(−1)23+|1−√2|+√(−2)2;(2)求x 的值:(x +1)3=−278. 【分析】(1)先计算√(−1)23、√(−2)2,再化简绝对值,最后加减.(2)利用立方根的意义求出x .【解答】解:(1)原式=√13+|1−√2|+√4=1+√2−1+2=√2+2;(2)x +1=−√2783, x =−32−1,x =−52.38.(2022春•聂荣县期中)计算:(1)|√6−√2|+|√2−1|﹣|3−√6|;(2)√273+√(−3)2−√−13.【分析】(1)先化去绝对值号,再加减;(2)先求出27、﹣1的立方根及(﹣3)2的算术平方根,再加减.【解答】解:(1)原式=√6−√2+√2−1﹣3+√6=2√6−4;(2)原式=3+3+1=7.39.(2022春•河北区校级期中)计算:(1)√16−√273+(√13)2+√(−1)33; (2)√3(√3−1)+|√2−√3|.【分析】(1)首先计算乘方、开平方和开立方,然后从左向右依次计算,求出算式的值即可.(2)首先计算绝对值,然后计算乘法,最后从左向右依次计算,求出算式的值即可.【解答】解:(1)√16−√273+(√13)2+√(−1)33=4﹣3+13+(﹣1)=13.(2)√3(√3−1)+|√2−√3|=√3×√3−√3+(√3−√2)=3−√3+√3−√2=3−√2.40.(2022春•西城区校级期中)(1)计算:√81+√−273+√(−23)2; (2)计算:4√3−2(1+√3)+|2−√2|.【分析】(1)先化简各式,然后再进行计算即可解答;(2)先化简各式,然后再进行计算即可解答.【解答】解:(1)√81+√−273+√(−23)2 =9+(﹣3)+23=9﹣3+23 =203;(2)4√3−2(1+√3)+|2−√2|=4√3−2﹣2√3+2−√2=2√3−√2.41.(2022春•夏邑县期中)计算:(1)√(94)2+|2−√7|−√(78−1)3;(2)(−√6)2×12+√−273+√62+82.【分析】(1)根据二次根式的性质,绝对值的性质,立方根的性质进行计算便可;(2)根据二次根式的性质,立方根的性质进行计算便可.【解答】解:(1)原式=94+√7−2−√−183 =94+√7−2+12=√7+34; (2)原式=6×12−3+10 =3﹣3+10=10.42.(2022春•海淀区校级期中)计算:(1)√25+√−643−|2−√5|+√(−3)2;(2)√2(2+√2)﹣2√2.【分析】(1)先化简各式,然后再进行计算即可解答;(2)先算乘法,再算加减,即可解答.【解答】解:(1)√25+√−643−|2−√5|+√(−3)2=5+(﹣4)−√5+2+3=5﹣4−√5+2+3=6−√5;(2)√2(2+√2)﹣2√2=2√2+2﹣2√2=2.43.(2022春•洛龙区期中)计算和解方程:(1)√0.04+√−83−√14+|√3−2|+2√3;(2)2(1﹣x )2=8.【分析】(1)根据二次根式的性质,立方根的性质,绝对值的性质,合并同类二次根式的法则进行计算便可;(2)运用直接开平方法解方程便可.【解答】解:(1)原式=0.2﹣2−12+2−√3+2√3 =﹣0.3+√3;(2)(1﹣x )2=4,1﹣x =±2,∴x 1=﹣1,x 2=3.44.(2022春•随州期中)计算下列各式:①√(−1)2+√14×(−2)2−√−643②|√3−√2|+|√3−√2|−|√2−1|【分析】(1)利用算术平方根和立方根计算即可.(2)先利用绝对值的定义去绝对值,再合并运算.【解答】解:①√(−1)2+√14×(−2)2−√−643=1+12×4﹣(﹣4)=1+2+4=7.②|√3−√2|+|√3−√2|−|√2−1|=√3−√2+√3−√2−(√2−1)=√3−√2+√3−√2−√2+1=(√3+√3)−(√2+√2+√2)+1=2√3−3√2+1.45.(2022春•老河口市月考)计算(1)√16+√149−√−(−4);(2)√52−42−√62+82+√(−2)2.【分析】(1)先化简各式,然后再进行计算即可解答;(2)先化简各式,然后再进行计算即可解答.【解答】解:(1)√16+√149−√−(−4)=4+17−2=157;(2)√52−42−√62+82+√(−2)2=3﹣10+2=﹣5.46.(2022春•渝北区月考)计算:(1)√−83−√9+(−1)2021+(−√2)2;(2)(−3)2+2×(√2−1)−|−2√2|.【分析】(1)先化简各式,然后再进行计算即可解答;(2)先化简各式,然后再进行计算即可解答.【解答】解:(1)√−83−√9+(−1)2021+(−√2)2=﹣2﹣3+(﹣1)+2=﹣4;(2)(−3)2+2×(√2−1)−|−2√2|=9+2√2−2﹣2√2=7.47.(2022春•崇义县期中)计算:(1)√4+|﹣2|+√−643+(﹣1)2022;(2)(−√3)2+√(−5)2−(﹣7)+√82÷2.【分析】(1)先化简各式,然后再进行计算即可解答;(2)先化简各式,然后再进行计算即可解答.【解答】解:(1)√4+|﹣2|+√−643+(﹣1)2022=2+2﹣4+1=1;(2)(−√3)2+√(−5)2−(﹣7)+√82÷2=3+5+7+2√2÷2=15+√2.48.(2022春•黄石期中)计算:(1)﹣(12)2−√2516−√−83;(2)|√2−√3|+|1−√2|+√3−(﹣1)2021.【分析】(1)首先计算乘方、开平方和开立方,然后从左向右依次计算,求出算式的值即可.(2)首先计算乘方和绝对值,然后从左向右依次计算,求出算式的值即可.【解答】解:(1)﹣(12)2−√2516−√−83=−14−54−(﹣2)=−32+2 =12.(2)|√2−√3|+|1−√2|+√3−(﹣1)2021=√3−√2+(√2−1)+√3−(﹣1)=√3−√2+√2−1+√3+1=2√3.49.(2022春•渑池县期中)计算:(1)√214−√0.09+√(−3)2;(2)−43÷(−32)−√−83−(1−√9)+|1−√2|.【分析】(1)首先计算开方,然后从左向右依次计算,求出算式的值即可.(2)首先计算乘方、开立方和绝对值,然后计算除法,最后从左向右依次计算,求出算式的值即可.【解答】解:(1)√214−√0.09+√(−3)2=32−0.3+3=4.2.(2)−43÷(−32)−√−83−(1−√9)+|1−√2|=﹣64÷(﹣32)﹣(﹣2)﹣1+3+(√2−1)=2+2﹣1+3+√2−1=5+√2.50.(2022春•江北区校级月考)计算:(1)√0.2163−√1916+5×√1100; (2)|−√2|−√−83+|2−√3|+(−√9)2+√(−9)2.【分析】(1)首先计算开平方和开立方,然后计算乘法,最后从左向右依次计算,求出算式的值即可.(2)首先计算乘方、开平方、开立方和绝对值,然后从左向右依次计算,求出算式的值即可.【解答】解(1)√0.2163−√1916+5×√1100=0.6−54+5×110=35−54+12=−320.(2)|−√2|−√−83+|2−√3|+(−√9)2+√(−9)2=√2−(﹣2)+(2−√3)+9+9=√2+2+2−√3+9+9=√2−√3+22.51.(2022春•三台县月考)计算.(1)﹣12022+√(−2)2−√643×√−27643+|√3−2|;(2)13(x ﹣2)2−427=0.【分析】(1)首先计算乘方、开平方、开立方和绝对值,然后计算乘法,最后从左向右依次计算,求出算式的值即可.(2)首先求出(x ﹣2)2的值;然后根据平方根的含义和求法,求出x ﹣2的值,进而求出x 的值即可.【解答】解:(1)﹣12022+√(−2)2−√643×√−27643+|√3−2| =﹣1+2﹣4×(−34)+(2−√3) =﹣1+2+3+2−√3=6−√3.(2)∵13(x ﹣2)2−427=0,∴(x ﹣2)2=49,∴x ﹣2=−23或x ﹣2=23, 解得:x =43或x =83.52.(2022春•天门校级月考)计算(1)|√5−2|+√25+√(−2)2+√−273;(2)﹣12﹣(﹣2)3×18−√273×|−13|+2÷(√2)2. 【分析】(1)原式利用绝对值的代数意义,算术平方根、立方根性质计算即可求出值;(2)原式先算乘方及绝对值,再算乘除,最后算加减即可求出值.【解答】解:(1)原式=√5−2+5+2﹣3=√5+2;(2)原式=﹣1﹣(﹣8)×18−3×13+2÷2 =﹣1+1﹣1+1=0.53.(2022春•铁锋区期中)计算(1)√22−√214+√78−13−√−13;(2)|−√2|﹣(√3−√2)﹣|√3−2|.【分析】(1)直接利用算术平方根以及立方根的定义化简得出答案;(2)利用绝对值的性质化简得出答案.【解答】解:(1)√22−√214+√78−13−√−13=2−32−12+1 =1;(2)|−√2|﹣(√3−√2)﹣|√3−2|=√2−√3+√2−(2−√3)=2√2−2.54.(2021春•涪城区校级期中)计算:(1)√49−√−643−(√2)2+√1+916;(2)√(−5)2−|√3−2|+|√5−3|+|−√5|.【分析】(1)直接利用二次根式的性质以及立方根的性质分别化简,进而得出答案;(2)直接利用二次根式的性质以及绝对值的性质分别化简,进而计算得出答案.【解答】解:(1)原式=7+4﹣2+54 =1014;(2)原式=5﹣(2−√3)+3−√5+√5=5﹣2+√3+3−√5+√5=6+√3.55.(2016秋•苏州期中)计算下列各题.(1)√0.16+√0.49−√0.81;(2)﹣16√0.25−4√1−653;(3)|−√549|−√210273+√19+116;(4)√1−0.9733×√(−10)2−2(√133−π)0.【分析】(1)、(2)根据数的开方法则分别计算出各数,再根据实数的加减法则进行计算即可;(3)先根据绝对值的性质及数的开方法则分别计算出各数,再根据实数混合运算的法则进行计算即可;(4)先根据数的开方法则及0指数幂的运算法则分别计算出各数,再根据实数混合运算的法则进行计算即可.【解答】解:(1)原式=0.4+0.7﹣0.9=0.2;(2)原式=﹣16×0.5﹣4×(﹣4)=﹣8+16=8;(3)原式=73−43+512=1712;(4)原式=0.3×10﹣2=3﹣2=1.56.(2022春•林州市期末)计算:(1)计算:√(−2)2−√1253+|√3−2|+√3;(2)已知x是﹣27的立方根,y是13的算术平方根,求x+y2+6的平方根.【分析】(1)直接利用二次根式的性质以及立方根的定义、绝对值的性质分别化简,进而合并得出答案;(2)直接利用立方根的定义以及算术平方根的性质得出x,y的值,进而利用平方根的定义得出答案.【解答】解:(1)原式=2﹣5+2−√3+√3=﹣1;(2)∵x是﹣27的立方根,∴x=﹣3,∵y是13的算术平方根,∴y=√13,∴x+y2+6=﹣3+13+6=16,∴x+y2+6的平方根为:±4.57.(2022春•无棣县期末)(1)计算:√94+√−183−|3−√2|+√(−2)2.(2)若实数a+5的一个平方根是﹣3,−14b﹣a的立方根是﹣2,求√a+√b的值.【分析】(1)利用算术平方根的意义立方根的意义,绝对值的意义和二次根式的性质化简运算即可;(2)利用平方根和立方根的意义求得a,b的值,再将a,b的值代入计算即可.【解答】解:(1)原式=32−12−(3−√2)+2=1﹣3+√2+2 =√2;(2)∵实数a +5的一个平方根是﹣3,∴a +5=9,∴a =4.∵−14b ﹣a 的立方根是﹣2, ∴−14b ﹣a =﹣8, ∴−14b ﹣4=﹣8,∴b =16.∴√a +√b=√4+√16=2+4=6.58.(2022春•洛阳期中)已知实数a ,b ,c ,d ,e ,f ,且a ,b 互为倒数,c ,d 互为相反数,e 的绝对值为√2,f 的算术平方根是8,求12ab +c+d 5+e 2+√f 3的值.【分析】根据相反数,倒数,以及绝对值的意义求出c +d ,ab 及e 的值,代入计算即可.【解答】解:由题意可知:ab =1,c +d =0,e =±√2,f =64,∴e 2=(±√2)2=2,√f 3=√643=4,∴12ab +c+d 5+e 2+√f 3=12+0+2+4=612. 59.(2022春•秭归县期中)已知(x ﹣7)2=121,(y +1)3=﹣0.064,求代数式√x −2−√x +10y +√245y 3的值.【分析】根据平方根的定义,以及立方根的定义即可求得x ,y 的值,然后代入所求的代数式化简求值即可.【解答】解:∵(x ﹣7)2=121,∴x ﹣7=±11,则x =18或﹣4,又∵x ﹣2>0,即x >2.则x =18.∵(y +1)3=﹣0.064,∴y +1=﹣0.4,∴y =﹣1.4.则√x −2−√x +10y +√245y 3=√18−2−√18−10×1.4−√245×1.43=4﹣2﹣7=﹣560.(2022春•朔州月考)(1)计算:√14−√−0.1253+√(−4)2−|−6|; (2)解方程:25x 2﹣36=0;(3)已知√x +1+|y −2|=0,且√1−2z 3与√3z −53互为相反数,求yz ﹣x 的平方根.【分析】(1)利用算术平方根的意义,立方根的意义,二次根式的性质和绝对值的意义解答即可;(2)利用平方根的意义解答即可;(3)利用非负数的意义和相反数的意义求得x ,y ,z 的值,再将x ,y ,z 的值代入解答即可.【解答】解:(1)原式=12−(﹣0.5)+4﹣6 =12+0.5+4﹣6 =﹣1;(2)25x 2﹣36=0,∴x 2=3625.∴x 是3625的平方根, ∴x =±65. (3)∵√x +1+|y −2|=0,√x +1≥0,|y ﹣2|≥0,∴x +1=0,y ﹣2=0.∴x =﹣1,y =2.∵√1−2z 3与√3z −53互为相反数,∴1﹣2z +3z ﹣5=0.解得:z =4.∴yz ﹣x =8﹣(﹣1)=9.∵9的平方根为±3,∴yz ﹣x 的平方根为±3.。
人教版七年级数学下册 第七章 平面直角坐标系 培优专题测试训练(含答案)

人教版七年级数学下册第七章平面直角坐标系培优专题测试训练一、选择题1. 点(-2,1)在平面直角坐标系中所在的象限是( )A.第一象限 B.第二象限 C.第三象限 D.第四象限2. 已知点A的坐标为(2,1),将点A向下平移4个单位长度,得到的点A'的坐标是 ( )A.(6,1)B.(-2,1)C.(2,5)D.(2,-3)3.图是某动物园的平面示意图,若以猴山为原点,向右的水平方向为x轴正方向,向上的竖直方向为y轴正方向建立平面直角坐标系,则熊猫馆所在的象限是 ( )A.第一象限B.第二象限C.第三象限D.第四象限4.在平面直角坐标系中,将点P(x,y)先向左平移4个单位长度,再向上平移3个单位长度后得到点P'(1,2),则点P的坐标为( )A.(2,6)B.(-3,5)C.(-3,1)D.(5,-1)5.小明为画一个零件的轴截面,以该轴截面底边所在的直线为x轴,对称轴为y轴,建立如图所示的平面直角坐标系.若坐标轴的单位长度取1 mm,则图中转折点P的坐标表示正确的是( )A.(5,30)B.(8,10)C.(9,10)D.(10,10)6. 平面直角坐标系中,点P(-2,3)关于x轴对称的点的坐标为( )A. (-2,-3)B. (2,-3)C. (-3,2)D. (3,-2)7.如图,在平面直角坐标系中,半径均为1个单位长度的半圆O1,O2,O3,…,组成一条平滑的曲线,点P从原点O出发,沿这条曲线向右运动,速度为每秒个单位长度,则第21秒时,点P的坐标为( )A.(21,-1)B.(21,0)C.(21,1)D.(22,0)8.如图,动点P在平面直角坐标系中按图中箭头所示方向运动,第1次从原点O运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2)……按这样的运动规律,经过第2021次运动后,动点P的坐标是( )A.(2021,1)B.(2021,0)C.(2021,2)D.(2022,0)二、填空题9. 点P(-6,-7)到x轴的距离为 ,到y轴的距离为 .10. 已知点P(3-m,m)在第二象限,则m的取值范围是________.11.如图,线段AB经过平移得到线段A'B',其中点A,B的对应点分别为点A',B',这四个点都在格点上.若线段AB上有一点P(a,b),则点P在A'B'上的对应点P'的坐标为 .12.五子棋是一种两人对弈的棋类游戏,起源于中国古代的传统黑白棋种,规则是在正方形棋盘中,由黑方先行,白方后行,轮流弈子,下在棋盘横线与竖线的交叉点上,直到某一方首先在任一方向(横向、竖向或者是斜着的方向)上连成五子者为胜.如图,这一部分棋盘是两个同学的对弈图.若白子A的坐标为(0,-2),白子B的坐标为(-2,0),为了不让白方马上获胜,此时黑方应该下在坐标为 的位置.(写出一处即可)13.如图,在三角形ABC中,已知点A(0,4),C(3,0),且三角形ABC的面积为10,则点B的坐标为 .14. 将自然数按以下规律排列:第一列第二列第三列第四列第五列…第一行1451617第二行23615…第三行98714…第四行10111213…第五行………………表中数2在第二行、第一列,与有序数对(2,1)对应,数5与有序数对(1,3)对应,数14与有序数对(3,4)对应.根据这一规律,数2021对应的有序数对为 .15.如图,在平面直角坐标系中,一动点从原点O出发,沿着箭头所示方向,每次移动1个单位长度,依次得到点P1(0,1),P2(1,1),P3(1,0),P4(1,-1),P5(2,-1),P6(2,0),…,则点P60的坐标是 .16.在平面直角坐标系中,规定把一个三角形先沿着x轴翻折,再向右平移两个单位称为一次变换.如图,已知等边三角形ABC的顶点B、C的坐标分别是(-1,-1),(-3,-1),把△ABC经过连续九次这样的变换得到△A′B′C′,则点A的对应点A′的坐标是__________.三、解答题17. 在如图所示的平面直角坐标系中,描出下列各点:(0,4),(-1,1),(-4,1),(-2,-1),(-3,-4),(0,-2),(3,-4),(2,-1),(4,1),(1,1),(0,4).依次连接各点,观察得到的图形,你觉得它像什么?18.常用的确定物体位置的方法有两种.如图,在4×4的边长为1的小正方形组成的网格中,标有A ,B两点(点A,B之间的距离为m).请你用两种不同的方法表述点B相对于点A的位置.19. 如图所示,已知单位长度为1的方格中有一个三角形ABC.(1)请画出三角形ABC先向上平移3格,再向右平移2格所得的三角形A'B'C'(点A,B,C的对应点分别为点A',B',C');(2)请以点A为坐标原点,水平向右为x轴正方向,竖直向上为y轴正方向建立平面直角坐标系(在图中画出),然后写出点B,B'的坐标.20. 如图,在平面直角坐标系中,A(3,4),B(4,1),求三角形AOB的面积.21.如图,在长方形OABC中,O为平面直角坐标系的原点,点A的坐标为(4,0),点C的坐标为(0,6),点B在第一象限内,点P从原点出发,以每秒2个单位长度的速度沿着O-A-B-C-O的路线移动(即沿着长方形的边移动一周).(1)点B的坐标为 ;(2)当点P移动了4秒时,求出点P的坐标,并在图中描出此时点P的位置;(3)在移动过程中,当点P到x轴的距离为5个单位长度时,求点P移动的时间.22.如图,在平面直角坐标系中,已知A(2,3),B(0,2),C(3,0).将三角形ABC的一个顶点平移到坐标原点O处,写出平移方法和另两个对应顶点的坐标.23. 如图,若三角形A 1B 1C 1是由三角形ABC 平移后得到的,且三角形ABC 中任意一点P (x ,y )经过平移后的对应点为P 1(x-5,y+2).(1)求点A 1,B 1,C 1的坐标;(2)求三角形A 1B 1C 1的面积.24. 【阅读】在平面直角坐标系中,以任意两点P (x 1,y 1)、Q (x 2,y 2)为端点的线段中点坐标为1212,22x x y y ++⎛⎫ ⎪⎝⎭.【运用】(1)如图,矩形ONEF 的对角线交于点M ,ON 、OF 分别在x 轴和y 轴上,O 为坐标原点,点E 的坐标为(4,3),求点M 的坐标;(2)在直角坐标系中,有A (-1,2),B (3,1),C (1,4)三点,另有一点D 与点A ,B ,C 构成平行四边形的顶点,求点D 的坐标.答案一、选择题1.B 2.D 3.B 4.D5.C [解析] 如图,过点C作CD⊥y轴于点D,∴CD=50÷2-16=9,OA=OD-AD=40-30=10,∴P(9,10).故选C.6.A 【解析】本题考查了直角坐标平面内的点关于x轴的对称点,点如果关于x轴对称,则它的横坐标不变,纵坐标互为相反数,于是点(-2,3)关于x轴对称的点的坐标为(-2,-3),故选A .7.C [解析] 半径为1的半圆的弧长是×2π×1=π,由此可列下表:故选C.8.A [解析]点P坐标的变化规律可以看作每运动四次一个循环,且横坐标与运动次数相同,纵坐标规律是:第1次纵坐标为1,第3次纵坐标为2,第2次和第4次纵坐标都是0.∵2021=505×4+1,∴经过第2021次运动后,动点P 的坐标是(2021,1).故选A .二、填空题9.7 6 10.m >3 【解析】∵点P 在第二象限,∴其横坐标是负数,纵坐标是正数,则根据题意得出不等式组,解得m >3. {3-m <0m >0)11.(a-2,b+3) [解析]由图可知线段AB 向左平移了2个单位长度,向上平移了3个单位长度,所以P'(a-2,b+3).12.(2,0)或(-2,4)13.(-2,0) [解析] S 三角形ABC =BC ·4=10,解得BC=5,∴OB=5-3=2,∴点B 的坐标为(-2,0).14.(45,5) [解析] 观察表格发现:偶数列的第一行数是“列数”的平方数,奇数行的第一列数是“行数”的平方数.下面从奇数行着手:(1,1)表示1,即12;(3,1)表示9,即32;(5,1)表示25,即52;依此类推可知(45,1)表示452,即2025,于是(45,2)表示2024,(45,3)表示2023,…,(45,5)表示2021.故填(45,5).15.(20,0) [解析] 因为P 3(1,0),P 6(2,0),P 9(3,0),…,所以P 3n (n ,0).当n=20时,P 60(20,0).16.(16,1+) 3解析:可以求得点A (-2,-1-),则第一次变换后点A 的坐标为A 1(0,1+),第二次变换33后点A 的坐标为A 2(2,-1-),可以看出每经过两次变换后点A 的y 坐标就还原,每经过一次3变换x 坐标增加2.因而第九次变换后得到点A 9的坐标为(16,1+).3三、解答题17.解:描点连线如图所示,它像五角星.18.解:方法一:用有序数对(a ,b )表示.比如:以点A为原点,水平向右为x轴正方向,竖直向上为y轴正方向建立平面直角坐标系,则点B相对于点A的位置是(3,3).方法二:用方向和距离表示.比如:点B位于点A的东北方向(或北偏东45°方向),距离点A m处.19.解:(1)如图.(2)如图,以点A为坐标原点,水平向右为x轴正方向,竖直向上为y轴正方向建立平面直角坐标系,则B(1,2),B'(3,5).20.[解析]三角形AOB的三边均不与坐标轴平行,不能直接利用三角形的面积公式求面积,需通过作辅助线,用“添补”法间接计算.解:如图,过点A作AE⊥y轴于点E,过点B作BF⊥x轴于点F,延长EA,FB交于点C,则四边形OECF为长方形.由点A,B的坐标可知AE=3,OE=4,OF=4,BF=1,CE=4,CF=4,所以AC=1,BC=3,所以S三角形AOB=S长方形OECF-S三角形OAE-S三角形ABC-S三角形BOF=4×4-×4×3-×3×1-×4×1=6.5.21.解:(1)(4,6)(2)因为点P的移动速度为每秒2个单位长度,所以当点P移动了4秒时,它移动了8个单位长度,此时点P的坐标为(4,4),图略.(3)当点P到x轴的距离为5个单位长度时,有两种情况:①若点P在AB上,则点P移动了4+5=9(个)单位长度,此时点P移动了9÷2=4.5(秒);②若点P在OC上,则点P移动了4+6+4+1=15(个)单位长度,此时点P移动了15÷2=7.5(秒).综上所述,当点P到x轴的距离为5个单位长度时,点P移动了4.5秒或7.5秒.22.解:(1)若将点A平移到原点O处,则平移方法(不唯一)是向左平移2个单位长度,再向下平移3个单位长度.另两个顶点B,C的对应点的坐标分别是(-2,-1),(1,-3).(2)若将点B平移到原点O处,则平移方法是向下平移2个单位长度.另两个顶点A,C的对应点的坐标分别是(2,1),(3,-2).(3)若将点C平移到原点O处,则平移方法是向左平移3个单位长度.另两个顶点A,B的对应点的坐标分别是(-1,3),(-3,2).23.解:(1)∵三角形ABC中任意一点P(x,y)经过平移后的对应点为P1(x-5,y+2),∴三角形ABC 向左平移5个单位长度,再向上平移2个单位长度(平移方法不唯一)得到三角形A 1B 1C 1.∵A (4,3),B (3,1),C (1,2),∴点A 1的坐标为(-1,5),点B 1的坐标为(-2,3),点C 1的坐标为(-4,4).(2)三角形A 1B 1C 1的面积=三角形ABC 的面积=3×2-×1×3-×1×2-×1×2=.24.解:(1)∵四边形ONEF 是矩形,∴点M 是OE 的中点.∵O (0,0),E (4,3),∴点M 的坐标为.(2,32)(2)设点D 的坐标为(x ,y ).若以AB 为对角线,AC ,BC 为邻边构成平行四边形,则AB ,CD 的中点重合∴Error!,解得,Error!.若以BC 为对角线,AB ,AC 为邻边构成平行四边形,则AD ,BC 的中点重合∴Error!,解得,Error!.若以AC 为对角线,AB ,BC 为邻边构成平行四边形,则BD ,AC 的中点重合∴Error!,解得,Error!.综上可知,点D 的坐标为(1,-1)或(5,3)或(-3,5).。
人教版七年级数学下册专题训练03-从算术到代数试题(含答案)

03 从算术到代数阅读与思考算术与代数是数学中两门不同的分科,它们之间联系紧密,代数是在算术中“数”和“运算”的基础上发展起来的.用字母表示数是代数的一个重要特征,也是代数与算术的最显著的区别.在数学发展史上,从确定的数过渡到用字母表示数经历了一个漫长的过程,是数学发展史上的一个飞跃.用字母表示数有如下特点:1.任意性即字母可以表示任意的数.2.限制性即虽然字母表示任意的数,但字母的取值必须使代数式或实际问题有意义.3.确定性即在用字母表示的数中,如果字母取定某值,那么代数式的值也随之确定.4.抽象性即与具体的数值相比,用字母表示数具有更抽象的意义.例题与求解【例1】研究下列算式,你会发现什么规律:1×3+1=4=222×4+1=9=323×5+1=16=424×6+1=25=52…请将你找到的规律用代数式表示出来:_______________________________(山东菏泽地区中考试题) 解题思路:观察给定的几个简单的、特殊的算式,寻找数字间的联系,发现一般规律,然后用代数式表示.【例2】下列四个数中可以写成100个连续自然数之和的是( )A.1627384950B. 2345678910C. 3579111300D. 4692581470(江苏省竞赛试题)解题思路:设自然数从a +1开始,这100个连续自然数的和为(a +1)+(a +2)+ …+(a +100)=100a +5050,从揭示和的特征入手.【例3】设A =221212++´222323++´223434+´+…+221003100410031004+´+221004100510041005+´,求A 的整数部分.(北京市竞赛试题)解题思路:从分析A 中第n 项22(1)(1)n n n n ++?的特征入手.【例4】现有a 根长度相同的火柴棒,按如图①摆放时可摆成m 个正方形,按如图②摆放时可摆成2n 个正方形.(1)用含n 的代数式表示m ;(2)当这a 根火柴棒还能摆成如图③所示的形状时,求a 的最小值.(浙江省竞赛试题)解题思路:由图①中有m 个正方形、图②中有2n 个正方形,可设图③中有3p 个正方形,无论怎样摆放,火柴棒的总数相同,可建立含m ,n ,p 的等式.【例5】 化简个个个n n n 9199999999+⨯.(江苏省竞赛试题)解题思路:先考察n=1,2,3时的简单情形,然后作出猜想,这样,化简的目标更明确.【例6】观察按下列规律排成的一列数:1 1,12,21,13,22,31,14,23,32,41,15,24,33,42,51,16,…,(*)(1)在(*)中,从左起第m个数记为F(m)=22001时,求m的值和这m个数的积.(2)在(*)中,未经约分且分母为2的数记为c,它后面的一个数记为d,是否存在这样的两个数c和d,使cd=2001000,如果存在,求出c和d;如果不存在,请说明理由.解题思路:解答此题,需先找到数列的规律,该数列可分组为(11),(12,21),(13,22,31),(14,23,32,41),(15,24,33,42,51),….能力训练A级1.已知等式:2+23=22×23,3+38=32×38,4+415=42×415,…,,10 +ab=102×ab(a,b均为正整数),则a+b=___________________.(湖北省武汉市竞赛试题)2.下面每个图案都是若干个棋子围成的正方形图案,它的每边(包括顶点)都有n (n ≥2)个棋子,每个图案棋子总数为s ,按此规律推断s 与n 之间的关系是______________.n =2 n =3 n =4s =4 s =8 s =12(山东省青岛市中考试题)3.规定任意两个实数对(a ,b )和(c ,d ), 当且仅当a =c 且b =d 时,(a ,b )=(c ,d ).定义运算“⊗”:(a ,b )⊗(c ,d )=(ac -bd ,ad +bc ).若(1,2)⊗(p ,q )=(5,0),则p +q =________.(浙江省湖州市数学竞赛试题)4.用同样规格的黑白两种颜色的正方形瓷砖按下图方式铺地板,则第(3)个图形中有黑色瓷砖______块,第n 个图形中需要黑色瓷砖______块(含n 代数式表示).(广东省中考试题) -=5.如果a 是一个三位数,现在把1放在它的右边得到一个四位数是( )A.1000a +1B. 100a +1C. 10a +1D. a +1 (重庆市竞赛试题)6.一组按规律排列的多项式:a +b ,a 2—b 3,a 3+b 5,a 4—b 7,…,其中第十个式子是( )A. a 10+b 19B. a 10-b 19C. a 10-b 17D. a 10-b 21(四川省眉山市竞赛试题)7.有三组数x 1,x 2,x 3;y 1,y 2,y 3;z 1,z 2,z 3,它们的平均数分别是a ,b ,c ,那么x 1+y 1-z 1,x 2+y 2-z 2,x 3+y 3-z 3的平均数是( ) A.3a b c ++ B. 3a b c +- C. a +b -c D. 3(a +b -c ) (希望杯邀请赛试题)8.为了绿化环境,美化城市,在某居民小区铺设了正方形和圆形两块草坪,如果两块草坪的周长相同,那么它们的面积S 1、S 2的大小关系是( )(东方航空杯竞赛试题) A . S 1>S 2 B .S l <S 2 C .S 1=S 2 D .无法比较9.一个圆形纸板,根据以下操作把它剪成若干个扇形面:第一次将圆纸等分为4个扇形面;第二次将上次得到的一个扇形面再等分成4个小扇形;以后按第二次剪裁法进行下去.(1)请通过操作,猜想将第3、第4次,…,第n 次剪裁后扇形面的总个数填入下表;(2)请你推断,能否按上述操作剪裁出33个扇形面?为什么?(山东省济南市中考试题)10.某玩具工厂有四个车间,某周是质量检查周,现每个都原a (a >0)个成品,且每个每天都生产b (b >0)个成品,质检科派出若干名检验员星期一、星期二检验其中两个原的和这两天生产的所成品,然后,星期三至星期五检验另两个原的和本生产的所成品,假定每个检验员每天检验的成品数相同.(1)这若干名检验员1天检验多少个成品(用含a 、b 的代数式表示);(2)试求出用b 表示a 的关系式;(3)若1名质检员1天能检验54b 个成品,则质检科至少要派出多少名检验员? (广东省广州市中考试题)B 级1. 你能很快算出19952吗?为了解决这个问题,我们考察个位上的数字为5的自然数的平方,任意一个个位数为5的自然数可写成(10·n +5)(n 为自然数),即求(10·n +5)2的值(n 为自然数),分析n =1,n =2,n =3,…这些简单情况,从中探索其规律,并归纳猜想出结论(在下面的空格内填上你的探索结果).(1)通过计算,探索规律.152=225可写成100×1×(1+1)+25;252=625可写成100×2×(2+1)+25; 352=1225可写成100×3×(3+1)+25;452=2025可写成100×4×(4+1)+25;...752=5625可写成______;852=7225可写成______;(2)从第(1)题的结果,归纳猜想得(10n +5)2=______;(3)根据上面的归纳猜想,请算出19952=______.(福建省三明市中考试题)2.已知12+22+32+…+n 2=16n (n +1)(2n +1),计算: (1)112+122+…+192=_____________________;(2)22+42+…+502=__________________.3.已知n 是正整数,a n =1×2×3×4×…×n ,则13a a +24a a +…+20102012a a +20112013a a =_______________.(“希望杯”邀请赛训练题)4.已知17个连续整数的和是306,那么,紧接着这17个数后面的那17个整数的和为__________.(重庆市竞赛试题)5.A ,B 两地相距S 千米,甲、乙的速度分别为a 千米/时、b 千米/时(a >b ),甲、乙都从A 地到B地去开会,如果甲比乙先出发1小时,那么乙比甲晚到B地的小时数是()6.某商店经销一批衬衣,进价为每件m元,零售价比高a%,后因市场的变化,该店把零售价调整原来零售价的b%出售,那么调价后的零售价是()A.m(1+a%)(1-b%)元B.m a%(1-b%)元C.m(1+a%)b%元D.m(1+a%b%)元(山东省竞赛试题)7.如果用a名同学在b小时内共搬运c块砖,那么个以同样速度所需要的数是()A.22ca bB.2cabC.2abcD.22a bc(“希望杯”邀请赛试题)8.甲、乙两班的人数相等,各有一些同学参加课外天文小组,其中甲班参加天文小组的人数是乙班未参加人数的13,乙班参加天文小组的人数是甲班未参加人数的15.问甲班未参加的人数是乙班未参加人数的几分之几?9.将自然数1,2,3,…,21这21个数,任意地放在一个圆周上,证明:一定有相邻的三个数,它们的和不小于33.(重庆市竞赛试题)10.有四个互不相同的正整数,从中任取两个数组成一组,并在同一组中用较大的数减去较小的数,再将各组所得的数相加,其和恰好等于18.若这四个数的乘积是23100,求这四个数.(天津市竞赛试题)专题03 从算术到代数例1 2(2)1(1)n n n ++=+例2 A例3 原式=1111111112(1)2()2()2()2()223341003100410041005+-++-++-+++-++- =121004(1)1005⨯+- 故其整数部分为2008 例4 设图③中含有3p 个正方形. (1) 由3152m n +=+,得513n m +=(2) 由315273,a m n p =+=+=+得325177m n p --==,因,,m n p 均是正整数, 所以当17,10m n ==时,7,p =此时317152a =⨯+=例5解法1:1n = 时,29919811910010⨯+=+==;2n =时, 49999199(1001)991999900991991000010⨯+=-⨯+=-+==,猜想:2999999199910n n n n ⨯+=个个个 个, 计算过程类似于2n = 29999991999(101)9991999999000999199910n n n n n n n n n n n ⨯+=-⨯+=-+=个个个个个个个个个 解法2: 1n =时,2991999109(999)1091010101010⨯+=⨯++=⨯++=⨯+=⨯=2n =时, 49999199999910099(999999)1009910010010010010⨯+=⨯++=⨯++=⨯+=⨯=猜想: 原式210n = 验证如下: 9999991999999999100099999999999910n n n n n n n n n n n ⨯+=⨯++=⨯++个个个个个个个个个个299910101010n n n n n =⨯=⨯=个反思结论必为一个数的平方形式, 不妨设999n a =个,得另一种解法 解法3: 原式22222(1)a 21(1)(10)10n n a a a a a =+++=++=+==例6 (1)(※) 可分组为112123123412345(),(,),(,,),(,,,),(,,,,),,121321432154321可知各组数的个数依次为1,2,3,.按其规律22001应在第2002组1232002(,,,,)2002200120001中, 该组前面共有1234200120+++++=个数. 故当2()2001F m =时,200300122003003m =+=. 又因各组的数积为1, 故这2003003个数的积为121200220012003001⨯= (2) 依题意,c 为每组倒数第2个数,d 为每组最后一个数, 设它们在第n 组, 别1,,21n n c d -==(1)20010002n n -∴=.即(1)400200020012000n n -==⨯,2001,n ∴= 得20011200022c -==,20011d =A 级1. 100 提示:21010a a b b+=⨯ 中, 根据规律可得210,10199,a b ==-=故1099109a b +=+= 2. 4(1)(2)s n n =-≥3.1- 提示: 根据题中定义的运算可列代数式25,20p q q p -=+=,可得1,2,p q ==- 故1p q +=-4. 10 31n +5. C6. B7. B8. B9.(1) 10 13 31n + (2) 不能, 33不符合31n +10. (1) 2a b +或2(5)3a b +或32b +(2) 由2(2)2(5)23a b a b ++=,得4a b =(3)2(2)47.5825a b b +÷=≈B 级1. (1) 1007(71)25,1008(81)25⨯⨯++⨯⨯++(2) 100(1)25n n ⨯++ (3) 39800252. (1) 2085(2) 22100 提示: 原式2224(1225)=⨯+++ 3.20114026 提示: 由1234n a n =⨯⨯⨯⨯⨯可得, 原式111112334452011201220122013=+++++⨯⨯⨯⨯⨯ 111111112011233420122013220134026=-+-++-=-= 4. 595 提示: 设17个连续整数为,1,,16,m m m ++且(1)(16)306m m m +++++=,它后面紧接的17 个连续自然数应为17,18,19,,33m m m m ++++,可得它们之和为5955. D6. C7. D 提示: 每一名同学每小时所搬砖头为c ab 块,c 名同学按此速度每小时所搬砖头为2c ab块. 8.用a ,b 分别表示甲、乙两班参加天文小组的人数,m ,n 分别表示甲、乙两班未参加天文小组的人数,由a +m =b +n 得m -b =n -a ,又a =13n ,b =15m ,故m -15m =n -13n ,56m n =. 9.证明:设任意分法将圆周上的每相邻三个数分为一组,他们三个数的和分别为a 1,a 2,a 3,a 4,a 5,a 6,a 7(均为自然数),且a 1+a 2+a 3+a 4+a 5+a 6+a 7=()211212312⨯+=①.假设a 1,a 2,a 3,a 4,a 5,a 6,a 7中没一个数都小于33,则有a 1+a 2+a 3+a 4+a 5+a 6+a 7<231.与①矛盾,所以a 1,a 2,a 3,a 4,a 5,a 6,a 7中至少有一个不小于33,即一定有相邻的三个数,它们的和不小于33.10.设四个不同整数为a 1,a 2,a 3,a 4(a 1>a 2>a 3>a 4),则(a 1-a 2)+(a 1-a 3)+(a 1-a 4)+(a 2-a 3)+(a 2-a 4)+(a 3-a 4)=18,即3(a 1-a 4)+(a 2-a 3)=18.又因3(a 1-a 4),18均为3的倍数,故a 2-a 3也是3的倍数,a 2-a 3<a 1-a 4,则a 2-a 3=3,a 1-a 4=5,a 1-a 2=1,a 3-a 4=1,又a 1a 2a 3a 4=23100=2×2×3×5×5×7×11.从而可得a 1=15,a 2=14,a 3=11,a 4=10.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
七年级下册数学第七章专题训练
班级 姓名 一、象限内点的坐标
1. 在平面直角坐标系中,A (2,-1)在第 象限,B (1,-3)在第 象限,C (-4,-3.5)在第 象限。
2、点P (x,y )在第二象限,则x 0,y 0.
3、已知点A (m ,n )在第四象限,那么点B (n ,m )在第 象限
4、如果x
y
<0,那么点P (x ,y )在第 象限
5、点P (x ,y )在第四象限,且|x|=3,|y|=2,则P 点的坐标是 。
二、坐标轴上点的坐标
1、点A(2,0)在 轴上;点B(0,9)在 轴上,点C 在
2、点P (a-1,2a-9)在x 轴上,则P 点坐标是 。
3、点P (a-1,2a-9)在y 轴上,则P 点坐标是 。
三、点到坐标轴的距离
1、点A(2,3)到x 轴的距离为 ;到y 轴的距离为 点B(-4,-5)到x 轴的距离为 ;到y 轴的距离为 点P(x ,y )到x 轴的距离为 ;到y 轴的距离为
2、点C 在第三象限,且到x 轴的距离为1,到y 轴的距离为3,则C 点坐标是 。
3、点P到x 轴、y 轴的距离分别是2、1,则点P的坐标可能为 。
四、平行于x 轴,y 轴的直线上的点的坐标
1.过A(4,-2) 和B(-2,-2) 两点的直线一定( )
A.垂直于x 轴
B.与Y 轴相交但不平于x 轴
C.平行于x 轴
D.与x 轴、y 轴平行 2、已知点A (m ,-2),点B (3,m-1),且直线AB ∥y 轴,则m 的值为 。
3.在平面直角坐标系中,点A 的坐标为(-1,5),线段AB ∥X 轴,且AB=4,则点B 的坐标为 五、象限平分线上点的坐标
1、若点(a ,2)在第二象限,且在两坐标轴的夹角平分线上,则a= .
2、已知点P (3-x ,1)在一、三象限夹角平分线上,则x= .
检测
1.在平面直角坐标系内,下列说法错误的是( )
A.原点O 不在任何象限内
B.原点O 的坐标是0
C.原点O 既在X 轴上也在Y 轴上
D.原点O 在坐标平面内 2.在平面直角坐标系中,点(-3,-1)在第________象限.
3.点P (x ,y )在第二象限,且|x|=3,|y|=2,则P 点的坐标是 .
4.已知点P 在第二象限,且到x 轴的距离是3,到y 轴的距离是2,则点P 的坐标为______. 5.点P(x,y)满足xy>0,则点P 在第 象限
6.点P (m ,1)在第二象限内,则点Q (m -,0)在( ). A.x 轴正半轴上
B.x 轴负半轴上
C.y 轴正半轴上
D.y 轴负半上
7. 若点P (a ,b -)在第二象限,则点Q (ab -,a b +)在第_______象限. 8.点M (1m +,3m +)在x 轴上,则点M 坐标为_______.
9.X 轴上的点P 到Y 轴的距离为2.5,则点P的坐标为( )
A.(2.5,0)
B.(-2.5,0)
C.(0,2.5)
D.(2.5,0)或(-2.5,0) 10.直角坐标系中,在y 轴上有一点p ,且线段OP=5,则P 的坐标为 . 11.已知点A (m ,-2),点B (3,m-1),且直线AB ∥x 轴,则m 的值为 12.已知点A (3-,2),B (3,2),则A ,B 两点相距( ). A.3个单位长度 B.4个单位长度 C.5个单位长度
D.6个单位长度
13.已知点P 的坐标(2a -,36a +),且点P 到两坐标轴的距离相等,则点P 的坐标
是 .
14.矩形OABC 在坐标系中的位置如图,点B 坐标为(3,-2),则
D
C 3
-1
B
A O
x
y
矩形的面积等于_________ .
平移以及面积专题训练
1、坐标平面内的三个点A (1,3),B (3,1),O (0,0),求△ABO 的面积.
2、(综合题)在如图所示的平面直角坐标系中描出A (2,3),B (-3,-2),•C (4,1)三点,并用线段将A 、B 、C 三点依次连接起来,你能求出它的面积吗?
3.如图,在平面直角坐标系中:
(1)分别写出△ABC 的顶点坐标(3分); (2)求出△ABC 的面积(3分);
(3)将△ABC 各个顶点的横坐标增加3,纵坐标减少2,请画出所得的△C B A '''(3分)。
4、这是某市部分简图,请以火车站为坐标原点建立平面直角坐标系,并分别写出各地的坐标.
体育场
文化宫
医院
火车站宾馆
市场
超市
5如图,在平面直角坐标系中,点A ,B 的坐标分别为(-1,0),(3,0),现同时将
点A ,B 分别向上平移2个单位,再向右平移1个单位,分别得到点A ,B 的对应点C ,D ,连接AC ,BD ,CD .求点C ,D 的坐标及四边形ABDC 的面积ABDC S 四边形。