3平面向量的坐标表示及线段的定比分点公式

合集下载

平面向量定比分点定理

平面向量定比分点定理

平面向量定比分点定理1. 引言大家好,今天咱们要聊聊一个数学中非常有趣的话题——平面向量定比分点定理。

听上去是不是有点高大上?别担心,咱们会把它说得简单易懂,甚至还有点幽默,让你轻松get到这个知识点。

毕竟,数学也可以很有趣,不是吗?1.1 什么是定比分点定理?先来捋捋,这个定理到底是个什么东西。

简单来说,定比分点定理就是告诉我们,如何通过某些特定的比例来确定一个点在两点之间的位置。

想象一下,假如你在一个超市里,想要在两排货架之间找到一个完美的购物位置,你就可以用这个定理来帮助你,当然,前提是你得知道你要的东西在哪儿,对吧?1.2 公式与例子那具体的公式是什么呢?假设你有两个点A(x1, y1)和B(x2, y2),如果我们希望找一个点P,按照比例m:n来分割AB线段,P的坐标就可以用这个公式表示:P(x, y) = ((mx2 + nx1) / (m + n), (my2 + ny1) / (m + n))。

听起来复杂?其实不然,我们来举个例子。

比如说,有两位朋友A和B,A在(1, 2)的位置,B在(3, 4)的位置。

如果你想找一个P点,使得它在A和B之间,比例是1:3,那么用公式计算一下,你就能找到P在(2.5, 3)的位置。

就像是找到朋友聚会的最佳位置,嘿嘿!2. 应用场景2.1 生活中的实际应用说到这儿,你可能会问:“这跟我的生活有什么关系?”其实还真有!想象一下,你在一个公园里散步,突然发现两个大树之间有个超级适合拍照的地方。

你可以用定比分点定理来判断这个地方的最佳位置,分出一段合理的距离。

生活中,许多设计、建筑、甚至是游戏开发,都离不开这个定理的支持,简直是个“万能钥匙”!2.2 动手实践而且,定比分点定理还可以用来做一些小实验。

比如说,你可以带着朋友们去外面,找两个标志性的位置,然后用比例来确定一个新位置,看看是不是大家都觉得这个位置最合适。

就像你们在决定去哪吃饭时,总得有人说:“咱们去那个小店吧,它的蛋糕好吃得不得了!”这种分点定理的思路,恰好就适合用来做决策,嘿!3. 总结与感悟3.1 直观与趣味总之,平面向量定比分点定理并不是个冷冰冰的公式,它其实可以为我们的生活增添一些乐趣和便利。

平面向量知识点总结

平面向量知识点总结

篇一:平面向量知识点总结平面向量知识点小结一、向量的基本概念1.向量的概念:既有大小又有方向的量,注意向量和数量的区别.向量常用有向线段来表示. 注意:不能说向量就是有向线段,为什么?提示:向量可以平移.?????举例 1 已知a(1,2),b(4,2),则把向量ab按向量a?(?1,3)平移后得到的向量是_____. 结果:(3,0) 2.零向量:长度为0的向量叫零向量,记作:0,规定:零向量的方向是任意的;?????????ab)3.单位向量:长度为一个单位长度的向量叫做单位向量(与ab共线的单位向量是?; |ab|4.相等向量:长度相等且方向相同的两个向量叫相等向量,相等向量有传递性;???5.平行向量(也叫共线向量):方向相同或相反的非零向量a、b叫做平行向量,记作:a?∥b,规定:零向量和任何向量平行.注:①相等向量一定是共线向量,但共线向量不一定相等;②两个向量平行与与两条直线平行是不同的两个概念:两个向量平行包含两个向量共线,但两条直线平行不包含两条直线重合;?③平行向量无传递性!(因为有0);????????④三点a、b、c共线?ab、 ac共线.6.相反向量:长度相等方向相反的向量叫做相反向量.a的相反向量记作?a.举例2 如下列命题:(1)若|a|?|b|,则a?b.(2)两个向量相等的充要条件是它们的起点相同,终点相同. (3)若ab?dc,则abcd是平行四边形.(4)若abcd是平行四边形,则ab?dc.(5)若a?b,b?c,则a?c.??????????????????????????????二、向量的表示方法1.几何表示:用带箭头的有向线段表示,如ab,注意起点在前,终点在后;???2.符号表示:用一个小写的英文字母来表示,如a,b,c等;??3.坐标表示:在平面内建立直角坐标系,以与x轴、y轴方向相同的两个单位向量i,j为)为向量a的坐标,a?(x,y)叫基底,则平面内的任一向量a可表示为a?xi?yj?(x,y),称(x,y?做向量a的坐标表示.结论:如果向量的起点在原点,那么向量的坐标与向量的终点坐标相同.??????????三、平面向量的基本定理???定理设e1,e2同一平面内的一组基底向量,a是该平面内任一向量,则存在唯一实数对???(?1,?2),使a??1e1??2e2.?????(1)定理核心:a?λ1e1?λ2e2;(2)从左向右看,是对向量a的分解,且表达式唯一;反之,是对向量a的合成.(3)向量的正交分解:当e1,e2时,就说a?λ1e1?λ2e2为对向量a的正交分解. ????1?3?举例 3 (1)若a?(1,1),b?(1,?1),c?(?1,2),则c? . 结果:a?b.22(2)下列向量组中,能作为平面内所有向量基底的是 b?24????????????????? ????????(3)已知ad,be 分别是△abc的边bc,ac上的中线,且ad?a,be?b,则bc可用向量a,b表示为 . 结果:??13????????a.e1?(0,0),e2?(1,?2) b.e1?(?1,2),e2?(5,7) c.e1?(3,5),e2?(6,10) d.e1?(2,?3),e2??,??2?4?a?b. 33???????????????? ????(4)已知△abc中,点d在bc边上,且cd?2db,cd?rab?sac,则r?s?的值是 . 结果:0.四、实数与向量的积??实数?与向量a的积是一个向量,记作?a,它的长度和方向规定如下:??(1)模:|?a|?|?|?|a|;????(2)方向:当??0时,?a的方向与a的方向相同,当??0时,?a的方向与a的方向相??反,当??0时,?a?0,注意:?a?0.?五、平面向量的数量积???a为向量,b的夹角.???????当??0时,a,b同向;当???时,a,b反向;当??时,a,b垂直.2????2.平面向量的数量积:如果两个非零向量a,b,它们的夹角为?,我们把数量|a||b|cos?????????叫做a与b的数量积(或内积或点积),记作:a?b,即a?b?|a|?|b|cos?.1.两个向量的夹角:对于非零向量a,b,作oa?a,ob?b,则把?aob??(0????)称???????????规定:零向量与任一向量的数量积是0.注:数量积是一个实数,不再是一个向量.???????????????? ????举例4 (1)△abc 中,|ab|?3,|ac|?4,|bc|?5,则ab?bc?_________. 结果:?9.????????1?1????? ?(2)已知a??1,?,b??0,??,c?a?kb,d?a?b,c与d的夹角为,则k? ____. 结果:1.2??4??????(3)已知|a|?2,|b|?5,a?b??3,则|a?b|?____.?????????(4)已知a,b是两个非零向量,且|a|?|b|?|a?b|,则a与a?b的夹角为____. 结果:30?.?2????a3.向量b在向量上的投影:|b|cos?,它是一个实数,但不一定大于0.??????12举例 5 已知|a|?3,|b|?5,且a?b?12,则向量a在向量b上的投影为______. 结果:.????????4.a?b的几何意义:数量积a?b等于a的模|a|与b在a上的投影的积.??5.向量数量积的性质:设两个非零向量a,b,其夹角为?,则:????a?b?a?b?0;(1)???????????(2)当a、b同向时,a?b?|a|?|b|,特别地,a2?a?a?|a|2?|a|;??????a?b?|a|?|b|是a、b同向的充要分条件;????????????aa 当、b反向时,a?b??|a|?|b|,a?b??|a|?|b|是、b反向的充要分条件;??????当?为锐角时,a?b?0,且a、b不同向,a?b?0是?为锐角的必要不充分条件;??????当?为钝角时,a?b?0,且a、b不反向;a?b?0是?为钝角的必要不充分条件.????a?b????(3)非零向量a,b夹角?的计算公式:cos??;④a?b?|a||b|.|a||b|????14b?(3?,2),举例6 (1)已知a?(?,2?),如果a与b的夹角为锐角,则?的取值范围是______. 结果: ???或??0且??;533????????1?????s,则of,fq夹角?的取值范围是_________. 结果:?,?; 2?43???????(3)已知a?(cosx,sinx),b?(cosy,siny),且满足|ka?b|a?kb|(其中k?0).(2)已知△ofq的面积为s,且of?fq?1,若????????????????k2?11①用k表示a?b;②求a?b的最小值,并求此时a与b的夹角?的大小. 结果:①a?b?(k?0);②最小值为,24k??60?.六、向量的运算1.几何运算(1)向量加法运算法则:①平行四边形法则;②三角形法则. 作图:略.注:平行四边形法则只适用于不共线的向量.???????????????? ??????????????运算形式:若ab?a,bc?b,则向量ac叫做a与b的和,即a?b?ab?bc?ac;(2)向量的减法运算法则:三角形法则.???????????????? ????????运算形式:若ab?a,ac?b,则a?b?ab?ac?ca,即由减向量的终点指向被减向量的终点.作图:略.???????????????? ?????????????????????????????举例7 (1)化简:①ab?bc?cd? ;②ab?ad?dc? ;③(ab?cd)?(ac?bd)? . 结果:①ad;?????②cb;③0;???????????????? ??(2)若正方形abcd的边长为1,ab?a,bc?b,ac?c,则|a?b?c|? .结果:注:减向量与被减向量的起点相同.(3)若o是△abc 所在平面内一点,且满足ob?oc??oc?2oa,则△abc的形状为. 结果:直角三角形;?????????????????|ap |(4)若d为△abc 的边bc的中点,△abc所在平面内有一点p,满足pa?bp?cp?0,设??,则?的值为 .|pd|???????????????? ????结果:2;?????????????(5)若点o是△abc的外心,且oa?ob?co?0,则△abc的内角c为 . 结果:120?.2.坐标运算:设a?(x1,y1),b?(x2,y2),则????(1)向量的加减法运算:a?b?(x1?x2,y1?y2),a?b?(x1?x2,y1?y2).举例8 (1)已知点a(2,3),b(5,4),c(7,10),若ap?ab??ac(??r),则当??____时,点p在第一、三象限的角平分线上. 结果:1; 2?1???????ab?(sin x,cosy),x,y?(?,),则x?y? .结果:或?; 22262???????????????????????????????????(2)已知a(2,3),b(1,4),且(3)已知作用在点a(1,1)的三个力f1?(3,4),f2?(2,?5),f3?(3,1),则合力f?f1?f2?f3的终点坐标是 . 结果:(9,1).(2)实数与向量的积:?a??(x1,y1)?(?x1,?y1).????(3)若a(x1,y1),b(x2,y2),则ab?(x2?x1,y2?y1),即一个向量的坐标等于表示这个向量的有向线段的终点坐标减去起点坐标.????????????1??? ?11举例9 设a(2,3),b(?1,5),且ac?ab,ad?3ab,则c,d的坐标分别是__________. 结果:(1,),(?7,9).???(4)平面向量数量积:a?b?x1x2?y1y2.(1)若x?33???举例10 已知向量a?(sinx,cosx),b?(sinx,sinx),c?(?1,0).?3,求向量a、c的夹角;??3??11(1)150?;(2)或1. ,],函数f(x)??a?b的最大值为,求?的值.结果:8422??(2)若x?[????(5)向量的模:a2?|a|2?x2?y2?|a|?举例11 已知a,b均为单位向量,它们的夹角为60?,那么|a?3b|?= .??(6)两点间的距离:若a(x1,y1),b(x2,y2),则|ab|举例12 如图,在平面斜坐标系xoy中,?xoy?60?,平面上任一点p关于斜坐标系????????的斜坐标是这样定义的:若op?xe1?ye2,其中e1,e2分别为与x轴、y轴同方向的单位向量,则p点斜坐标为(x,y).(1)若点p的斜坐标为(2,?2),求p到o的距离|po|;(2)求以o为圆心,1为半径的圆在斜坐标系xoy中的方程. 结果:(1)2;(2)x?y?xy?1?0.22七、向量的运算律??????????1.交换律:a?b?b?a,?(?a)?(??)a,a?b?b?a;???????????????? ??2.结合律:a?b?c?(a?b)?c,a?b?c?a?(b?c),(?a)b??(a?b)?a?(?b);?????????????? 3.分配律:(???)a??a??a,?(a?b)??a??b,(a?b)?c?a?c?b?c.举例13 给出下列命题:① a?(b?c)?a?b?a?c;② a?(b?c)?(a?b)?c;③ (a?b)2?|a|2?2|a||b|?|b|2;??????2?2??????? ???a?bb??????????④若a?b?0,则a?0或b?0;⑤若a?b?c?b则a?c;⑥|a|?a;⑦?;⑧(a?b)2?a2?b2;⑨(a?b)2?a2?2a?b?b2.aa???????????????????其中正确的是 . 结果:①⑥⑨.说明:(1)向量运算和实数运算有类似的地方也有区别:对于一个向量等式,可以移项,两边平方、两边同乘以一个实数,两边同时取模,两边同乘以一个向量,但不能两边同除以一个向量,即两边不能约去一个向量,切记两向量不能相除(相约);(2)向量的“乘法”不满足结合律,即a?(b?c)?(a?b)?c,为什么???????八、向量平行(共线)的充要条件 ????????a//b?a?b?(a?b)2?(|a||b|)2?x1y2?y1x2?0.????????????????举例14 (1)若向量a?(x,1),b?(4,x),当x?_____时,a与b共线且方向相同. 结果:2.??????????(2)已知a?(1,1),b?(4,x),u?a?2b,v?2a?b,且u//v,则x? . 结果:4.(3)设pa?(k,12),pb?(4,5),pc?(10,k),则k? _____时,a,b,c共线. 结果:?2或11.九、向量垂直的充要条件????????a?b?a?b?0?|a?b|?|a?b|?x1x2?y1y2?0.???????????????? ?abac??abac???????. 特别地??|ab||ac|??|ab||ac|?????????????????????3举例15 (1)已知oa?(?1,2),ob?(3,m),若oa?ob,则m? .结果:m?;2(2)以原点o和a(4,2)为两个顶点作等腰直角三角形oab,?b?90?,则点b的坐标是 .结果:(1,3)或(3,-1));??????(3)已知n?(a,b)向量n?m,且|n|?|m|,则m?的坐标是 .结果:(b,?a)或(?b,a).十、线段的定比分点????????1.定义:设点p是直线p1p2上异于p1、p2的任意一点,若存在一个实数? ,使pp??pp2,1??????????则实数?叫做点p分有向线段p1p2所成的比?,p点叫做有向线段p1p2的以定比为?的定比分点.2.?的符号与分点p的位置之间的关系?????(1)p内分线段p1p2,即点p在线段p1p2上???0;?????(2)p外分线段p1p2时,①点p在线段p1p2的延长线上????1,②点p在线段p1p2的反向延长线上??1???0. ??????????注:若点p分有向线段pp所成的比为?,则点p分有向线段pp所成的比为1.1221?????????37举例16 若点p分ab所成的比为,则a分bp所成的比为 . 结果:?.433.线段的定比分点坐标公式:设p1(x1,y1),p2(x2,y2),点p(x,y)分有向线段p1p2所成的比为?,则定比分点坐标公式为?x?????y????????x1??x2,1??(???1).y1??y2.1??x1?x2?x?,??2特别地,当??1时,就得到线段p1p2的中点坐标公式?y?y12?y?.??2说明:(1)在使用定比分点的坐标公式时,应明确(x,y),(x1,y1)、(x2,y2)的意义,即分别为分点,起点,终点的坐标. (2)在具体计算时应根据题设条件,灵活地确定起点,分点和终点,并根据这些点确定对应的定比?. 举例17 (1)若m(?3,?2),n(6,?1),且mp??mn,则点p的坐标为 . 结果:(?6,?);???????????1(2)已知a(a,0),b(3,2?a),直线y?ax与线段ab交于m,且am?2mb,则a? . 结果:2或?4.2??????1????373十一、平移公式 ??x??xh?,如果点p(x,y)按向量a?(h,k)平移至p(x?,y?),则?;曲线f(x,y)?0按向量a?(h,k)??y??yk?.平移得曲线f(x?h,y?k)?0.说明:(1)函数按向量平移与平常“左加右减”有何联系?(2)向量平移具有坐标不变性,可别忘了啊!举例18 (1)按向量a把(2,?3)平移到(1,?2),则按向量a把点(?7,2)平移到点______. 结果:(?8,3);???(2)函数y?sin2x的图象按向量a平移后,所得函数的解析式是y?cos2x?1,则a?________. 结果:(?,1).??4十二、向量中一些常用的结论1.一个封闭图形首尾连接而成的向量和为零向量,要注意运用;??????2.模的性质:|a|?|b|?|a?b|?|a|?|b|.?????????a、 ba、 b0(1)右边等号成立条件:同向或中有?|a?b|?|a|?|b|;?????????b反向或a、 b中有0?|a?b|?|a|?|b|;(2)左边等号成立条件:a、????????b不共线?|a|?|b|?|a?b|?|a|?|b|. (3)当a、3.三角形重心公式在△abc中,若a(x1,y1),b(x2,y2),c(x3,y3),则其重心的坐标为g(x1?x2?x33y?y1?y2.) 33??举例19 若△abc 的三边的中点分别为a(2,1)、b(?3,4)、c(?1,?1),则△abc的重心的坐标为 .结果:??,?.33??245.三角形“三心”的向量表示???????????????? ?1????????????(1)pg?(pa?pb?pc)?g为△abc的重心,特别地pa?pb?pc?0?g为△abc的3重心.???????????????? ????????(2)pa?pb?pb?pc?pc?pa?p为△abc的垂心.???????????????????????? ????????????abac???(??0)所(3)|ab|pc?|bc|pa?|ca|pb?0?p为△abc的内心;向量???|ab||ac|???在直线过△abc的内心.?????6.点p分有向线段p1p2所成的比?向量形式??????????????mp ??mp?????2设点p分有向线段p1p2所成的比为?,若m为平面内的任一点,则mp?1,1?????????????????????mp?mp 2特别地p为有向线段p1p2的中点?mp?1.2篇二:平面向量知识点总结及训练题第五章平面向量一、向量的相关概念:1.向量的概念:我们把既有大小又有方向的量叫向量注意:1?数量与向量的区别:数量只有大小,是一个代数量,可以进行代数运算、比较大小;2、向量的表示方法:几何表示法:①用有向线段表示;②用字母a、b等表示;③用有向线段的起点与终点字母:ab;坐标表示法:a?xi?yj?(x,y???3、向量的模:向量ab的大小――长度称为向量的模,记作|ab|.4、特殊的向量:①长度为0的向量叫零向量,记作01个单位长度的向量,叫单位向量.说明:零向量、单位向量的定义都是只限制大小,不确定方向.5、相反向量:与a ?a??6、相等的向量:长度相等且方向相同的向量叫相等向量.向量a与b相等,记作a?b;7、平行向量(共线向量):a//b?????8、两个非零向量夹角的概念:已知非零向量a与b,作=a,ob=b,则?aob???0?????叫a与b??????说明:(1)当??0时,a与b同向;(2)当???时,a与b反向;(3)当????????2时,a与b??垂直,记a⊥b;规定零向量和任意向量都垂直。

3平面向量的坐标表示及线段的定比分点公式

3平面向量的坐标表示及线段的定比分点公式

5.3平面向量的坐标表示及线段的定比分点公式要点透视:1.要清楚向量的坐标与表示该向量的有向线段的起点、终点的具体位置无关,只与其相对位置有关.2.遇到共线向量与平行有关问题,一般应考虑运用向量平行的充要条件.3.线段的定比分点公式,要注意求定比分点A 的值,以便顺利求出分点坐标.活题解析:例1.(2002年天津卷)平面直角坐标系中, O 是坐标原点,已知两点A (3, 1),B (-1,3),若点C 满足,其中α,β∈R ,且OC OA OB αβ=+ α+β=1,则点C 的轨迹方程是( )A .3x +2y -11=0B .(x -1)2+(y -2)2=25C .2x -y =0D .x +2 y -5=0 要点精析:I 设=(x ,y ),=(3,1),=(-1,3),OC OA OB α·=(3α,α),β=(-β,3β),又α+β=(3α-β,α+3β),OA OB OA OB ∴ (x ,y )=(3α-β,α+3β),∴ ,33x y αβαβ=-⎧⎨=+⎩ 又α+β=1,因此得x +2y =5,所以选D .思维延伸:本题主要考查向量法和坐标法的相互关系及转换方法. 例2.(2003年江苏卷)已知常数a >0,向量=(0,a ),=(1,0),经过原c i 点O 以+λ为方向向量的直线与经过定点A (0,a )以-2λ为方向向量的直c i i c 线相交于点P ,其中λ∈R ,试问是否存在两个定点E ,F ,使得|PE |+|PF |为定值?若存在,求出E ,F 的坐标;若不存在,说明理由.要点精析:本题考查平面向量的概念和计算、求轨迹的方法、椭圆的方程和性质、利用方程判定曲线的性质、曲线与方程的关系等解析几何的基本思想和综合解题能力.解:根据题没条件,首先求出点P 满足的方程,据此再判断是否存在两定点,使得P 到两定点的距离之和为定值. 因为=(1,0),=(0,a ),i c 所以+λ=(λ,a ),-2λ=(1,-2λa ).c i i c 因此直线OP 和AP 的方程分别为λy =ax 和y -a =-2λax ,消去参数λ,得点P (x ,y )的坐标满足y (y -a )=-2a 2x 2,整理得 ①222()211()82a y x a -+=因为a >0,所以得(1)当a =时,方程①表示圆,故不存在合乎题意的定点E 和F ;22(2)当0<a <时,方程①表示椭圆,焦点E ),F (-22 2a)为合乎题意的两个定点; 2a (3)当a >时,方程①表示椭圆,焦点E (0, )和F (0, -221(2a +)为合乎题意的两个定点。

向量的运算基本定律

向量的运算基本定律

向量的运算基本定律1.实数与向量的积的运算律:设λ、μ为实数,那么:⑴结合律:λ(μa )=(λμ) a ;⑵第一分配律:(λ+μ) a =λa +μa ;⑶第二分配律:λ(a +b )=λa +λb .2.向量的数量积的运算律:⑴ a ·b= b ·a (交换律);⑵(λa )·b= λ(a ·b )=λa ·b = a ·(λb );⑶(a +b )·c= a ·c +b ·c.3.平面向量基本定理:如果e 1、e 2是同一平面内的两个不共线向量,那么对于这一平面内的任一向量,有且只有一对实数λ1、λ2,使得a=λ1e 1+λ2e 2.不共线的向量e 1、e 2叫做表示这一平面内所有向量的一组基底.4.向量平行的坐标表示:设a =11(,)x y ,b =22(,)x y ,且b ≠0,则a b(b ≠0)12210x y x y ⇔-=.5.a 与b 的数量积(或内积):a ·b =|a ||b |cos θ.55. a ·b 的几何意义:数量积a ·b 等于a 的长度|a |与b 在a 的方向上的投影|b |cos θ的乘积.6.平面向量的坐标运算:⑴设a =11(,)x y ,b =22(,)x y ,则a +b =1212(,)x x y y ++.⑵设a =11(,)x y ,b =22(,)x y ,则a -b =1212(,)x x y y --.⑶设A 11(,)x y ,B 22(,)x y ,则2121(,)AB OB OA x x y y =-=--. ⑷设a =(,),x y R λ∈,则λa =(,)x y λλ.⑸设a =11(,)x y ,b =22(,)x y ,则a ·b =1212()x x y y +.7.两向量的夹角公式:cos θ=(a =11(,)x y ,b =22(,)x y ).8.平面两点间的距离公式:,A B d =||AB AB AB =⋅=11(,)x y ,B 22(,)x y ).9.向量的平行与垂直:设a =11(,)x y ,b =22(,)x y ,且b ≠0,则A ||b ⇔b =λa 12210x y x y ⇔-=.a ⊥b(a ≠0)⇔a ·b=012120x x y y ⇔+=.10.线段的定比分公式:设111(,)P x y ,222(,)P x y ,(,)P x y 是线段12P P 的分点,λ是实数,且12PP PP λ=,则 121211x x x y y y λλλλ+⎧=⎪⎪+⎨+⎪=⎪+⎩⇔121OP OP OP λλ+=+ ⇔12(1)OP tOP t OP =+-(11t λ=+). 11.三角形的重心坐标公式: △ABC 三个顶点的坐标分别为11A(x ,y )、22B(x ,y )、33C(x ,y ),则△ABC 的重心的坐标是123123(,)33x x x y y y G ++++. 12.点的平移公式:''''x x h x x h y y k y y k⎧⎧=+=-⎪⎪⇔⎨⎨=+=-⎪⎪⎩⎩''OP OP PP ⇔=+ . 注:图形F 上的任意一点P(x ,y)在平移后图形'F 上的对应点为'''(,)P x y ,且'PP 的坐标为(,)h k .13.“按向量平移”的几个结论:⑴点(,)P x y 按向量a =(,)h k 平移后得到点'(,)P x h y k ++.⑵ 函数()y f x =的图象C 按向量a =(,)h k 平移后得到图象'C ,则'C 的函数解析式为()y f x h k =-+.⑶ 图象'C 按向量a =(,)h k 平移后得到图象C ,若C 的解析式()y f x =,则'C 的函数解析式为()y f x h k =+-.⑷曲线C :(,)0f x y =按向量a =(,)h k 平移后得到图象'C ,则'C 的方程为(,)0f x h y k --=.⑸ 向量m =(,)x y 按向量a =(,)h k 平移后得到的向量仍然为m =(,)x y .4.三角形五“心”向量形式的充要条件:设O 为ABC ∆所在平面上一点,角,,A B C 所对边长分别为,,a b c ,则 ⑴O 为ABC ∆的外心222OA OB OC ⇔==.⑵O 为ABC ∆的重心0OA OB OC ⇔++=.⑶O 为ABC ∆的垂心OA OB OB OC OC OA ⇔⋅=⋅=⋅.⑷O 为ABC ∆的内心0aOA bOB cOC ⇔++=.⑸O 为ABC ∆的A ∠的旁心aOA bOB cOC ⇔=+.。

定比、定比分点公式

定比、定比分点公式

(3)定比、定比分点公式一、教学内容分析本节是的第三节课,是学习向量坐标表示及运算、向量的模与平行之后的又一个新的知识点.它既是对前两节内容复习与巩固,又是对向量知识的进一步深化与拓展,如式子 12PP PP λ=中的λ由实数推广到定比.同时,经历定比分点公式的推导过程,让学生领悟定比分点的多元化表示方法.本节的教学重点是定比分点公式的形成、深化、拓展与应用.难点是定比λ的理解、确定及定比分点公式中分点、始点、终点坐标位置的识别.根据本节特点,教师采取启发、提问为主的教学方法;学生则进行自主学习.即课前进行主动预习,课中进行讨论与交流,课后进行探索研究. 二、教学目标设计1理解定比的概念,掌握定比分点公式;2通过定比分点公式的推导过程,巩固向量的运算方法; 感悟定比分点的几种表达方式;3通过本节的学习,提升发现能力、推理能力,渗透数形结合思想. 三、教学重点及难点定比的概念,定比分点公式的推导和应用. 四、教学流程设计五、教学过程设计一、 情景引入观察思考,引入新课问题1:设)1,2(A ,)1,2(--B ,)2,4(C 三点共线,可知BA ∥AC ,即存在实数λ,使BA = λAC ??,那么实数λ= . 而若?BC CA λ=,则λ= .[说明](1)本问题由共线三点坐标求实数λ,它既是对前一节向量平行的复习与巩固,同时又为定比λ的产生作好铺垫(2)通过本题可以看出使两向量平行的实数λ的取值可正可负. 问题2:设1P (1,1),2P (4,4), λ=1.当12PP PP λ=时,你能求出点P的坐标吗(引出课题)[说明]问题2是由共线三点中的两点坐标和定比λ的值求第三点坐标,本题给出的点具有一定的特殊性,这样便于学生利用数形结合思想猜出结果,尝试成功的快乐. 二、学习新课 1.定比分点公式一般地,设点P 1(),11y x ,),(222y x P ,点P 是直线 21P P 上任意一点,且满足 12PP PP λ=,求点P 的坐标.解:由12PP PP λ= ,可知{)()(2121x x x x y y y y -=--=-λλ,因为λ≠-1, 所以⎩⎨⎧++=++=λλλλ112121x x x y y y ,这就是点P 的坐标.师生通过上面的结论共同解决(一)中的问题2.[说明]此例题的结论可作为公式掌握,此公式叫线段21P P 的定比分点公式. 2.小组交流(1)定比分点公式中反映了那几个量之间的关系当λ=1时,点P的坐标是什么 (2)满足式子12PP PP λ=的点P 称为向量 12PP 的分点.思考:上式中正确反映 P 1,P ,2P 三点位置关系的是( ) A 、 始→分,分→终.B 、始→分,终→分.C 、终→分,分→始 (3)关于定比λ和分点P 叙述正确的序号是1)点P 在线段21P P 中点时,λ=1;2)点P 在线段21P P 上时,λ≥0 3)点P 在线段21P P 外时,λ﹤0; 4)定比λR ∈[说明]由定比分点公式可知λ=1 时有⎪⎩⎪⎨⎧+=+=222121x x x y y y ,此公式叫做线段21P P 的中点公式. 此公式应用很广泛.3.例题辨析例1、已知平面上A 、B 、C 三点的坐标分别为A (),11y x , ),(22y x B , ),(33y x C ,G 是△ABC 的重心,求点G 的坐标.解:由于点G 是△ABC 的重心,因此CG 与AB 的交点D 是AB 的中点,于是点D 的坐标是(2,22121y y x x ++). 设点G 的坐标为),(y x ,且2CG GD =则由定比分点公式得 ⎪⎩⎪⎨⎧+++=+++=21222122213213x x x x y y y y ,整理得 ⎪⎩⎪⎨⎧++=++=3332121x x x x y y y y 这就是△ABC 的重心G 的坐标.[说明]本题难度不大,但综合性却比较强.不仅涉及到定比的概念,而且用到了中点公式、定比分点公式.(2)此结论可作为三角形重心的坐标公式.例2、)15,12(),0,3(),5,2(21P P P - 且有12PP PP λ=求实数λ的值.解1: 由已知可求 1(10,10)PP =,2(15,15)PP λλ=-- 故10=λ .(-15), 所以定比λ=-32.解2: 因为12PP PP λ=,所以P 1,P ,2P 三点共线,由定比分点公式得12=λλ+-⨯+1)3(2 解出实数λ=-32.解3:由图形可知点P 在线段21P P 外,故λ﹤0 ,又21PP PP = 32,所以λ=-32 .[说明] 本题已知三点坐标求定比λ的值,学生往往偏爱第一种解法;解法二是定比分点公式的一个应用,其前提是三点共线,代公式时要注意始点、终点、分点坐标的位置;解法三是求定比λ的有效方法,简洁方便,鼓励学生大胆去尝试.三、演练反馈,巩固知识1设12PP PP λ= ,21P P PPλ'= ,则下列正确的是( ) (A )λλ'= (B )λλ'=- (C ) 1λλ=' (D )1λλ=-'2、△ABC 中,A (2,3),B (-3,4),重心G (-)34,32,求C 点的坐标.3、已知:A (3,-1),B (-4,-2),点P 在直线AB 上,且2AP =3BP ,求P 点坐标.四、知识梳理,提升思维1知识与技能小结:(1)主要的知识点有定比λ的概念,中点公式、定比分点公式,及定比分点公式的多元化表示.(2)主要的应用有定比λ的意义与范围,三点共线问题,三角形重心公式及综合应用.2 学生的体会和感悟:对本节学习过程的认识、理解和体会;提出新的疑点和问题.五、作业布置,课后探究 1、填空题(1)已知三点A 、B 、C 满足AB =2BC ,设1AC CB λ=2BA AC λ=则=•21λλ(2)△ABC 中,A (1,2),B (-2,3),C (4,-1),D 为BC 中点,且 3= ,则G 点坐标是 2、选择题(1)若 2143PP P -=,则下列各式中不正确的是( ) (A ) 12P P =P P 131 (B )P P 1234= (C ) 2113P P P -= (D )1224P PP =(2) 设点P 是12PP 反向延长线上任意一点且12PP PP λ=,则实数λ的范围是( )(A )(-∞,0) (B )(—∞,-1) (C )(-1,0) (D )[-1,0)3、解答题(1)△ABC 中,已知A (3,1),AB 的中点D (2,4),△ABC 的重心G (3,4),求B 、C 两点的坐标.(2)已知设1P (3,2),2P (-8,3) , P (12,y ),若12PP PP λ=,求λ与y 的值.。

平面向量数乘运算的坐标表示课件-高一数学人教A版(2019)必修第二册

平面向量数乘运算的坐标表示课件-高一数学人教A版(2019)必修第二册

问题2 如何用坐标表示向量共线的条件?

a // b (b 0) 存在实数λ,使
a b
( x1 , y1 ) ( x2 , y2 ) ( x2 , y2 )
消去λ,得 x1 y2 x2 y1 0
重要结论2:
a // b (b 0) x1 y2 x2 y1 0
们是同向还是反向?
解:法一
ห้องสมุดไป่ตู้
ka+b=k(1,2)+(-3,2)=(k-3,2k+2),a-3b=(1,2)-3(-3,2)=(10,-4),
当 ka+b 与 a-3b 平行时,存在唯一实数λ,使 ka+b=λ(a-3b).
由(k-3,2k+2)=λ(10,-4).

- = ,

解得 k=λ=- .

,
2
2
所以(k-3)×(-4)-10(2k+2)=0,

解得 k=- .







所以 ka+b=(- , )=- (10,-4)=- (a-3b),
故 ka+b 与 a-3b 反向.
【课本例题8】已知A(-1,-1),B(1,3),C(2,5),判断A,B,
C三点之间的位置关系.
【解析】在平面直角坐标系中作出A,B,C三点,观察图形,
=(1 , 1 ),=(2 , 2 )
向量与共线
(1 , 1 ),(2 , 2 )
点满足=
(1 , 1 ),(2 , 2 )
点为中点
1 2 -2 1 =0
1 + 2 1 + ��2

巧用平面向量解立体几何问题

巧用平面向量解立体几何问题

=1+12(2cos60°cos40°)-12(cos40°-cos120°)=1+12cos40°-12cos40°+12cos120°=1-14=34.四、其它转化在求值问题中,除了重组角度转化之外,还应重视三角函数名,结构等方面的转化,如:①切割化弦;②降幂转化来计算.例6 求tan20°+4sin20°的值.分析:对此类问题一般先将切化弦:tan20°+4sin20°=sin20°cos20°+4sin20°=sin20°+4sin20°cos20°cos20°由于题目中出现了20°与40°的角,其和为60°的特殊角,这样就为转化带来了空间,而且方法不是唯一的.变式1 tan20°+4sin20°=sin20°+2sin40°cos20°=sin(60°-40°)+sin40°cos20°=sin60°cos40°-cos60°sin40°+2sin40°cos20°=32cos40°-12sin40°+2sin40°cos20°=32cos40°+32sin40°cos20°=3(12cos40°+32sin40°)cos20°=3sin70°cos20°=3.变式2 tan20°+4sin20°=sin20°+2sin(60°-20°)cos20°=sin20°+3cos20°-sin20°cos20°=3cos20°cos20°=3.以上几种形式的转化求值问题,只是在三角函数教学中比较普遍存在的转化思想的体现,在很多的具体求值中,还有些异于上述的其它方法.但任何问题的解决都是将未知转化为已知的过程,在三角函数求值中体现得更为突出.在教学中应提炼出来,以便于学生共享.黑龙江省农垦总局哈尔滨分局高级中学(150088)●韩晓辉巧用平面向量解立体几何问题 平面向量是解答立体几何问题的一种快速、简捷的运算工具.不少复杂的立体几何问题,引入平面向量后,通过将空间元素的位置关系转化为数量关系,将过去的形式逻辑证明转化为数值运算,即借助平面使解题模式化,用机械性操作把问题转化,因此,平面向量为立体几何代数化带来了极大的便利.下面,介绍平面向量在立体几何中的应用.例1 如图1,AB、CD为异面直线,CD<平面α,AB∥平面α,M、N分别是AC、BD的中点,求证MN∥平面α证明因为D<平面α,B∥平面α且··数理化学习(高中版)©:.:C A12AB 、CD 异面,所以在α内存在�a 、�b 使AB =�a ,CD =�b ,且�a 、�b 不共线,由M 、N 分别是AC 、BD 的中点,得MN =12(MB +MD )=12[(MA +AB )+(MC +CD )]=12[(MA +AB )+(MC +C D )]=12[-M C +AB +MC +CD ]=12[AB +CD ]=12(�a +�b ),即MN 与�a 、�b 共面.又因为�a 、�b 在平面α内,故MN ∥平面α或MN <平面α,而若MN <平面α,则A B 、C D 同在平面α内,与AB 、CD 为异面直线矛盾,所以MN ∥平面α.例2 正四面体V -ABC 的高VD 的中点为O ,AC 的中点为M.求证:A O 、BO 、CO 两两垂直.证明:设V A =�a,V �b =�b ,VC =�c ,正四面体棱长为m,则VD =13(�a +�b +�c ),A O =16(�b +�c -5�a ),BO =16(�a +�c -5�b ),CO =16(�a +�b -5�c ).因为AO ·BO =136(�b +�c -5�a )·(�a +�c -5�b )=0,所以AO ⊥BO,即AO ⊥BO,同理,AO ⊥CO ,BO ⊥C O.例3 如图3,在三棱锥S -A BC 中,∠S AB =∠S AC =∠AC B =90°,AC =2,SA =23,BC =13,S B =29.证明:(1)SC ⊥BC;(2)求异面直线SC 与AB 所成角α的余弦值.解:(1)证明:由题意,S ·B =,·B =,所以S ·B =(S +)·B =S A ·CB +AC ·C B =0,即SC ⊥BC .(2)因为SC ·AB =(S A +AC)·(AC +C B )=S A ·AC +SA ·C B +AC ·AC +AC ·CB =0+0+|AC |2+0=|AC |2=4,|SC |=(23)2+22=4,|A B |=(13)2+22=17,所以cosα=SC ·AB |SC |·|AB |=4417=1717.例4 如图3,已知平行六面体ABC D -A 1B 1C 1D 1的底面是菱形,且∠C 1CB =∠C 1C D=∠BC D =60°.(1)证明:C 1C ⊥BD ;(2)当CDCC 1的值为多少时,能使A 1C ⊥平面C 1BD 请给予证明.证明:(1)取C D 、CB 、CC 1为空间的一个基.因为∠C 1CB =∠BC D =60°,ABCD 是棱形,所以|C D |=|CB |,又因为BD =C D -CB,所以CC 1·BD =CC 1·(C D -CB )=CC 1·CD -CC 1·C B =0.所以C 1C ⊥BD.(2)设CDCC 1=λ(λ>0),即|C D |=λ|CC 1|时,能使A 1C ⊥平面C 1BD.因为C 1D ∩BD =D ,所以A 1C ⊥平面C 1BD ΖA 1C ⊥C 1D 且A 1C ⊥BD ΖA 1C ·C 1D =0且A 1C ·BD =0.因为=(D +B +),D =D ,<B,D >=6°,<B ,>=6°,··数理化学习(高中版)©A C 0AC C 0C C A AC C A 1C -C C CC 1C 1C -CC 1C C 0C CC 1022|CD|=|CB|,所以A1C·C1D=-(|C D|2-CD·CC1+ CB·CD-CB·CC1+CC1·CD-|CC1|2)=-(λ2|CC1|2+12λ2|CC1|2-12λ|CC1|2-|CC1|2)=-(32λ2-12λ-1)|CC1|2.所以A1C·C1D=0Ζ32λ2-12λ-1=0Ζ(λ-1)(3λ+2)=0,因为λ>0,所以λ=1.经验证,当λ=1时,A1C·C1D=0.即当C DCC1=1时,能使A1C⊥平面C1BD.前面这些题目若采用传统的立体几何方法证明,大多数不可避免地需要添加“辅助线”,然后再分别证明线线平行(垂直)或面面平行(垂直),而这些证法与用平面向量法相比,显然难度是大的.因此,平面向量确实是处理立体几何问题的重要而又简便的方法.作为平面向量的主要技巧,是将相关量表示为基向量的形式,把问题转化为平面向量的运算,这与把空间图形关系转化为平面图形关系的传统解法相比,显然是更高的思维方式,它抓住了空间的主要特征和其内在规律,使“纷繁复杂的现象变得井然有序.”河北省乐亭县第一中学(063600)●张云飞线段定比分点的向量公式及应用例举(一) 线段的定比分点公式是同学们所熟悉的重要公式,它在中学数学中有较为广泛的应用,近几年的高考也时有涉及,如2000年全国高考文理科倒数第一大题都直接考查了定比分点公式的运用.同学们所熟悉的是定比分点的坐标公式,其实,除此以外,定比分点公式还有其向量形式.运用定比分点的向量形式解题有时显得更为简洁明快.一、线段的定比分点向量公式设P1、P2是直线l上的两点,点P是l上不同于、的任意一点,O 是平面内任意一点,设O P1=�a,O P2=�b,P分有向线段P1P2所成的比为λ,则有O P=�a+λ�b1+λ.证明:如图1,因为P1P=O P-�a,.PP2=�b-O P,P1P=λPP2,所以O P-�a=λ(�b-O P)所以O P=�a+λ�b1+λ①公式①就是线段的定比分点向量公式.二、应用例1 在△ABC中,已知D是BC的中点, E是AD的中点,直线B E交AC于F,求证:CF =2FA.证明如图,在△B中,设BD=�,B=�,·3·数理化学习(高中版)©P1P2:2A Ca A b2。

高考数学平面向量及其综合运用 人教版

高考数学平面向量及其综合运用 人教版

高考数学平面向量及其综合运用 人教版复习要点:Ⅰ、平面向量知识结构表Ⅱ、内容概述1、向量的概念向量有三种表示法:①有向线段,②a 或AB ,③坐标a =(x , y )。

注意:共线向量与相等向量的联系与区别。

2、向量的运算加法、减法、数乘向量和向量的数量积。

如:11221212(,)(,)a b x y x y x x y y =⋅=+注意:几何运算与坐标运算 3、平面向量的定理及相关性质(1)两个非零向量平行的充要条件: a ∥b ⇔ a =λb (λ∈R)设a =(x1,y1),b = (x2,y2) 则a ∥b ⇔ x1y2-x2y1=0(2)两个非零向量垂直的充要条件: a ⊥b ⇔ a·b =0 设a =(x1,y1),b =(x2,y2)则a ⊥b ⇔ x1·x2+y1·y2=0(3)平面向量基本定理:如果有e1,e2是同一平面内的两个不共线向量,那么对于这一平面内的任一向量a ,有且只有一对实数λ1,λ2使 a =λ1e1+λ2e2.(4)三点共线定理:平面上三点A 、B 、C 共线的充要条件是:存在实数α、β,使OC OB OA βα+=,其中α+β=1,O 为平面内的任一点。

4、 常用公式及结论a 、向量模的公式:设a =(x,y ),则︱a ︱=22y x +b 、两点间的距离公式:21P P =212212)()(y y x x -+- [P1(x1,y1),P2(x2,y2)]c 、线段的定比分点坐标公式:向量向量的概念向量的运算向量的运用向量的加、减法实数与向量的积 向量的数量积 两个向量平行的充要条件两个向量垂直的充要条件定比分点公式平移公式 在物理学中的应用 在几何中的应用d 、中点坐标公式: 或)(21OB OA OM +=其中M (x0 ,y0)是线段AB 中点。

e 、两向量的夹角公式:cos θ=222221212121y x y x y y x x ba ba +⋅++=⋅⋅其中0°≤θ≤180°,a=(x1,y1),b =(x2,y2)f 、图形平移公式:若点P(x,y)按向量a =(h,k)平移至P '(x ',y '), 则g 、有关向量模的常用结论: ① aa a ⋅=2② 22222bb a a )b a (b a +⋅±=±=± ③ba b a ≤⋅,a b a b a b-≤±≤+④222||||2||2||a b a b a b ++-=+ 范例及其点评(一)平面向量学科内综合运用深刻理解平面向量的相关概念与性质,熟练掌握向量的各种运算,熟悉常用公式及结论,理解并掌握两向量共线、垂直的充要条件。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

5.3平面向量的坐标表示及线段的定比分点公式
要点透视:
1.要清楚向量的坐标与表示该向量的有向线段的起点、终点的具体位置无关,只与其相对位置有关.
2.遇到共线向量与平行有关问题,一般应考虑运用向量平行的充要条件.
3.线段的定比分点公式,要注意求定比分点A 的值,以便顺利求出分点坐标.
活题解析:
例1.(2002年天津卷)平面直角坐标系中, O 是坐标原点,已知两点A (3,
1),B (-1,3),若点C 满足OC OA OB αβ=+,其中α,β∈R ,且α+β=1,则点C 的轨迹方程是( )
A .3x +2y -11=0
B .(x -1)2+(y -2)2=25
C .2x -y =0
D .x +2 y -5=0
要点精析:I 设OC =(x ,y ),OA =(3,1),OB =(-1,3),
α·OA =(3α,α),βOB =(-β,3β),又αOA +βOB =(3α-β,α+3β), ∴ (x ,y )=(3α-β,α+3β),∴ 33x y αβαβ=-⎧⎨=+⎩
, 又α+β=1,因此得x +2y =5,所以选D .
思维延伸:本题主要考查向量法和坐标法的相互关系及转换方法.
例2.(2003年江苏卷)已知常数a >0,向量c =(0,a ),i =(1,0),经过原点O 以c +λi 为方向向量的直线与经过定点A (0,a )以i -2λc 为方向向量的直线相交于点P ,其中λ∈R ,试问是否存在两个定点E ,F ,使得|PE |+|PF |为定值?若存在,求出E ,F 的坐标;若不存在,说明理由.
要点精析:本题考查平面向量的概念和计算、求轨迹的方法、椭圆的方程和性质、利用方程判定曲线的性质、曲线与方程的关系等解析几何的基本思想和综合解题能力.
解:根据题没条件,首先求出点P 满足的方程,据此再判断是否存在两定点,使得P 到两定点的距离之和为定值.
因为i =(1,0),c =(0,a ),
所以c +λi =(λ,a ),i -2λc =(1,-2λa ).
因此直线OP 和AP 的方程分别为λy =ax 和y -a =-2λax ,
消去参数λ,得点P (x ,y )的坐标满足y (y -a )=-2a 2x 2,
整理得222
()211()82
a y x a -+= ① 因为a >0,所以得
(1)当a =2
2时,方程①表示圆,故不存在合乎题意的定点E 和F ; (2)当0<a <2
2时,方程①表示椭圆,焦点E
2a ),F (
2a )
为合乎题意的两个定点;
(3)当a >2
2时,方程①表示椭圆,焦点E
(0, 1(2a +)和F (0,
-1(2a )为合乎题意的两个定点。

例3.如图所示,平行四边形ABCD 顶点A 的
坐标为(-2,1),一组对边AB ,CD 的中点分别是
M (3,0),N (-1,-2),求其余顶点坐标.
要点精析:抓住平行四边形是中心对称图形,
用中点坐标即可求解.
解法1:设其余三个顶点B ,C ,D 的坐标分别为(x 1,y 1),(x 2,y 2),(x 3,y 3),因为M 是AB 的中点,
11232102
x y -+⎧=⎪⎪⎨+⎪=⎪⎩, 解得1181x y =⎧⎨=-⎩, 所以B (8,-1). MN 的中点为 P (1,-1),且P 是AC 中点,可得 C (4,-3).
再由N 为CD 中点,可得D (-6,-1).
所求顶点坐标为B (8,-1),C (4,-3),D (-6,-1).
解法2:设B 点坐标(x ,y ),则AM =MB ,即(5,-1)=(x —3,y ),
351x y -=⎧⎨=-⎩解得81
x y =⎧⎨=-⎩,所以B (8,-1).
同理,由AM =DN =NC ,求得 C (4,-3),D (-6,-1).
思维延伸:本题的两种解法体现了线段的定比分点坐标公式与向量坐标运算的统一性.同时,还体现了向量坐标运算的优越性.
练 习 题
一、选择题
1.已知平行四边形三个顶点的坐标为(-1,0),(3,0),(1,-5),则第四点的坐标为( )
A .(1,5)或(5,-5)
B .(1,5)或(-3,-5)
C .(5,-5)或(-3,-5)
D .(1,5)或(-3,-5)或(5,-5)
2.在梯形ABCD 中,AB //CD ,且|AB |=λ|DC |(λ≠0).若AB =a ,AD =b , 则AC 等于( )
A .λa +b
B .a +λb
C .1λa +b
D .a +1λb 3.已知a =(-2,5),|b |= 2|a |.若b 与a 反向,则b 等于( )
A .(-4,10)
B .(4,-10)
C .(-1,25)
D .(1.-2
5) 4.设点P ( 2,3)分有向线段12PP 所成之比为2
1,点P 1的坐标为(1,2),则P 2的坐标是( )
A .(2,3)
B .(5,4)
C .(4,5)
D .(5,6)
5.已知△ABC 的三个顶点 A (0,3),B (3,3),C (2,0).若直线x =a 将△ABC 分割成面积相等的两部分,则实数a 的值为( )
A .3
B .1+22
C .133
D .2
2 6.在△ABC 中,A ( 0,7),B (-4,5),重心G (0,3
1),则△ABC 为( ) A .锐角三角形 B .等边三角形 C .钝角三角形 D .直角三角形
二、填空题:
7.已知两个向量a =(3,4),b =(2,-1),若a +x b 与a -b 平行,则x = .
8.已知A (-3,2),AB =( 8,0),则线段AB 中点的坐标为 .
9.设a ,b 是不共线的两个向量,已知AB =2a +k b ,BC =a +b ,CD =a -2b ,若A ,B ,D 三点共线,则k 的值为 .
10.已知三点A (1,1),B (2,-4),C (x ,-9)共线,则x 的值是 .
三、解答题:
11.已知向量a =(8,2),b =(3,3),c =(6,12),p =(6,4).问:是否存在实数x ,y ,z ,同时满足下列两个条件:①p =x a +y b +z c ,② x +y +z =1?如果存在,请求出x ,y ,z 的值;如果不存在,请说明理由.
12.如图所示,已知三点A (x
1,y 1),B (x 2,y 2),C (x 3,
y 3),D 点分AB 的比是3
1,E 在BC 上,且使△BDE 的面积是△ABC 的一半,求向量DE 的坐标.
13.如图所示,已知四边形ABCD 是正方形,
//BE AC ,AC =CE ,EC 的延长线交BA 的延长线于
F 点,求证AF =AE 。

14.运用向量的观点求246cos cos cos 777
πππ++的值。

15.已知点O ( 0,0),A ( 1,2),B ( 4,5)及OP =OA +t AB ,试问:
(1)t 为何值时,P 在x 轴上?在y 轴上?在第二象限?
(2)四边形OABP 能否成为平行四边形?若能,求出相应的t 的值;若不能,请说明理由。

相关文档
最新文档