平面向量的坐标表示(使用)
平面向量的基本运算法则

平面向量的基本运算法则平面向量是在平面上具有大小和方向的量,它在数学和物理中都有广泛的应用。
对于平面向量,有一些基本的运算法则需要掌握。
一、平面向量的表示方法表示一个平面向量可以使用坐标表示法或者矢量表示法。
1. 坐标表示法:假设平面上有一个点P,以原点O为起点,连接OP,并将OP表示为一个有向线段,那么OP就是一个平面向量。
通常用大写字母表示向量,比如向量OP可以表示为向量OQ = (x, y)。
2. 矢量表示法:平面向量还可以使用矢量符号表示,比如向量OP 可以表示为向量→OP。
二、平面向量的基本运算包括加法、减法、数乘和数量积。
1. 加法:设有两个平面向量→AB和→CD,它们的和表示为→AB+→CD,即将两个向量的起点对齐,连接终点即可得到它们的和向量→AD。
2. 减法:设有两个平面向量→AB和→CD,它们的差表示为→AB-→CD,即将被减向量→CD取反,然后按照加法法则相加,即→AB+(-→CD)。
3. 数乘:设有一个平面向量→AB,它与一个实数k的乘积表示为k→AB,即将向量→AB的长度乘以实数k,方向不变。
4. 数量积:设有两个平面向量→AB和→CD,它们的数量积表示为→AB·→CD,即将两个向量的模长相乘再乘以它们夹角的余弦值。
如果→AB和→CD垂直,它们的数量积为0;如果夹角为锐角,它们的数量积为正;如果夹角为钝角,它们的数量积为负。
三、平面向量基本运算法则的性质平面向量的基本运算法则满足一些重要的性质。
1. 交换律:对于加法和数量积来说,交换向量的顺序不改变运算结果,即→AB+→CD = →CD+→AB,→AB·→CD = →CD·→AB。
2. 结合律:对于加法来说,可以将多个向量的和分成多个组,然后先对每组中的向量进行加法运算,再将每组的运算结果进行加法运算,结果是相同的。
3. 分配律:对于加法和数乘来说,分配律成立,即k(→AB+→CD)= k→AB+k→CD,(k+m)→AB = k→AB+m→AB。
平面向量的坐标表示

平面向量的坐标表示平面向量是二维空间中具有大小和方向的量,可以用坐标表示。
平面向量的坐标表示方式有两种:位置向量和方向向量。
一、位置向量的坐标表示位置向量是指从原点O到平面上的一个点P所形成的向量。
位置向量的坐标表示方式为(r, θ),其中r表示向量的大小,θ表示向量与x轴的夹角。
当点P(x, y)在第一象限时,r为点P到原点O的距离,θ为点P与正x轴的夹角。
当点P(x, y)在第二象限时,r为点P到原点O的距离,θ为点P与正x轴的夹角的负值。
当点P(x, y)在第三象限时,r为点P到原点O的距离,θ为点P与正x轴的夹角的180°减去角度。
当点P(x, y)在第四象限时,r为点P到原点O的距离,θ为点P与正x轴的夹角的正值。
二、方向向量的坐标表示方向向量是指没有起点的向量,仅有大小和方向的定义。
方向向量的坐标表示方式为(a, b),其中a表示向量在x轴方向上的分量,b表示向量在y轴方向上的分量。
通过给定a和b的数值,可以确定一个方向向量。
三、坐标表示的计算方法已知两个点A(x1, y1)和B(x2, y2),求向量AB的坐标表示。
首先,根据两点坐标求出向量的坐标差:Δx = x2 - x1,Δy = y2 - y1。
然后,根据坐标差得到向量的坐标表示:AB = (Δx, Δy)。
四、坐标表示的应用1. 向量的加法和减法:若有向量A(a, b)和向量B(c, d),则向量A加向量B的结果为A+B = (a+c, b+d);若有向量A(a, b)和向量B(c, d),则向量A减去向量B的结果为A-B = (a-c, b-d)。
2. 向量的数量积:若有向量A(a, b)和向量B(c, d),则向量A和向量B的数量积为A·B = ac + bd。
3. 向量的模长:若有向量A(a, b),则向量A的模长为|A| = √(a² + b²)。
五、结论通过坐标表示,可以方便地进行向量的计算和运算。
平面向量的坐标表示和应用

平面向量的坐标表示和应用在数学中,向量是一种包含大小和方向的量,常用来表示物理量。
而平面向量则是指位于同一平面上的向量。
为了便于描述和计算,我们通常使用坐标来表示平面向量。
本文将探讨平面向量的坐标表示及其应用。
一、平面向量的坐标表示平面向量可以用有序数对表示,例如向量AB可以表示为(AB),其中A和B是平面上的两个点。
而这个有序数对的坐标表示即为平面向量的坐标。
对于平面上的点A(x₁, y₁)和B(x₂, y₂),向量AB的坐标表示为:(AB) = (x₂ - x₁, y₂ - y₁)这样,我们就可以用有序数对表示平面向量,并通过坐标的差值表示向量的方向和大小。
二、平面向量的坐标运算在进行平面向量的坐标运算时,我们可以类比于进行普通的数学运算。
主要涉及到向量的加法、减法和数乘。
1. 向量的加法设有两个向量AB和CD,它们的坐标分别为(AB) = (x₁, y₁)和(CD) = (x₂, y₂)。
那么这两个向量的和为:(AB + CD) = (x₁ + x₂, y₁ + y₂)向量的加法相当于分别对向量的x轴和y轴分量进行相加。
2. 向量的减法向量的减法可以通过向量的加法和数乘来表示。
设有两个向量AB 和CD,那么它们的差为:(AB - CD) = (AB + (-CD))其中(-CD)是向量CD的相反向量,其坐标为=(-x₂, -y₂)。
将其带入上式,可得:(AB - CD) = (x₁ - x₂, y₁ - y₂)向量的减法相当于向量的加法和数乘的结合运算。
3. 向量的数乘设有向量AB,那么它与一个实数k的数乘表示为:k(AB) = (kx, ky)其中kx和ky分别为向量AB的x轴和y轴分量乘以k。
三、平面向量的坐标表示应用平面向量的坐标表示在解决实际问题中有着广泛的应用。
下面介绍两个常见的应用。
1. 向量的平移平面向量的坐标表示可以用于描述平面上的点的平移,即将一个点沿着一个向量进行移动。
平面向量的坐标表示与方向角

平面向量的坐标表示与方向角平面向量是平面上的有向线段,既有大小又有方向。
为了方便表示和计算,我们可以使用坐标表示和方向角来描述平面向量。
一、平面向量的坐标表示在平面直角坐标系中,我们可以使用二维坐标来表示平面上的点。
同样地,我们可以使用两个实数来表示一个平面向量。
设平面向量为AB,A点的坐标为(x₁, y₁),B点的坐标为(x₂, y₂)。
则向量AB的坐标表示为(Δx, Δy),其中Δx = x₂ - x₁,Δy = y₂ - y₁。
举例说明:若A(1, 2)和B(4, 5)是平面上的两个点,可以计算得到向量AB的坐标表示为(3, 3)。
二、平面向量的方向角平面向量的方向可以用方向角来表示。
方向角是从正 x 轴逆时针旋转到向量所在直线的角度。
设平面向量为AB,与正 x 轴的夹角为θ(0 <= θ < 2π)。
则向量AB的极坐标表示为(│AB│, θ),其中│AB│表示向量AB的长度。
计算方向角θ的方法如下:1. 若向量AB的坐标表示为(Δx, Δy),则有tanθ = Δy/Δx。
- 当Δx > 0时,θ = arctan(Δy/Δx)。
- 当Δx = 0且Δy > 0时,θ = π/2。
- 当Δx = 0且Δy < 0时,θ = 3π/2。
- 当Δx < 0时,θ = arctan(Δy/Δx) + π。
2. 根据θ的值的范围,进行调整使其满足0 <= θ < 2π。
举例说明:若向量AB的坐标表示为(3, 3),则有tanθ = 3/3 = 1,所以θ = π/4。
由于0 <= π/4 < 2π,θ = π/4就是向量AB的方向角。
三、使用坐标表示和方向角求解平面向量的运算使用坐标表示和方向角可以方便地进行平面向量的运算,包括加减法和数量乘法。
1. 加减法:设向量AB的坐标表示为(Δx₁, Δy₁),向量CD的坐标表示为(Δx₂, Δy₂)。
《平面向量的坐标表示》课件

首先计算$overrightarrow{AC}$和$overrightarrow{BC}$ 的坐标。根据向量的坐标表示,$overrightarrow{AC} = C - A = (-1-1, -2-2) = (-2,-4)$,$overrightarrow{BC} = C - B = (-1-3, -2-4) = (-4,-6)$。然后计算 $overrightarrow{AB} + overrightarrow{AC}$的坐标。 根据向量加法的性质,$overrightarrow{AB} + overrightarrow{AC} = (2+(-2), 2+(-4)) = (0,-2)$。
向量加法
设向量$overset{longrightarrow}{AB} = (x_{1},y_{1})$,向量$overset{longrightarrow}{BC} = (x_{2},y_{2})$,则$overset{longrightarrow}{AC} = overset{longrightarrow}{AB} + overset{longrightarrow}{BC} = (x_{1} + x_{2},y_{1} + y_{2})$。
b坐o标ve求rse解t{longrightarrow}{ j}$。
通过向量的起点和终点坐标,可以求出$a$和$b$的值, 从而得到向量的坐标。
03
起点坐标法
如果知道起点$A$和终点$B$的坐标,则向量 $overset{longrightarrow}{AB}$的坐标为$(B_x - A_x, B_y - A_y)$。
向量积:设向量 $overset{longrightarrow}{AB} = (x_{1},y_{1})$,向量 $overset{longrightarrow}{BC} = (x_{2},y_{2})$,则 $overset{longrightarrow}{AB} times overset{longrightarrow}{BC}$的大 小为 $|overset{longrightarrow}{AB}| cdot |overset{longrightarrow}{BC}| cdot sintheta$,其中$theta$为两
平面向量的坐标表示与运算学习平面向量的坐标表示及其运算法则

平面向量的坐标表示与运算学习平面向量的坐标表示及其运算法则平面向量的坐标表示与运算平面向量是解析几何学中的重要概念,它可以通过坐标表示和进行各种运算。
本文将介绍平面向量的坐标表示及其运算法则。
一、平面向量的坐标表示在平面直角坐标系中,一个向量可以用有序实数对(x, y)表示,其中x代表向量在x轴上的投影长度,y代表向量在y轴上的投影长度。
这个有序实数对称为向量的坐标表示。
例如,对于平面上的向量AB,若A点的坐标为(x₁, y₁),B点的坐标为(x₂, y₂),则向量AB的坐标表示为(x₂ - x₁, y₂ - y₁)。
二、平面向量的运算法则1. 加法:向量的加法是指将两个向量相加得到一个新的向量。
平面向量的加法满足平行四边形法则,即将两个向量的起点相接,然后将它们的终点连线,新的向量就是连接相接点与连接终点的线段的向量。
对于向量AB和向量CD,它们的和向量为向量AC。
和向量的坐标表示为(x₂ - x₁ + x₄ - x₃, y₂ - y₁ + y₄ - y₃)。
2. 数乘:向量的数乘是指将一个向量与一个实数相乘得到一个新的向量。
数乘改变了向量的大小,但不改变其方向。
对于向量AB和实数k,向量kAB的坐标表示为(k(x₂ - x₁), k(y₂- y₁))。
3. 减法:向量的减法是指将一个向量减去另一个向量得到一个新的向量。
向量的减法可以通过向量的加法和数乘来表示。
对于向量AB和向量CD,它们的差向量为向量AD。
差向量的坐标表示为(x₂ - x₁ - x₄ + x₃, y₂ - y₁ - y₄ + y₃)。
4. 模长:向量的模长表示了向量的大小。
在平面直角坐标系中,向量(x, y)的模长表示为√(x² + y²)。
三、平面向量的运算实例例1:已知向量A(3, 4),向量B(5, 2),求向量A + 向量B 和向量A - 向量B的坐标表示。
解:向量A + 向量B的坐标表示为(3 + 5, 4 + 2),即(8, 6)。
平面向量的坐标表示

平面向量的坐标表示平面向量是指在平面上具有大小和方向的量。
为了表示和计算平面向量,我们常常使用坐标表示法。
本文将介绍平面向量的坐标表示方法,以及如何进行向量的加法、减法和数量乘法运算。
1. 坐标表示法简介在平面直角坐标系中,我们可以用有序数对表示一个点的坐标。
同样地,我们也可以用有序数对$(x,y)$来表示一个平面向量。
其中,$x$表示向量在$x$轴上的分量,$y$表示向量在$y$轴上的分量。
2. 向量的加法对于平面向量$\mathbf{a}=(x_1,y_1)$和$\mathbf{b}=(x_2,y_2)$,它们的和可以通过分别将它们的$x$分量相加,$y$分量相加得到:$$\mathbf{a}+\mathbf{b}=(x_1+x_2, y_1+y_2)$$3. 向量的减法平面向量的减法可以通过将被减向量取负后与减向量相加得到。
对于向量$\mathbf{a}=(x_1,y_1)$和$\mathbf{b}=(x_2,y_2)$,它们的差可以表示为:$$\mathbf{a}-\mathbf{b}=\mathbf{a}+(-\mathbf{b})=(x_1-x_2, y_1-y_2)$$4. 向量的数量乘法向量的数量乘法即将向量的每个分量都乘以一个实数。
对于平面向量$\mathbf{a}=(x,y)$和实数$k$,其数量乘积为:$$k\mathbf{a}=(kx, ky)$$5. 向量的坐标表示在几何上的意义通过坐标表示法,我们可以将平面向量转化为有向线段。
以原点$(0,0)$为起点,平面向量$(x,y)$的终点坐标为$(x,y)$。
直观地,这个有向线段从原点指向$(x,y)$,表示向量的大小和方向。
6. 向量的线性组合由于向量的加法和数量乘法运算,我们可以进行向量的线性组合。
给定平面向量$\mathbf{a}=(x_1,y_1)$和$\mathbf{b}=(x_2,y_2)$以及实数$k_1$和$k_2$,它们的线性组合可以表示为:$$k_1\mathbf{a}+k_2\mathbf{b}=(k_1x_1+k_2x_2,k_1y_1+k_2y_2)$$线性组合的几何意义是将$k_1$倍的$\mathbf{a}$和$k_2$倍的$\mathbf{b}$相加得到一个新的向量。
平面向量的坐标表示与向量模长

平面向量的坐标表示与向量模长在平面几何中,向量是一种具有方向和大小的物理量,通常用箭头表示。
为了描述和计算向量的性质和运算,常常使用它的坐标表示和模长。
本文将探讨平面向量的坐标表示以及如何计算其模长。
一、平面向量的坐标表示平面向量通常由两个不平行的线段表示,其中一个线段表示向量的大小和方向,另一个线段表示向量的方向。
为了方便计算和描述,我们可以使用坐标表示来表示平面向量。
平面坐标系是一个由两条彼此垂直的坐标轴组成的坐标系,通常称为x轴和y轴。
以原点O为起点,x轴和y轴正方向分别为正向和负向。
在平面坐标系中,每个点都可以表示为一个有序对(x, y),其中x表示点到y轴的水平距离,y表示点到x轴的垂直距离。
对于平面向量AB,可以使用一个有序对来表示其坐标表示,即(ABx, ABy),其中ABx表示向量AB在x轴上的投影长度,ABy表示向量AB在y轴上的投影长度。
二、向量的模长向量的模长表示向量的大小,也称为向量的长度。
在平面向量中,向量的模长通常由向量的坐标表示计算而得。
设平面向量AB的坐标表示为(ABx, ABy),那么向量AB的模长记作|AB|,可以通过勾股定理得到如下公式:|AB| = √(ABx^2 + ABy^2)其中^2表示平方运算,√表示开方运算。
三、示例与应用为了更好地理解平面向量的坐标表示和模长,我们来看一个具体的示例。
示例:已知平面向量AC的坐标表示为(3, 4),求向量AC的模长。
解析:根据上述公式,我们可以计算向量AC的模长:|AC| = √(3^2 + 4^2)= √(9 + 16)= √25= 5因此,向量AC的模长为5。
平面向量的坐标表示和模长在几何学和物理学中有着广泛的应用。
它们可以用于描述力和力矩等物理量,计算线段的长度和方向等几何性质。
同时,在向量运算和向量计算中,坐标表示和模长也是必不可少的工具。
结论平面向量的坐标表示和模长是描述和计算向量性质的重要工具。
通过使用坐标表示,我们可以准确地表示向量的方向和大小;通过计算模长,我们可以得到向量的大小。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
a b (3,4) (5,3) (8,1)
a b (3,4) (5,3) (2,7)
2a 3b 2(3,4) 3(5,3)
(6,8) (15,9) (9,17)
思考交流:
❖ 设两个非零向量 a (x1, y1) ,b (x2, y2) , 当 a // b 时,x1,y1,x2,y2之间满足什么关系?反
❖ 在平面上,建立一个直角坐标系xOy,若设x轴
正方向上的单位向量为 i , y轴正方向上的单
位向量为 j ,则x轴上的向量总可以表示成 xi 的形式,y轴上的向量总可以表示成 y j 的形式,
其中x,y分别是它们的终点在数轴上的坐标。
探索:
在平面直角坐标系内,起点不在坐标 原点O的向量又如何处理呢?
M (x1, y1)
MN (x2 x1, y2 y1)
1
M N (x2 x1)2 ( y2 y1)2
两点间距离公式
O1
x
课堂小结
1.平面向量的坐标的表示
a=xi+yj=(x,y).
2. 要把点的坐标与向量的坐标区分开
来,两者不是一个概念 .
3. 4.
ai, j
的 含义 b ( x1
7.3平面向量的坐标表示
思考
❖ 在平面直角坐标系中,平面内的每一点都 可以用一对有序实数来表示,这对实数就 是点在平面内的坐标;反之,每一对有序 实数都能确定一个点。在平面直角坐标系 内,每一个平面向量是否也能用一对有序 实数来表示呢?
探究
❖ 导弹在升空的某一时刻,速度可以分解成竖直 向上和水平向前的两个分速度。如果分别在水
(2) b 5i (5,0)
(3) c j (0, )
思考交流:
❖ 怎样通过坐标确定两个向量相等呢?
a b x1 x2且y1 y2
平面向量的直角坐标运算
探究:平面向量可以用坐标表示,向量
的运算可以用坐标来运算吗? 如何计算? (1)已知a =(x1 , y1), b= (m , n) ,
平面向量的坐标运算
❖ 设 c (x, y) , 为一实数,则
那么
c (xi y j) (x)i (y) j c (x,y)
实数与向量乘积的坐标等于用这个实数乘以原来向 量的相应的坐标.
❖ 例题:已知 a (3,4) , b (5,3) ,
求 a b , a b ,2a 3b 。
平方向和竖直方向取两个单位向量 e1、e2,导
弹的飞行速度用向量 a 表示,若以点O为起点,
作向量
OP, 过a 点P(x,y)分别向水平方向、
竖直方向作垂线,垂足分别为M和N。
(1)分别用单位向量e1、e2表示向量 OM ,ON (2)用向量 OM ,ON 表示向量 OP ;
(3)用单位向量e1、e2表示向量 OP 。
(2)当x=2时,a 与 b 方向相同。
问题解决:
写出以M (x1, y1)为起点, N(x2, y2 ) 为终点的向量 MN的坐标.
MN ON OM
求出 MN 的模。
r r rr x2i y2 j (x1i y1 j)
y
N (x2 , y2 )
r
r
(x2 x1)i ( y2 y1) j
成 xi 与 y j 。由向量加法的平行四边形法则可
知,
OP OM ON
即:
OP xi y j
事实上, 平面直角坐标系中任一向量都可以唯一 地表示成 a xi y j 的形式。
❖ 我们把 a xi y j 叫做向量 a 的坐标形式, 把 xi 叫做向量 a 在x轴上的分向量,把 y j叫做 向量 a 在y轴上的分向量。把有序数对(x,y)叫
做向量 a 在直角坐标系中的坐标,记
作 a (x, y) ,其中x叫做向量 a 的横坐标, y叫做向量 a 的纵坐标,a (x, y) 叫做向量 a
的坐标表示。
4 位置向量的关键点
3
P(3,2)
2
1
j
OP=3i+2 j
-2
2
4
6
Oi
-1
注意观察,发现一个位置
向量,只要它的终点确定了,
-2
那这个位置向量也就确定
.
x2 ,
y1
y2
),
a
(x1, y1 )
其中a
(
x1
,
y1
),
b
(
x2
,
y2
)
.
作业
❖ 书第54-55页,习题1、4题
y
o
x
解决方案:
y
可通过向量的平移,
将向量的起点移到坐
标的原点O处.
o
x
我们将这样的起点在坐标原点处的向量称 为位置向量,平面上任意向量都有与它相 等的位置向量,所以研究向量的性质可以 通过研究其相应的位置向量来实现。
❖ 对于直角坐标系平面内任意向量 a ,将它的起
点移至原点O,其的终点坐标为P(x,y)。以OP为 对角线,作矩形OMPN,则 OM ,ON 分别表示
之,当这个关系成立时,能否得出 a // b ? y1 x1 y2 x2
y1 x2 y2 x1
❖ 向量 a (x,1), b (4, x) ,当x是何值时,
(1) a / b x • x 41 0 x 2;
两个向量和与差的坐标分别等于这两向量相应坐标的和与差
例:已知 A(x1, y1 ),B(x2 , y2 ) .求 AB
解: AB OB OA
A(x1, y1 )
y
(x2 , y2 ) (x1, y1)
O
(x2 x1, y2 y1)
B(x2 , y2 ) x
一个向量的坐标等于表示此向量的有向线段的终点的坐标减去始点的坐标.
了.
-3
4 向量的坐标表示
3
y
P (x,y)
2
1
j
-2
2
4
6
Oi
x
-1
OP=xi+y j=(x,y)
一一对应
一一对应
-2
向量OP 点P(x,y) 有 (序 x,实y数)对
-3
r 、 a (x, y)
点的坐标可以表示一个点在坐标平面的位置,向 量的坐标能否也表示向量在坐标平面的位置呢?
理解:向量的坐标意义是向量正交分解时对应的有序 实数对,表面是坐标形式,它只是一种记法,实际上 是分解出来的基底的系数。
求a + b , a – b .
(2)已知a =(x1 , y1)和实数 , 求 a的坐标 .
平面向量的坐标运算
借助向量的坐标表示,可以把向量的加法、 减法和数乘运算转化为坐标之间的代数运算 。
❖ 设 a (x1, y1),b (x2, y2) ,则
那么
a b (x1 x2, y1 y2) a b (x1 x2, y1 y2 )
向量的坐标不表示向量的位置,同一向量可以任 意平移,而它的坐标只有一个。
a b x1 x2且y1 y2
向量的坐标表示是一种向量与坐标的对 应关系,它使得向量具有代数意义.将向量的 起点平移到坐标原点,则平移后向量的终点 坐标就是向量的坐标.
❖ 例题:写出下列向量的坐标表示:
(1) a 5i 3 j (5,3)