数学上册第二十二章《二次函数》导学案
人教版九年级数学上册《22二次函数的应用》导学案

九年级数学上册《22.3二次函数的应用》导学案1、理解题意,分析问题中的数量关系,能根据数量关系列出关系式2、分析题目求的是最大值(或最小值)问题,学会用配方法来解决实际问题重点:根据数量关系列出关系式;根据图象,结合所求解析式解决问题;根据题意或者图象来确定自变量的取值范围难点:用配方法确定最值问题时,要结合具体情境中自变量的取值范围来确定1、(2021·广东省深圳外国语学校初三期末)小敏在今年的校运动会跳远比赛中跳出了满意一跳,函数23.54.9h t t =-(t 的单位:s ,h 的单位:m )可以描述他跳跃时重心高度的变化,则他起跳后到重心最高时所用的时间是( )A .0.71sB .0.70sC .0.63sD .0.36s2、(2021·浙江省初三学业考试)某农场拟建一间矩形种牛饲养室,饲养室的一面靠现有墙(墙足够长),并在如图所示位置留2m 宽的门.已知计划中的建筑材料可建围墙(不包括门)的总长度为50m .设饲养室长为()xm ,占地面积为()2y m ,则y 关于x 的函数表达式是( )A .250y x x =-+B .21242y x x =-+ C .21252y x x =-+D .21262y x x =-+3、(2021·内蒙古自治区初三期中)如图所示是一个抛物线形桥拱的示意图,在所给出的平面直角坐标系中,当水位在AB 位置时,水面宽度为10m ,此时水面到桥拱的距离是4m ,则抛物线的函数关系式为( )A .225y x 4=B .225y x 4=-C .24y x 25=-D .24y x 25= 4、(2021·河北省初三二模)“星星书店”出售某种笔记本,若每个可获利x 元,一天可售出()8x -个.当一天出售该种文具盒的总利润y 最大时,x 的值为( )A .1B .2C .3D .45、(2021·江苏省初三期末)在某市中考体考前,某初三学生对自己某次实心球训练的录像进行分析,发现实心球飞行高度y (米)与水平距离x (米)之间的关系为21251233y x x =-++,由此可知该生此次实心球训练的成绩为_______米.6、(2021·山东省初三一模)如图,在足够大的空地上有一段长为a (a≥50)米的旧墙MN ,某人利用旧墙和木栏围成一个矩形菜园ABCD ,其中AD≤MN ,已知矩形菜园的一边靠墙,另三边一共用了100米木栏.(1)若围成的矩形菜园的面积为450平方米,求所利用旧墙AD 的长; (2)求矩形菜园ABCD 面积的最大值.7、(2021·河南省初三)母亲节前夕,某花店准备采购一批康乃馨和萱草花,已知购买2束康乃馨和1束萱草花共需46元;购买3束康乃馨和4束萱草花共需94元. (1)求康乃馨和萱草花的单价分别为多少元;(2)经协商,购买康乃馨超过30束时,每增加1束,单价降低0.2元;当超过50束时,均按购买50束时的单价购进,萱草花一律按原价购买.①购买康乃馨50束时,康乃馨的单价为_______元;购买康乃馨()3050m m <<束时,康乃馨的单价为_______元(用含m 的代数式表示);②该花店计划购进康乃馨和萱草花共100束,其中康乃馨超过30束,且不超过60束,当购买康乃馨多少束时,购买两种花的总金额最少,最少为多少元?1、(2021·山东省初三二模)从地面竖直向上抛出一小球,小球的高度h (单位:m )与小球运动时间t (单位:s )之间的函数关系如图所示.下列结论:①小球在空中经过的路程是40m ;②小球抛出3秒后,速度越来越快;③小球抛出3秒时速度为0;④小球的高度30h m =时,1.5t s=.其中正确的是( )A.①④B.①②C.②③④D.②③2、(2021·江苏省初三二模)竖直向上的小球离地面的高度h(米)与时间t(秒)的关系函数关系式为h=-2t2+mt+258,若小球经过74秒落地,则小球在上抛过程中,第()秒离地面最高.A.37B.47C.34D.433、(2021·山东省初三期中)某宾馆共有80间客房.宾馆负责人根据经验作出预测:今年7月份,每天的房间空闲数y(间)与定价x(元/间)之间满足y=14x﹣42(x≥168).若宾馆每天的日常运营成本为5000元,有客人入住的房间,宾馆每天每间另外还需支出28元的各种费用,宾馆想要获得最大利润,同时也想让客人得到实惠,应将房间定价确定为()A.252元/间B.256元/间C.258元/间D.260元/间4、(2021秋•荔湾区期末)喜迎圣诞,某商店销售一种进价为50元/件的商品,售价为60元/件,每星期可卖出200件,若每件商品的售价每上涨1元,则每星期就会少卖出10件.设每件商品的售价上涨x元(x正整数),每星期销售该商品的利润为y元,则y与x的函数解析式为()A.2101002000y x x=-++B.2101002000y x x=++ C.210200y x x=-+D.2101002000y x x=--+5、(2021秋•沙坪坝区校级期中)如图,某农场拟建一间矩形奶牛饲养室,打算一边利用房屋现有的墙(墙足够长),其余三边除大门外用栅栏围成,栅栏总长度为50m,门宽为2m.若饲养室长为xm,占地面积为2ym,则y关于x的函数表达式为()A .2126(252)2y x x x =-+<B .2150(252)2y x x x =-+<C .252(252)y x x x =-+<D .212752(252)2y x x x =-+-<6、(2021秋•西湖区期末)某工厂1月份的产值是200万元,平均每月产值的增长率为(0)x x >,则该工厂第一季度的产值y 关于x 的函数解析式为 .7、(2021•连云港)某快餐店销售A 、B 两种快餐,每份利润分别为12元、8元,每天卖出份数分别为40份、80份.该店为了增加利润,准备降低每份A 种快餐的利润,同时提高每份B 种快餐的利润.售卖时发现,在一定范围内,每份A 种快餐利润每降1元可多卖2份,每份B 种快餐利润每提高1元就少卖2份.如果这两种快餐每天销售总份数不变,那么这两种快餐一天的总利润最多是 元.8、(2021春•洪山区校级月考)飞机着陆后滑行的距离y (单位:)m 关于滑行时间t (单位:)s 的函数解析式是26605y t t =-,飞机着陆至停下来共滑行 .9、(2021·广东实验中学越秀学校初三月考)如图,用一段长为40m 的篱笆围成一个一边靠墙的矩形花圃ABCD ,墙长24m .设AB 长为x m ,矩形的面积为S m 2. (1)写出S 与x 的函数关系式;(2)当AB 长为多少米时,所围成的花圃面积最大?最大值是多少? (3)当花圃的面积为150m 2时,AB 长为多少米?10.(2021·莆田擢英中学初三零模)某农场拟用总长为60m的建筑材料建三间矩形牛饲养室,饲养室的一面靠现有墙(墙长为40m),其中间用建筑材料做的墙隔开(如图).设三间饲养室平行于墙的一边合计用建筑材料xm,总占地面积为ym2.(1)求y关于x的函数解析式和自变量的取值范围;(2)当x为何值时,三间饲养室占地总面积最大?最大面积为多少?11、(2021•凉山州模拟)为鼓励大学生毕业返乡创业拉动县域绿色特产销售,某县为大学生开设团队创业途径,某团队试销一款苦荞茶,成本为每千克30元,物价部门规定其销售单价不低于成本价且不高于成本价的2倍,经试销调研发现,销售过程中每天还要支付其他费用500元,日销售量γ(千克)与销售单价x(元)符合一次函数关系,如图所示.(1)求y与x之间的函数关系式,并根据题意写出自变量x的取值范围;(2)当每天的销售单价为多少时,该公司日获利最大?最大获利是多少元?(3)若在销售过程中每天的利润不低于700元,请确定销售单价的取值范围.。
人教版数学九年级上册第22章《二次函数》全章导学案

22.1.4 二次函数y ax2bx c 的图象学习目标:1. 能经过配方把二次函数y ax 2bx c 化成 y a( x h)2 + k 的形式,进而确立张口方向、对称轴和极点坐标。
2.熟记二次函数y ax 2bx c 的极点坐标公式;3.会画二次函数一般式学习要点:掌握二次函数y ax 2bx c 的图象.y ax2bx c 的图象和性质.学习难点:运用二次函数y ax2bx c 的图象和性质解决实质问题 .学习方法:问题式五步教课法 .学习过程一、出示目标二、预习检测1. 抛物线y2;对称轴是直2 x 31的极点坐标是线;当 x =时 y 有最值是;当 x时,y 随x的增大而增大;当x时, y 随x的增大而减小。
2.二次函数分析式 y a(x h)2 +k 中,很简单确立抛物线的极点坐标为,所以这类形式被称作二次函数的极点式。
三、怀疑互动:(1)你能直接出函数y x22 x 2的像的称和点坐?(2)你有法解决( 1)?解:y x22x 2 的点坐是,称是.(3)像我能够把一个一般形式的二次函数用的方法化点式进而直接获得它的像性 .(4)用配方法把以下二次函数化成点式:① y x 22x 2② y 1 x22x 5③2y ax2bx c(5):二次函数的一般形式y ax 2bx c 能够用配方法化成点式:,所以抛物y ax2bx c 的点坐是;称是,(6)用点坐和称公式也能够直接求出抛物的点坐和称,种方法叫做公式法。
用公式法写出以下抛物的张口方向、称及点坐。
① y 2x 23x 4② y2x 2x 2③ yx 24x四、达用描点法画出 y 1 x2 2 x 1的像 .(1)点坐2;(2)列表:点坐填在;(列表一般以称中心,称取.)x⋯⋯y1 x2 2x 1 ⋯2(3)描点,并 :6 y5 4 3 21 x7654321O1 2 312 3 4(4) 察:① 象有最点,即x =,y 有最是;② x,y 随 x 的增大而增大;xy 随x 的增大而减小。
人教版九年级数学上册第22章22.1.1二次函数《二次函数》导学案

第二十二章二次函数22.1 二次函数的图象和性质22.1.1 二次函数1.知道二次函数的概念,明确二次函数的特征.2.能够表示简单的变量间的二次函数关系.3.重点:二次函数的概念.知识点二次函数的概念阅读教材本课时内容,回答下列问题.1.正方体有6个面,若其棱长为x,则一个面的面积为x2,正方体的表面积y=)x的函数,理由:对于x的每一个值,y都有一个对应值.6x2,y 是(填“是”或“不是”2.在“问题1”中,用参赛队数n表示比赛场次数m的关系式是m=n2-n,m 是(填)n的函数,理由:对于n的每一个值,m都有一个对应值.“是”或“不是”)x的函数,3.在“问题2”中,y与x的关系式是y=20x2+40x+20,y 是(填“是”或“不是”理由:对于x的每一个值,y都有一个对应值.4.以上三个函数关系式的共同点:等式右边是关于自变量的整式,自变量的最高次数为2,二次项系数不为0.【归纳总结】一般地,形如y=ax2+bx+c(a,b,c是常数,a ≠0)的函数,叫做二次函数.其中x是自变量,a,b,c分别是函数解析式的二次项系数、一次项系数和常数项.【讨论】二次函数y=ax2+bx+c中为什么规定a≠0?b,c可以是0吗?当a=0时,没有二次项了,不是二次函数,b,c可以是0.【预习自测】下列函数中,哪些是二次函数?①y=5x+1;②y=4x2-1;③y=2x3-3x2;④y=-;⑤y=-(x-1)2;⑥y=2x2-x+;⑦y=x(1-x);⑧y=2x2+x(1-2x).②④⑤⑦.互动探究1:在学完二次函数的定义后,老师要求同学们各举一个二次函数的例子.小刚:y=2x2-1是一个二次函数;小红:y=(x+2)2-x2是一个二次函数;小华:y=ax2+bx+c(其中a、b、c为常数)是一个二次函数;小佳:y=+x-1是一个二次函数;小敏:y=ax2-2bx+5是一个二次函数.。
22二次函数y=ax2+bx+c的图象与性质 导学案 人教版九年级数学上册

九年级数学上册《22.1.4二次函数y=ax²+bx+c的图象与性质》导学案1、理解二次函数y=ax²+bx+c的图象与性质,并学会运用,能求出对称轴、顶点坐标2、理解抛物线y=ax²+bx+c与系数的关系3、能用待定系数法求二次函数的解析式,有三种解析式的类型:一般式,顶点式和交点式,能根据题目的需要选择适当的解析式类型。
重点:运用二次函数y=ax²+bx+c的图象与性质求出对称轴、顶点坐标;会用待定系数法求二次函数的解析式。
难点:理解抛物线y=ax²+bx+c与系数的关系,并结合函数的图象与性质进行分析题意。
1、二次函数y=ax²+bx+c的图象与性质(1)图象二次函数y=ax2+bx+c(a≠0)的图象看作由二次函数y=ax2的图象向右或向左平移||个单位,再向上或向下平移||个单位得到的。
(2)性质二次函数y=ax2+bx+c(a≠0)的顶点坐标是(﹣,),对称轴直线x=﹣,二次函数y=ax2+bx+c(a≠0)的图象具有如下性质:①当a>0时,抛物线y=ax2+bx+c(a≠0)的开口向上,x<﹣时,y随x的增大而;x>﹣时,y随x的增大而;x=﹣时,y取得最小值,即顶点是抛物线的.②当a<0时,抛物线y=ax2+bx+c(a≠0)的开口向下,x<﹣时,y随x的增大而;x>﹣时,y随x的增大而;x=﹣时,y取得最大值,即顶点是抛物线的.2、抛物线y=ax²+bx+c与系数的关系二次函数y=ax2+bx+c(a≠0)①二次项系数a决定抛物线的开口方向和大小当a>0时,抛物线开口;当a<0时,抛物线开口;a还可以决定开口大小,a越大开口就。
②一次项系数b和二次项系数a共同决定对称轴的位置.当a与b同号时(即ab>0),对称轴在y轴;当a与b异号时(即ab<0),对称轴在y轴.(简称:左同右异)③常数项c决定抛物线与y轴交点。
人教版数学九年级上册22 第2课时 二次函数y=a(x-h)2的图象和性质导学案

第二十二章二次函数知人者智,自知者明。
《老子》 原创不容易,【关注】,不迷路!22.1.3二次函数y =a (x -h )2+k 的图象和性质 第2课时二次函数y =a (x -h )2的图象和性质 学习目标:1.会画二次函数y =a (x -h )2的图象. 2.掌握二次函数y =a (x -h )2的性质. 3.比较函数y =ax 2与y =a (x -h )2的联系. 重点:会画二次函数y =a (x -h )2的图象.难点:掌握二次函数y =a (x -h )2的性质并会应用其解决问题.一、知识链接1.说说二次函数y =ax 2+c (a ≠0)的图象的特征.2.二次函数y =ax 2+k (a ≠0)与y =ax 2(a ≠0)的图象有何关系?3.函数21(2)2yx 的图象,能否也可以由函数212y x 平移得到? 二、要点探究探究点1:二次函数y =a (x -h )2的图象和性质 引例在同一直角坐标系中,画出二次函数212y x 与21(2)2y x 的图象. 根据所画图象,填写下表:试一试画出二次函数2112yx ,()2112y x =--的图象,并分别指出它们的开口方向、对称轴和顶点坐标.想一想通过上述例子,函数y =a (x -h )2的性质是什么? 要点归纳:二次函数y =a (x -h )2(a ≠0)的性质当a >0时,抛物线开口方向向上,对称轴为直线x =h ,顶点坐标为(h ,0),当x =h 时,y 有最小值为0.当x <h 时,y 随x 的增大而减小;x >h 时,y 随x 的增大而增大. 当a >0时,抛物线开口方向向下,对称轴为直线x =h ,顶点坐标为(h ,0),当x =h 时,y 有最大值为0.当x <h 时,y 随x 的增大而增大;x >h 时,y 随x 的增大而减小. 典例精析例1已知二次函数y =(x -1)2 (1)完成下表;x … … y……(2)在如图坐标系中描点,画出该二次函数的图象.(3)写出该二次函数的图象的对称轴和顶点坐标; (4)当x 取何值时,y 随x 的增大而增大. (5)若3≤x ≤5,求y 的取值范围; 想一想:若-1≤x ≤5,求y 的取值范围;(6)若抛物线上有两点A (x 1,y 1),B (x 2,y 2),如果x 1<x 2<1,试比较y 1与y 2的大小.变式:若点A (m ,y 1),B (m +1,y 2)在抛物线的图象上,且m >1,试比较y 1,y 2的大小,并说明理由.探究点2:二次函数y =ax 2与y =a (x -h )2的关系 想一想抛物线2112yx ,2112y x 与抛物线212y x 有什么关系? 要点归纳:二次函数y =a (x -h )2与y =ax 2的图象的关系y =ax 2向右平移︱h ︱得到y =a (x -h )2; y =ax 2向左平移︱h ︱得到y =a (x +h )2.左右平移规律:括号内左加右减,括号外不变.例2抛物线y =a 2向右平移3个单位后经过点(-1,4),求a 的值和平移后的函数关系式.方法总结:根据抛物线左右平移的规律,向右平3个单位后,a 不变,括号内应“减去3”;若向左平移3个单位,括号内应“加上3”,即“左加右减”.练一练将二次函数y =-2x 2的图象平移后,可得到二次函数y =-2(x +1)2的图象,平移的方法是( )A .向上平移1个单位B .向下平移1个单位C .向左平移1个位D .向右平移1单位 三、课堂小结1.指出下列函数图象的开口方向,对称轴和顶点坐标. 22(3)x 22(2)x23(1)4x 2.如果二次函数y =a (x -1)2(a ≠0)的图象在它的对称轴右侧部分是上升的,那么a 的取值范围是_____.3.把抛物线y=-x2沿着x轴方向平移3个单位长度,那么平移后抛物线的解析式是.4.若(-134,y1)(-54,y2)(14,y3)为二次函数y=(x-2)2图象上的三点,则y1,y2,y3的大小关系为___________.5.在同一坐标系中,画出函数y=2x2与y=2(x-2)2的图象,分别指出两个图象之间的相互关系.能力提升已知二次函数y=(x-h)2(h为常数),当自变量x的值满足-1≤x≤3时,与其对应的函数值y的最小值为4,求h的值.参考答案自主学习知识链接1.二次函数y=ax2+c(a≠0)的图象,对称轴为y轴,顶点坐标为(0,c),当a>0时,图象的开口向上,有最低点(即最小值c),当x0时,y随x增大而增大.当a<0时,图象的开口向下,有最高点(即最大值c),当x0时,y随x 增大而减小.2.答:二次函数y=ax2+k(a≠0)的图象可以由y=ax2(a≠0)的图象平移得到:当k>0时,向上平移k个单位长度得到.当k<0时,向下平移-k个单位长度得到.3.能课堂探究二、要点探究探究点1:二次函数y=a(x-h)2的图象和性质引例列表如下:描点、连线,画出这两个函数的图象如图①所示.图①图② 填表如下:试一试 填表如下:1212-292-892-21212-2描点、连线,画出这两个函数的图象如图②所示. 例1解:(1)填表如下:x…-10 1 2 3 …y… 2 120 122 …(2)解:描点,画出该二次函数图象如下:(3)对称轴为直线x=1.顶点坐标为(1,0).(4)当x>1时,y随x的增大而增大.(5)∵当x>1时,y随x的增大而增大,当x=3时,y=2;当x=5时,y=8,∴当3≤x≤5时,y的取值范围为2≤y≤8.想一想∵当-1≤x≤5时,y的最小值为0,∵当-1≤x≤5时,y的取值范围是0≤y≤8.(6)∵当x<1时,y随x的增大而减小,∴当x1<x2<1时,y1>y2.变式∵m>1,∴1<m<m+1,∵当x>1时,y随x的增大而增大,∴y1<y2.探究点2:二次函数y=ax2与y=a(x-h)2的关系想一想抛物线向左平移1个单位得到抛物线,抛物线向右平移1个单位得到抛物线.例2解:二次函数y=ax2的图象向右平移3个单位后的二次函数关系式可表示为y=a(x-3)2,把x=-1,y=4代入,得4=a(-1-3)2,a=14,∴平移后二次函数关系式为y=14(x-3)2.练一练C当堂检测 1.填表如下: 22(3)x 22(2)x23(1)4x2.a >03.y =-(x +3)2或y =-(x -3)24.y 1>y 2>y 35. 解:图象如图.函数y =2(x -2)2的图象由函数y =2x 2的图象向右平移2个单位得到. 能力提升解:∵当x >h 时,y 随x 的增大而增大,当x <h 时,y 随x 的增大而减小,∴①若h <-1≤x ≤3,x =-1时,y 取得最小值4,可得(-1-h )2=4,解得h =-3或h =1(舍);②若-1≤x ≤3<h ,当x =3时,y 取得最小值4,可得:(3-h )2=4,解得:h =5或h =1(舍);③若-1<h <3时,当x =h 时,y 取得最小值为0,不是4,∴此种情况不符合题意,舍去.综上,h 的值为-3或5.【素材积累】阿达尔切夫说过:“生活如同一根燃烧的火柴,当你四处巡视以确定自己的位置时,它已经燃完了。
人教版九年级数学上册第22章二次函数《复习课》导学案

人教版九年级数学上册第22章二次函数《复习课》导学案第二十二章复课1.知道二次函数的概念、图象和性质,能根据解析式判断抛物线的开口方向、对称轴、顶点坐标和函数的增减性.2.知道抛物线与对应的一元二次方程的关系,会用待定系数法求二次函数的解析式.3.能够运用二次函数解决一些实际问题,从中体会数学建模思想.4.重点:二次函数解析式的求法,二次函数的图象、性质和应用.◆体系构建◆核心梳理1.一般地,形如y=ax2+bx+c(a,b,c是常数,a≠0)的函数,叫做二次函数.其中x是自变量,a,b,c分别是函数解析式的二次项系数、一次项系数和常数项.2.二次函数y=ax2+bx+c(a≠0)与一元二次方程的关系:(1)当b2-4ac>时,抛物线与x轴有2个交点,对应的一元二次方程有两个不相等的实数解;(2)当b2-4ac=时,抛物线与x轴有1个交点,对应的一元二次方程有两个相等的实数解;(3)当b2-4ac<时,抛物线与x轴无交点,对应的一元二次方程无实数解.3.填表:特征函数启齿偏向对称轴极点坐标(0,0)(0,k)(h,0)(h,k)最值最小值最大值最小值k最大值k最小值最大值最小值k最大值k最小值y=ax2y=ax2+ky=a(x-h)2y=a(x-h)2+k a>时启齿向上a<时开口向下a>时开口向上a<时启齿向下a>时启齿向上a<时启齿向下a>时开口向上a<时开口向下a>时启齿向上y轴y轴x=hx=hy=ax2+bx+ca<时开口向下x=-(-,)最大值专题一:二次函数的概念、图象和性质1.二次函数y=ax2+bx+c的图象如图所示,那么abc,b2-4ac,2a+b,a+b+c这四个代数式中,值为正数的有(B)A.4个B.3个C.2个D.1个2.二次函数y=ax2+bx+c与一次函数y=ax+c在同一坐标系中的图象可能是(C)3.如图,已知二次函数y 1=ax2+bx+c与一次函数y2=kx+m的图象相交于A(-2,4),B(8,2),则能使y1>y2成立的x的取值范围是x<-2或x>8.【方法归纳交流】根据抛物线的开口方向判断a的正负;根据抛物线与y轴的交点判断c的值;若抛物线的对称轴在y 轴左侧,则a与b同号,若抛物线的对称轴在y轴右侧,则a与b异号;根据抛物线与x轴交点的个数判断b2-4ac的符号.专题二:求抛物线的顶点和对称轴4.求抛物线y=x2-4x+5的开口方向、对称轴及顶点坐标.(用两种方法)解:(1)y=(x2-8x+10)=[(x2-8x+16)-16+10]=(x-4)2-3,所以抛物线的开口向上,对称轴是x=4,顶点坐标是(4,-3).(2)对称轴:x=-=4,y最小==-3,顶点坐标为(4,-3).【方法归纳交流】求抛物线的顶点和对称轴一般有两种方法:配方法和公式法.专题三:抛物线的平移5.申明抛物线y=-3x2-6x+8通过如何的平移,可获得抛物线y=-3x2.解:配方:y=-3x2-6x+8=-3(x2+2x-)=-3[(x2+2x+1)-1-]=-3(x+1)2+11,∴抛物线的顶点坐标是(-1,11),∴把抛物线y=-3x2-6x+8先向右平移1个单位长度,再向下平移11个单位长度得到y=-3x2.6.如图,抛物线y=ax2-5ax+4a与x轴相交于点A、B,且过点C(5,4).(1)求a的值和该抛物线顶点P的坐标;(2)请你设计一种平移的方法,使平移后抛物线的顶点落在第二象限,并写出平移后抛物线的解析式.解:(1)把C(5,4)代入y=ax2-5ax+4a,得25a-25a+4a=4。
人教版九年级数学上册 第22章二次函数复习导学案

第 1 页 共 2 页 第 2页 共2页二次函数复习一、二次函数的概念:1、形如)0(2≠++=a c b a c bx ax y 是常数,、、的函数,叫做二次函数。
其中____是自变量,_____,_____,______,分别是函数表达式的二次项系数、一次项系数和常数项。
(二次函数须同时满足两个条件:①自变量最高次数为2;②二次项系数不为0)。
例题1、当m 为何值时,12)4(422-+-=--x xm y m m 是关于x 的二次函数?二、抛物线k h x a y +-=2)(与2ax y =的关系(图像的平移)1、二者的形状(开口大小)______,位置_______,k h x a y +-=2)(是由2ax y =通过平移得来的,平移后的顶点坐标为________。
2、抛物线)0(2≠=a ax y 个单位平移时向当个单位平移时向当h h h h ____0____0<>2)(h x a y -=的图像个单位平移时向当个单位平移时向当k k k k ____0____0<>k h x a y +-=2)(的图像。
例题1、抛物线3)2(5.02-+=x y 可以由抛物线__________先向_____平移2个单位,再向下平移______个单位得到。
例题2、抛物线2x y -=向左平移1个单位,然后再向上平移3个单位,则平移后抛物线的解析式为_________________。
例题3、将二次函数22312+-=x x y 化为k h x a y +-=2)(的形式,并指出其开口方向、对称轴与顶点坐标。
三、抛物线)0(2≠++=a c bx ax y 与a 、b 、c 、△的关系例题1、在同一直角坐标系中,函数b ax y +=2与)0(≠+=ab b ax y 的图象大致如图 ( )例题2、已知二次函数y =ax 2+bx+c 的图象如下图。
则下列5个代数式:ac ,abc ,a+b+c ,4a -2b+c , 2a+b ,2a -b ,a-b+c ,ac b 42-,4a+b 中,其值大于0的个数为( )A 、2B 、3C 、4D 、5例题3、如图,直角坐标系中,两条抛物线有相同的对称轴,下列关系不正确...的是( ) A .h m = B .k n = C .k n > D .00h k >>,四、抛物线的增减性要判断二次函数图像的增减性,须弄清两个问题:①a 的正负;②在对称轴的左侧还是右侧。
22.4 二次函数导学案

第二十二章二次函数第4课时二次函数y=a(x-h)2的图象与性质一、阅读课本:二、学习目标:1.会画二次函数y=a(x-h)2的图象;2.掌握二次函数y=a(x-h)2的性质,并要会灵活应用;三、探索新知:画出二次函数y=-12(x+1)2,y-12(x-1)2的图象,并考虑它们的开口方向、对称轴、顶点以及最值、增减性.先列表:描点并画图.12.请在图上把抛物线y =-12x 2也画上去(草图).①抛物线y =-12 (x +1)2 ,y =-12 x 2,y =-12 (x -1)2的形状大小____________.②把抛物线y =-12 x 2向左平移_______个单位,就得到抛物线y =-12 (x +1)2 ;把抛物线y =-12 x 2向右平移_______个单位,就得到抛物线y =-12 (x +1)2 .四、整理知识点2.对于二次函数的图象,只要|a |相等,则它们的形状_________,只是_________不同.五、课堂训练2.抛物线y=4 (x-2)2与y轴的交点坐标是___________,与x轴的交点坐标为________.3.把抛物线y=3x2向右平移4个单位后,得到的抛物线的表达式为____________________.把抛物线y=3x2向左平移6个单位后,得到的抛物线的表达式为____________________.4.将抛物线y=-13(x-1)x2向右平移2个单位后,得到的抛物线解析式为____________.5.写出一个顶点是(5,0),形状、开口方向与抛物线y=-2x2都相同的二次函数解析式___________________________.六、目标检测1.抛物线y=2 (x+3)2的开口______________;顶点坐标为__________________;对称轴是_________;当x>-3时,y______________;当x=-3时,y有_______值是_________.2.抛物线y=m (x+n)2向左平移2个单位后,得到的函数关系式是y=-4 (x-4)2,则m=__________,n=___________.3.若将抛物线y=2x2+1向下平移2个单位后,得到的抛物线解析式为_______________.4.若抛物线y=m (x+1)2过点(1,-4),则m=_______________.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
教学设计
教学目标:
1 掌握二次函数的有关概念、图像与性质,并能解决相关的综合问题
2 熟练运用待定系数法确定二次函数解析式;熟练运用公式求顶点坐标、对
称轴,并能解决二次函数最值问题.
3 理解掌握二次函数与方程、不等式的关系,并能解决相关综合的问题
重点:是二次函数的图象与性质的理解与掌握,应教会学生画二次函数图象,学会观察函数图象,借助函数图象来研究函数性质并解决相关的问题。
难点:是体会二次函数学习过程中所蕴含的数学思想方法,函数图象的特征和变换有及二次函数性质的灵活应用
中考考情分析:
二次函数一直是临沂市中考考察的最重点的内容,二次函数的图像与性质多以选择题形式考查,每年的第26题都会出一道关于二次函数的综合题,与其他
考点内容年份题型题号考察方式分值
二次函数解析式、图像与性质2015 选择题13 确定平移后二次函数解析式 3 填空题19 二次函数的性质 3 2014 选择题14 二次函数图像与几何变换 3
二次函数的综合及应用2015 解答题26 考察二次函数解析式、图像与四边形结合的综合题13 2014 解答题26 考察二次函数解析式、图像与三角形结合的综合题13 2013 解答题26 考察二次函数解析式、图像与四边形结合的综合题13
一、知识梳理,温故知新
1二次函数的概念:形如叫二次函数2 二次函数的解析式:(1)一般式:
(2)顶点式:(3)交点式:
3二次函数图像与性质
抛物线图像开口方
向增减性最值顶点坐
标
最点
y=ax2+bx+c (a>0)
y=ax 2+bx+c
(a<0)
2(1)C 的符号:由抛物线与y 轴的交点位置确定: 交点在x 轴上方 ;交点在x 轴下方 ; 经过坐标原点 . (2)b 的符号:对称轴的位置确定
对称轴在y 轴左侧 ;对称轴在y 轴右侧 ;对称轴是y 轴 . (3)b 2-4ac 的符号:由抛物线与x 轴的交点个数确定 与x 轴有两个交点 ;与x 轴有一个交点 ;与x 轴无交点 . 4二次函数的平移
规律:左加右减,上加下减 5二次函数与一元二次方程的关系
抛物线y=ax 2 +bx+c 与x 轴交点的横坐标x 1, x 2 是一元二次方程ax 2 +bx+c=0(a ≠0)的根。
抛物线y=ax 2 +bx+c ,当y=0时,抛物线便转化为一元二次方程ax 2 +bx+c=0 1.当b 2-4ac>0时,方程ax 2+bx +c =0(a ≠0)有两个不相等的实数根,则y =ax 2+bx +c 的图象与x 轴有_______交点.
2.当b 2-4ac =0时,方程ax 2+bx +c =0(a ≠0)有两个相等的实数根,则y =ax 2+bx +c 的图象与x 轴有_______交点.
3.当b 2-4ac -<0时,方程ax 2+bx +c =0(a ≠0)没有实数根,则y =ax 2+bx +c 的图象与x 轴_______交点.
二、 自主学习,合作交流
探究考点一:二次函数的图像与性质
例1已知二次函数 (1)求抛物线开口方向,对称轴和顶点M 的坐标.
(2)设抛物线与y 轴交于C 点,与x 轴交于A 、B 两点,求C ,A ,B 的坐标。
(3)x 为何值时,y 随x 的增大而减少?
x 为何值时,y 有最大(小)值,这个最大(小)值是多少?
(4)x 为何值时, y=0? y<0? y>0?
跟踪训练:1 已知y=ax 2+bx+c 的图象如图所示,
213
22
y x x =+-
(1) a___0, b____0, c_____0, abc____0
(2) b___2a, 2a-b_____0, 2a+b_______0
(3) b2-4ac_____0
(4) a+b+c_____0, a-b+c____0 4a-2b+c_____0
探究考点二:求二次函数的解析式
例2 已知二次函数y=ax2+bx+c的最大值是2,图象顶点在直线y=x+1上,并且图象经过点(3,-6).求a、b、c的值.
跟踪训练:1 若a+b+c=0,a¹0,把抛物线y=ax2+bx+c向下平移4个单位,再向左
平移5个单位所到的新抛物线的顶点是(-2,0),
则原抛物线解析式
探究考点三:二次函数与方程、不等式的关系
跟踪训练:1.(2015·泸州)若二次函数y=ax2+bx+c(a<0)的图象经过点(2,0),
且其对称轴为x=-1,则使函数值y>0成立的x的取值范围是( )
A.x<-4或x>2
B.-4≤x≤2
C.x≤-4或x≥2
D.-4<x<2
探究考点四:二次函数的综合应用
例4 在平面直角坐标系中,O为原点,直线y =-
2x-1与y轴交于点A,与直线y =-x交于点B, 点
B关于原点的对称点为点C.
(1)求过A,B,C三点的抛物线的解析式;
(2)P为抛物线上一点,它关于原点的对称点为Q. 当四边形PBQC为菱形时,求点P的坐标;
O
x
y
C
B
三、学而后思,锐意进取
你能与大家谈谈你这节课的收获吗?你还有什么疑惑吗?
四、考点实训,挑战自我
1.(2015·兰州)下列函数解析式中,一定为二次函数的是( )
A.y=3x-1
B.y=ax2+bx+c
C.s=2t2-2t+1
D.y=x2+1 x
2.(2015临沂)要将抛物线
223
y x x
=++平移后得到抛物线2
y x
=,
下列平移方法正确的是 ( )
A.向左平移1个单位,再向上平移2个单位. B.向左平移1个单位,再向下平移2个单位.
C.向右平移1个单位,再向上平移2个单位. D.向右平移1个单位,再向下平移2个单位.
3.(2015·烟台)如图,已知顶点为(-3,-6)的抛物线y=ax2+bx+c经过点(-1,-4).则下列结论中错误的是( )
A.b2>4ac
B.ax2+bx+c≥-6
C.若点(-2,m),(-5,n)在抛物线上,则m>n.
D.关于x的一元二次方程ax2+bx+c=-4的两根为-5和-1
第3题图第4题图
4.已知二次函数y=ax2+bx+c(a,b,c是常数,且a≠0)的图象如图所示,则一
次函数y=cx+b
2a
与反比例函数y=
ab
x
在同一坐标系内的大致图象是( )
5.(2015·甘肃天水)下列函数(其中n为常数,且n>1):①y=n
x
(x>0);②
y=(n-1)x;③y=
2
1n
x
-
(x>0);④y=(1-n)x+1;⑤y=-x2+2nx(x<0).其中y的值随
x的值增大而增大的函数有__个.
6.(2015临沂)定义:给定关于x的函数y,对于该函数图象上任意两点(x1,y
1
),(x2,y2),当x1﹤x2时,都有y1﹤y2,称该函数为增函数. 根据以上定义,可以判断下面所给的函数中,是增函数的有______(填上所有正确答案的序号).
y = 2x;②y =-x+1;③y = x2 (x>0);④
1 y
x =-.
五、作业:
1将本节课的错题整理在错题集中
2 做《同步》二次函数第2课时必做:自我尝试选做:开放作业与拓展提高
(注:素材和资料部分来自网络,供参考。
请预览后才下载,期待你的好评与关注!)。