网络路由负载均衡

网络路由负载均衡
网络路由负载均衡

Cisco路由器转发数据包时常用的五种交换方式

进程交换(Process Switching)

这是一种最基本的交换模式,在这种模式下,一条数据流(Flow)中的第一个包(Packet)将被置入系统缓存(System Buffer)。其目的地址将会拿到路由表中去查询比对,路由器的处理器(CPU or Processer)同时将进行CRC校验,检查包是否正确。然后数据包的二层MAC地址将会被重写,替换为下一跳接口的MAC地址。对这条数据流(Flow)中的第2个、第3个数据包……将会继续这样相同的操作,包括查询路由表、重写MAC地址,CRC校验等。这种方式无疑是延迟最大的,因为它要利用System Buffer以及Processor去处理每个收到的包。但是我们仍然有机会使用这种交换方式,比如在进行基于数据包的负载均衡,或是debug ip packet时。因为默认情况下,思科路由器会启用Fast Switching或Optimum Switching或是CEF Switching,而不是Process Switching,所以我们只能通过:no ip route-cache来禁用Fast Switching,这在另一种意义上正是开启Process Switching。

命令:R1(config-if)#no ip route-cache //启用进程交换(禁用快速交换)

注意:命令debug ip packet仅允许观察进程交换的数据包,将启用进程交换,所有数据包都被送至进程记录,CEF交换、快速交换等的数据包将不被显示出来。

快速交换(Fash Switching)/路由缓存交换(Route-Cache Switching)

快速交换要优于Process Switching,它采用了路由缓存(Route Cache)来存储关于某条数据流(Flow)的特定信息,当然会包括诸如目的MAC地址,目的接口等内容。这时我们只需要对一条数据流(Flow)中的第一个包做Process Switching,并把信息存入Cache,所有后续数据包,可以不必再中断System Processor去执行查询等操作,直接从Cache中提取目的接口,目的MAC地址等,这样大大加速了包转发速度。Fast Switching在某些资料上可能被称为Route-Cache Switching。思科1600、1700、2500、2600系列路由器的Ethernet、Fast Ethernet、Serial接口默认采用的就是Fast Switching。

命令:R1(config-if)#ip route-cache //启用快速交换

R1#show ip cache //查看快速交换

最优交换(Optimum Switching) 和分布式交换(Distributed Switching)

这两种交换模式,从原理上来讲都与Fast Switching极为相似,比如Optimum Switching 其实采用了一种经过优化的交换缓存(Optimumed Switching Cache),它的速度要较平常Cache要快。Distributed Switching需要使用Versatile Interface Card这种硬件卡,又称VIP Card。它会自已保存一份Route Cache,这样查询时就不必等待使用共享的系统缓存(Shared System Buffer)了,无论相对于Fast Switching还是Optimum Switching来讲,都是比较快的。这两种模式一般只在思科高端设备上有所应用,比如7200系列的路由器或12000系列的路由器。

命令:R1(config-if)#ip route-cache optimum //启用最优交换 R1(config-if)#ip route-cache distributed //启用分布式交换

R1#show ip cache optimum //查看最优交换

Netflow交换(Netflow Switching)

这种模式是最值得参考的,它完全基于其它Switching Mode,重点在于对流经的数据包进行计费、监控、网管。但值得提的是,这种模式也要存储相关信息,据统计大致65536条数据流(Flow)会耗费4MB的System Buffer。

命令:R1(config-if)#ip route-cache flow //启用Netflow交换 R1#show ip cache flow //查看Netflow交换缓存

R1(config)#ip flow-export //将Netflow审计的数据包转发到指定设备Cisco特快交换(Cisco Express Forwarding)

Cisco CEF是最为高效的一种三层协议,很多人容易对CEF产生误解,所以我们仍然要说明它的来原。CEF采用了基于硬件的平台,它不仅仅是将数据都存入System Buffer,而是将整个路由表、拓扑表,以及所有的下一跳地址、MAC地址全部进行“预存”,只要路由表、拓扑表中存在的条目,无论是否有数据请求发往其目的地址,都会提前预读取,预设置缓存。具体来说它是通过全用转发信息表(FIB)和邻接表来实现的,它事先从路由表中获取信息并把信息存储在转发信息库(FIB)中,当任何数据包需要这些信息时可以立即使用。FIB包括路由表中的所有目标网络,它们可以随着网络拓扑的变化而调整。CEF使用一个单独的数据表--邻接关系表,为FIB的每个表项维护第二层转发信息。邻接关系表由第二层信息构成,(这些信息可以由IP、ARP或IPv6邻居发现协议学习到)。FIB和邻接表是在数据包转发之前建立的,当有新的数据请求发送时,就不需要CPU去查询路由表转发一次后把信息存入缓存,或查询目的接口,目的MAC地址等信息,而是直接从缓存中读取,从而使转发速度得以大大提高。

IPv4、IPv6关于负载均衡和CEF的说明:

1.对于IPv4,CEF支持基于目标网络的负载均衡和基于数据包的负载均衡;

对于IPv6,CEF仅支持基于目标网络的负载均衡。

2.IPv4缺省的交换模式是CEF;

Ipv6缺省的交换模式是Process Switching。

2.针对IPv4可以使用ip cef激活CEF;

而对IPv6,必须先启用ip cef ,再使用ipv6 cef激活CEF。

3.可以通过show ip cef / show ipv6 cef 查看路由器是否启用CEF。

命令:R1(config)#ip cef //用来为所有接口激活CEF(全局配置命令) R1(config-if)#no ip route-cache cef //可以选择性地在某些接口上屏蔽CEF(接口子命令)

R1#show ip cef //查看路由器是否启用CEF,CEF全部信息

R1#show ip cef detail //查看CEF全部详细信息

R1#show ip cef int se0/0 //查看CEF特定接口信息

R1#show ip cef int se0/0 detail //查看CEF特定接口详细信息

R1#show cef int //查看使用了哪一种负载均衡模式,CEF全部功能信息

R1#show cef int s0/0 //查看使用了哪一种负载均衡模式,CEF特定接口功能信息

注意:(no) ip cef是一个全局命令,当在接口下使用(no) ip cef时,自动跳转为全局命令。当使用no ip cef时,则关闭了所有接口的CEF,ip route-cache cef不起作用。

负载均衡

负载均衡的两种分类

等价负载均衡(Equal-Cost Load Sharing):是将流量均等地分布到多条度量相同的路径上;非等价负载均衡(Unequal-Cost Load Sharing):是将报文分布到不同度量的多条路径上。各条路径上分布

的流量和路由开销成反比。开销越低的路径分配的流量越多。

说明:只有EIGRP支持非等价负载均衡,最多支持对6条路径的非等价负载均衡;可以通过差异变量(Variance)来确定哪些路由在非等价负载均衡中是可以使用的;并且可以通过设置最大路径数决定使用某几条链路。

负载均衡的两种方式:

基于目标网络的负载均衡 ip load-sharing per-destination;

基于数据包的负载均衡 ip load-sharing per-packet。

基于目标网络的负载均衡ip load-sharing per-destination

基于目标网络的负载均衡允许路由器使用多条路径来负载均衡,它是根据目标网络中的目的地址分配负载量的。并且它可以确保数据包总是使用相同的路径,并按照它们发送的顺序到达目的地址。这种方式的负载均衡最适用于需要数据包按照某种顺序到达的应用。例如,有两个网络A、B,A-B间存在两条路径,那么从A去往B地的第一个目标的报文走第一条路径,去往B的第二个目标的报文走第二条路径,去B的第三个目标的报文走第一条路径,依此类推……随着目标网络地址数量的增加,负载均衡会变得更加有效。大多情况下路由器都采用这种负载均衡方式,并且它也是Cisco CEF使用的缺省负载均衡方式。

基于目标网络的负载均衡和Cisco CEF:准确来讲,CEF是按照源、目的地址对(Hash出一个值)进行负载均衡。相同源、目的地址对的流量都会从同一个接口出站,而不同源、目的地址对的流量可能会从下一个接口出站。

命令:R1(config-if)#ip load-sharing per-destination //基于目标网络的负载均衡

基于数据包的负载均衡ip load-sharing per-packet

使用基于数据包的负载均衡的路由器可以在多条链路上连续发送数据包,而不用考虑主机或用户的具体情况。这种负载均衡采用轮转机制来确定每个数据包走哪条路径到达目的地址。缺点是不能确保每一个数据包遵循相同的路径,将导致数据包无序到达。这对某些应用来说是不能接受的(如VoIP)。假设去往某一目标网络的报文走的第一条链路,当路由器又收到去往该网络的报文后,将从第二条链路上发送,依此类推……(假设各条链路是等价的),如

果链路代价不同的话,路由器将会按照代价比例来分配各链路的流量分配。例如,在一条高代价链路上发送一个报文,可能低代价的链路上就会发送三个报文。当路由器采用非默认交换方式时,即处于进程交换模式时,将采用这种负载均衡。通过使用此方式在不均衡的数据流量需要在多条路径上进行负载均衡是非常重要的。

命令:R1(config-if)#ip load-sharing per-packet //基于数据包的负载均衡

负载均衡和Cisco CEF

1.CEF缺省的负载均衡方式是基于目的网络的负载均衡,IPv4缺省的交换模式是CEF,Ipv6缺省的交换模式是

Process Switching。

2.CEF事先从路由表中获取信息并把信息存储在转发信息表中(FIB),当数据包需要这些信息时可以立即使用。

FIB包括路由表中的所有目标网络,如果路由表稳定且不发生改变,那么FIB也不会变化。

3.CEF使用一个单独的数据表--邻接关系表,为FIB的每个表象维护第二层转发信息。邻接关系表由第二层信息构

成,例如,这些信息可以通过ARP或IPv6邻居发现协议学习到。

4.FIB和邻接关系表是在数据包转发之前建立的。

5.CEF在缺省的情况下是基于目标进行负载均衡,这实际上是按照源目地址对进行负载均衡。所有发往特定目标

地址的流量只要源地址相同都会从相同的接口出站,而不同源地址对的流量可能从下一个接口出站。

6.基于数据包的负载均衡是交换IPv4数据包的另一种方式。

7.对于IPv6,CEF仅支持基于目标网络的负载均衡方式。

8.基于数据包的负载均衡方式意味着在不同的链路上发送数据包,即使在路径等代价、目标相同的情况下也是

样。如果路径代价不同,那么可能会在高、低代价路径上按照代价比例进行分流。

9.基于数据包的负载均衡方式可以更加均匀地分布流量。但是数据包选择不同的路径去往目标网络会引起非顺序

到达。对于某些应用来说,这是不能接受的,例如VoIP.

10.为了确定CEF功能是否在路由器上被全局开启,可以使用命令show ip cef和show ipv6 cef。如果缺省情况下

CEF没有被打开,针对IPv4可以使用命令ip cef ,而对IPv6来说,必须先打开IPv4的CEF,然后使用命令

ipv6 cef打开此功能。

11.在IPv4下,命令ip load-sharing per-packet可以打开基于数据包的负载均衡功能,如果需要打开基于目标

地址的负载均衡,可以使用ip load-sharing per-destination命令。你可以使用命令show cef interface来

检查使用了哪一种负载均衡模式,该命令可以给出在这个接口上配置的CEF信息。

12.路由器通常根据入站接口和源与目的地址类型确定是否使用CEF交换。对于考虑使用CEF 的路由器来说,出站

接口交换模式必须配置为CEF,如果接口上配置了CEF,那么CEF将尝试交换数据包。否则,CEF会把数据包交

付给仅次于最好的可用交换方法去处理。对于IPv4,这种方法是快速交换,而在IPVv6中叫进程交换

(Process Switching)。

13.你可以使用命令show cef interface {interface}和show ipv6 cef {interface} detail 来验证在接口上CEF

功能是否被打开。

基于目标网络的负载均衡和快速交换

1.IOS在配置快速交换的出站接口上执行基于目标网络的负载均衡,某路由器上IOS的缺省交换模式是快速交换。

2.快速交换的工作方式如下:

1>当路由器为第一个去往特定目标的数据包进行交换处理时,路由器将执行路由表查询并选择出站接口;

2>然后获取有关被选接口的数据链路信息(如ARP表),最后封装数据包并发送;

3>前面获取的路由和数据链路信息被输入到快速交换的高速缓冲中;

4>一旦去往相同目的地的后续数据包进入路由器,高速缓冲中的信息使路由器不必查找路由表和ARP高速冲,

就可以立即交换数据包。

3.快速交换意味着所有去往指定目的地址的数据包都从相同的接口被发送出去,因此交换时间和处理器的占用率

会大大降低。当去往相同网络内不同主机的数据包进入路由器且还存在一条可选路由时,路由器会在另一条路

径(非可选路由,也就是原来的那条)上发送数据包到目的地。因此路由器能够做得最好的就是基于目标网络的

负载均衡。

基于数据包的负载均衡和进程交换

进程交换(Process Switching)即使对于每个数据包,路由器都要进行路由表查询和接口选择,然后再查询数据链路信息。因为每一个为数据包确定路由的进程都是相互独立的,所以不会强制去往相同目标网络的所有数据包使用相同的接口。正如许多设计选择一样,基于数据包的均分负载也是要付出代价的。这种方式虽然使流量的分布比前一种方式更均匀,但是快速交换的较低交换时间和处理器占用的优点也随之丧失了。为了在接口上打开进程交换功能,可以在IPv4下使用命令no ip route-cache。对于IPv6什么也不需要做,因为缺省情况下该功能是打开的。

哪一种交换方法会被用到?

1.IOS首先基于入站接口的配置和源与目的地址类型来决定交换模式;如果接口上配置了CEF,不管出站接口上配

置是什么,数据包都会被CEF交换;

2.如果入站接口上没有配置CEF,那么IOS会处理并转发数据包,并根据出站接口的配置,后续的数据包或者被快

速交换,或者被进程交换。

3.如果入站接口的CEF功能被打开,IOS将只使用CEF交换数据包。否则出站接口的配置会确定交换方法。注意,

如果在出站接口上打开CEF功能的同时又在入站接口上配置进程交换或快速交换,那么快速交换将被使用。

4.只有在入站接口上配置了CEF,它才会起作用。对于IPv4,尽管出站接口上打开了CEF 功能,但是起作用的还是

快速交换。

5.有些时候后即使打开了CEF,但是并没有使用CEF交换数据包(例如访问列表的日志功能被打开和数据包将被记录

下来)。那么数据包将被送交仅次于最快的交换方法,例如IPv4下使用快速交换,在IPv6下使用进程交换。

实验10 配置网络负载均衡路由

试验九:配置网络负载均衡路由1 实验目的: 通过添加到某个网段的两条静态路由将会实现网络负载均衡。 2 网络拓扑 3 试验环境: PC的IP地址和路由器的IP地址以及静态路由已经配置完毕。 4 试验要求 在这个网络中,只需要192.168.1.0/24能够和和192.168.6.0/24通信。 你需要配置Router8到192.168.6.0/24网段的两条静态路由。 你需要配置Router5到192.168.1.0/24网段的两条静态路由。 在router2、3、4添加到192.168.1.0/24和192.168.6.0/24网段静态路由。 在router1、0、7添加到192.168.1.0/24和192.168.6.0/24网段静态路由。

5 基本配置步骤 5.1在Route2上 Router#confi t Router(config)#ip route 192.168.1.0 255.255.255.0 192.168.2.1 Router(config)#ip route 192.168.6.0 255.255.255.0 192.168.3.2 5.2在Router3上 Router#confi t Router(config)#ip route 192.168.1.0 255.255.255.0 192.168.3.1 Router(config)#ip route 192.168.6.0 255.255.255.0 192.168.4.2 5.3在Router4上 Router#conf t Router(config)#ip route 192.168.1.0 255.255.255.0 192.168.4.1 Router(config)#ip route 192.168.5.0 255.255.255.0 192.168.5.2 5.4在Router1上 Router#confi t Router(config)#ip route 192.168.1.0 255.255.255.0 192.168.0.2 Router(config)#ip route 192.168.6.0 255.255.255.0 192.168.9.1 5.5在Router0上 Router#confi t Router(config)#ip route 192.168.1.0 255.255.255.0 192.168.9.2 Router(config)#ip route 192.168.6.0 255.255.255.0 192.168.8.1 5.6在Router7上 Router#confi t Router(config)#ip route 192.168.1.0 255.255.255.0 192.168.8.2

网关冗余和负载均衡VRRP

网关冗余和负载均衡VRRP 一、交换机SW1(R6)交换机SW2(R4)配置 R6>enable R6#conf t R6(config)#hostname SW1 SW1 (config)#int fa0/0 SW1 (config-if)#no shutdown SW1 (config-if)#exit SW1 (config)#int fa0/1 SW1 (config-if)#no shutdown SW1 (config-if)#exit SW1 (config)#int fa0/2

SW1 (config-if)#no shutdown SW1 (config-if)#exit SW1#vlan database SW1 (vlan)#vlan 2 VLAN 2 added: Name: VLAN0002 SW1 (vlan)#exit SW1#conf t SW1 (config)#int range fa0/0 - 2 SW1 (config-if-range)#switchport access vlan 2 SW1 (config-if-range)#exit SW1 (config-if-range)#exit SW1(config)#int vlan 2 SW1(config-if)#ip add 192.168.13.2 255.255.255.0 SW1(config-if)#no shutdown SW1(config-if)#exit SW1(config)#exit SW1# R4>enable R4#conf t R4(config)#host SW2 SW2(config)#int fa0/1 SW2(config-if)#no shutdown SW2(config-if)#exit SW2(config)#int f0/0 SW2(config-if)#no shutdown SW2(config-if)#exit SW2(config)#exit SW2#vlan database SW2(vlan)#vlan 2 VLAN 2 added: Name: VLAN0002 SW2(vlan)#exit SW2#conf t SW2(config)#int range fa0/0 - 1 SW2(config-if-range)#switchport access vlan 2 SW2(config-if-range)#end SW2# 二、配置PC1(R7)PC2(R5) R7>enable R7#conf t

VRRP技术实现网络的路由冗余和负载均衡

1 问题的提出 随着网络应用的不断深入和发展,用户对网络可靠性的需求越来越高。网络中路由器运行动态路由协议如RIP、OSPF可以实现网络路由的冗余备份,当一个主路由发生故障后,网络可以自动切换到它的备份路由实现网络的连接。但是,对于网络边缘终端用户的主机运行一个动态路由协议来实现可靠性是不可行的。一般企业局域网通过路由器连接外网,局域网内用户主机通过配置默认网关来实 现与外部网络的访问。 图1 配置默认网关 如图一所示,内部网络上的所有主机都配置了一个默认网关 (GW:192.168.1.1),为路由器的E thernet0接口地址。这样,内网主机发出的目的地址不在本网段的报文将通过默认网关发往RouterA,从而实现了主机与外部网络通信。路由器在这里是网络中的关键设备,当路由器RouterA出现故障时,局域网将中断与外网的通信。对于依托网络与外部业务往来频繁的企业以及公司的分支机构与总部的联系、银行的营业网点与银行数据中心的连接等方面的应用将因此受到极大的影响。为提高网络的可靠性,在网络构建时,往往多增设一台路由器。但是,若仅仅在网络上设置多个路由器,而不做特别配置,对于目标地址是其它网络的报文,主机只能将报文发给预先配置的那个默认网关,而不能实现故障情况下路由器的自动切换。VRRP虚拟路由器冗余协议就是针对上述备份问题而提出,消除静态缺省路由环境中所固有的缺陷。它不改变组网情况,只需要在相关路由器上配置极少几条命令,在网络设备故障情况下不需要在主机上做任何更改配置,就能实现下一跳网关的备份,不会给主机带来任何负担。 2 VRRP技术分析

VRRP(Virtual Router Redundancy Protocol)是一种LAN接入设备容错协议,VRRP将局域网的一组路由器(包括一个Master即活动路由器和若干个Backup 即备份路由器)组织成一个虚拟路由器,称之为一个备份组,如图2所示。 图2 虚拟路由器示意图 VRRP将局域网的一组路由器,如图二中的RouterA和RouterB 组织成一个虚拟的路由器。这个虚拟的路由器拥有自己的IP地址192.168.1.3,称为路由器的虚拟IP地址。同时,物理路由器RouterA ,RouterB也有自己的IP地址(如RouterA的IP地址为192.168.1.1,RouterB的IP地址为192.168.1.2)。局域网内的主机仅仅知道这个虚拟路由器的IP地址192.168.1.3,而并不知道备份组内具体路由器的IP地址。在配置时,将局域网主机的默认网关设置为该虚拟路由器的IP地址192.168.1.3。于是,网络内的主机就通过这个虚拟的路由器来与其它网络进行通信,实际的数据处理由备份组内Master路由器执行。如果备份组内的Master路由器出现故障时,备份组内的其它Backup路由器将会接替成为新的Master,继续向网络内的主机提供路由服务。从而实现网络内的主机不间断地与外部网络进行通信。 VRRP通过多台路由器实现冗余,任何时候只有一台路由器为主路由器,其他的为备份路由器。路由器间的切换对用户是完全透明的,用户不必关心具体过程,只要把缺省路由器设为虚拟路由器的IP地址即可。路由器间的切换过程: ⑴ VRRP协议采用竞选的方法选择主路由器。比较各台路由器优先级的大小,优先级最大的为主路由器,状态变为Master。若路由器的优先级相同,则比较网络接口的主IP地址,主IP地址大的就成为主路由器,由它提供实际的路由服务。 ⑵ 主路由器选出后,其它路由器作为备份路由器,并通过主路由器发出的VRRP报文监测主路由器的状态。当主路由器正常工作时,它会每隔一段时间发送一个VRRP组播报文,以通知备份路由器,主路由器处于正常工作状态。如果

如何实现路由器线路负载均衡

如何实现路由器线路负载均衡 我想让这些连接到互联网的线路负载均衡,并且能够在一条线路出现故障的时候提供业务转移功能。我不知道如何设置这种配置。我的互联网服务提供商需要做什么?我的路由器需要如何设置? 回答:你的互联网服务提供商不需要作任何事情。要实现负载均衡,第一步是创建一个访问列表,把你的网络分为两份。根据这个访问列表,你可以把一半的IP地址定义到一条线路上,把另一半IP地址定义到另一个线路上。 假定你的网络是172.16.128.0/24.“允许IP地址10.172.16.128.0 0.0.0.254的访问列表1”将仅允许双数的IP地址。因此,你现在就有了两个子网。你还得根据每个请求和IP地址修改这个列表。现在你可以创建一个路由图。 Route map 10 ISP1_primary(路由表10,第一家主要ISP) Match access-list 1 (与访问列表1相匹配) Set interface ISP1_interface(设接口为第一家主要ISP接口) Route map 20 ISP1_primary (路由表20,第一家主要ISP) Match access-list 1 (与访问列表1相匹配) Set interface ISP2_interface(设接口为第二家主要ISP接口) 同样,你需要为第二家ISP创建另一个路由表。 Route map 10 ISP2_primary(路由表10,第二家主要ISP) Match access-list 2 (与访问列表2相匹配) Set interface ISP2_interface (设接口为第二家主要ISP接口) Route map 20 ISP1_primary(路由表20,第二家主要ISP) Match access-list 2(与访问列表2相匹配) Set interface ISP1_interface(设接口为第一家主要ISP接口) 访问列表2是与网络相匹配的另一个访问列表。你需要用自己的方法分割网络。还有一个选择就是在路由器上增加浮点静态路由。

网络设备冗余和链路冗余常用技术图文

网络设备及链路冗余部署 ——基于锐捷设备 冗余技术简介 随着Internet的发展,大型园区网络从简单的信息承载平台转变成一个公共服务提供平台。作为终端用户,希望能时时刻刻保持与网络的联系,因此健壮,高效和可靠成为园区网发展的重要目标,而要保证网络的可靠性,就需要使用到冗余技术。高冗余网络要给我们带来的体验,就是在网络设备、链路发生中断或者变化的时候,用户几乎感觉不到。 为了达成这一目标,需要在园区网的各个环节上实施冗余,包括网络设备,链路和广域网出口,用户侧等等。大型园区网的冗余部署也包含了全部的三个环节,分别是:设备级冗余,链路级冗余和网关级冗余。本章将对这三种冗余技术的基本原理和实现进行详细的说明。 8.2设备级冗余技术 设备级的冗余技术分为电源冗余和管理板卡冗余,由于设备成本上的限制,这两种技术都被应用在中高端产品上。 在锐捷网络系列产品中,S49系列,S65系列和S68系列产品能够实现电源冗余,管理板卡冗余能够在S65系列和S68系列产品上实现。下面将以S68系列产品为例为大家介绍设备级冗余技术的应用。 8.2.1S6806E交换机的电源冗余技术 图8-1 S6806E的电源冗余 如图8-1所示,锐捷S6806E内置了两个电源插槽,通过插入不同模块,可以实现两路AC电源或者两路DC电源的接入,实现设备电源的1+1备份。工程中最常见配置情况是同 时插入两块P6800-AC模块来实现220v交流电源的1+1备份。 电源模块的冗余备份实施后,在主电源供电中断时,备用电源将继续为设备供电,不会造成业务的中断。 注意:在实施电源的1+1冗余时,请使用两块相同型号的电源模块来实现。如果一块是交流电源模块P6800-AC,另一块是直流电源模块P6800-DC的话,将有可能造成交换机损坏。 8.2.2 S6806E交换机的管理板卡冗余技术 图8-2 S6806E的管理卡冗余 如图8-2所示,锐捷S6806E提供了两个管理卡插槽,M6806-CM为RG-S6806E的主管理模块。承担着系统交换、系统状态的控制、路由的管理、用户接入的控制和管理、网络维护等功能。管理模块插在机箱母板插框中间的第M1,M2槽位中,支持主备冗余,实现热备份,同时支持热插拔。 简单来说管理卡冗余也就是在交换机运行过程中,如果主管理板出现异常不能正常工作,交换机将自动切换到从管理板工作,同时不丢失用户的相应配置,从而保证网络能够正常运行,实现冗余功能。 在实际工程中使用双管理卡的设备都是自动选择主管理卡的,先被插入设备中将会成为主管理卡,后插入的板卡自动处于冗余状态,但是也可以通过命令来选择哪块板卡成为主管理卡。具体配置如下

路由冗余设计

路由冗余设计 当设计一个网络架构的时候,在达到基本的互联互通的基础上,一项最基本要侧重考虑的问题是该网络要如何处理故障。这一部分的操作是尝试在经济许可的范围内建立越多越好的冗余链路和设备,同时要保持其网络的性能和可管理性。在终端的角度来看,第一个他们本地网络要连接外部网络的通讯部件是默认网关,如果默认网关失效了,那么接下来的所有通往外部的访问都是空谈。而第一跳冗余协议(first hop redundancy protocol)能够有效的处理这个问题。在Cisco 的设备上,也有几个不同的选择,包括热备用路由器协议(HSRP),虚拟路由器冗余协议(VRRP)和网关负载均衡协议(GLBP)。本文给出了这些选项的概述,以及它们之间的区别。 Hot Standby Router Protocol (HSRP) HSRP是Cisco专有的协议,能使网络工程师将多个冗余路由器配置在同一子网中,每个都可以作为一个子网网关设备使用。如果不使用HSRP,每个子网的设备需要单独配置使用特定的网关,这样就不能有效地提供冗余,但限制了因为路由器失效所受到影响的的客户数。使用HSRP时,一组路由器(网关)将配置在一起,一个HSRP的虚拟IP地址和MAC地址将被创建,以供子网设备使用。HSRP配置中的不同路由器将通信并选择一个主的单一活动网关,来处理所有通信流量。此时,一个单一的备用网关也被选出。备用网关会向主网关发送多播进行通信,检测主网关是否失效。主网关一旦失效,其中的一个备用网关就会夺取住网关的职责并在很小的延迟后转发所有数据流量。与此同时,一个新的备用网关也会被选出。 Virtual Router Redundancy Protocol (VRRP) VRRP是一个开放的标准,可用于存在多个供应商设备的环境中。VRRP的运作类似于HSRP,但在不同方面稍有不同。和HSRP相似的,多个路由器(网关)被配置进同一个组里面,其中一个被网络工程师手工指定为主网关。主网关连接终端所在接口的物理IP地址被指派为默认网关的地址。VRRP组中的备用网关会不断和主网关进行通信,而且当主网关失效后马上替代主网关以转发流量。当主网关恢复正常后,又会自动夺回主网关的身份。 在一个单独的子网中也是允许存在多个VRRP组的,可以用来做负载均衡。不过,这种方法需要在客户端的电脑中手动更改默认网关地址的配置。显然这样可行性非常低的,如果要实现相应的功能,最好还是看看以下要介绍的GLBP。 Gateway Load Balancing Protocol (GLBP)

多链路负载均衡及冗余

多链路负载均衡及冗余

目录 1.目的 (3) 2.环境拓扑 (3) 3.链路负载均衡 (3) 3.1 基于源IP的负载均衡 (4) 3.2基于权重的负载均衡 (6) 3.3基于出口流量阀值的负载均衡 (6) 3.4 其他负载均衡 (7) 3.5 策略路由 (7) 4.链路冗余 (8) 4.1 检测服务器 (8) 4.2管理距离与优先级 (8) 5.负载均衡与冗余 (9) 6.参考 (9)

1.目的 本文档针对FortiG ate在具有两条或两条以上出口时的负载均衡及链路冗余配置进行说明。Fortigate在多链路可以支持不同方式的负载均衡,在链路负载均衡的同时,也可以实现链路的冗余。 2.环境拓扑 本文使用FortiGate-VM 做演示。本文支持的系统版本为FortiOS v4.0MR3 Patch2及更高。 该配置中使用FortiGate-VM1 模拟两条WAN线路,通过FortiGate-VM2连接至外网,实际环境可以据此参考。 3.链路负载均衡 链路负载均衡功能需要为2个不同的出网接口分别配置一条默认路由,如果实现负载均衡,需要2条或多条静态路由的管理距离以及优先级保持一致。同时也需要保证配置内网去往2条出口的策略。 如果使用静态路由的话可以把出网路由的管理距离配置成相等的,也就是等价路由。如果是ADSL、DHCP等动态获取的网关的话可以把“从服务器中重新得到网关”选中同时将动态获取的路由的管理距离配置即可。在默认路由已经配置完成的情况下,如果仍然有某些特定的数据流需要从指定的出口出网的话,可

以使用策略路由功能来完成这样的需求。策略路由的优先级高于动态和静态路由,按照从上到下的次序来匹配的。 负载均衡包括三种模式: 1.基于源IP的负载均衡; 2.基于权重的负载均衡; 3.基于出口流量阀值的负载均衡。 3.1 基于源IP的负载均衡 基于源IP的负载均衡, 当路由表中有多个出网路由时,FortiGate设备会按内置的算法实现负载均衡,这个算法不能被修改。这个算法是:假设路由表中有n条出网路由,则防火墙会将内网源IP地址的最后一组数值除n取余,余1走第一条出网路由,余n-1走第n-1条出网路由,余0走第n条出网路由。 本例的出网规则是:,如果想让某些IP走特定的接口需要策略路由来实现。

路由器IP地址的负载均衡示例

路由器IP地址的负载均衡示例 本篇介绍的是如何在固定IP和VPN环境下设置链路负载均衡技术,这也是做负载均衡时常用到的方法,下面个体演示一下。 一、组网环境 1、如图所示,用户初始状态拥有2条固定IP地址的公网进线,一条电信一条移动。 2、VPN设备已接入3个公网口,其中电信直接连在VPN设备的WAN口上,移动线路则通过一台交换机分出两根线,接到VPN设备的WAN1和WAN2口。 3、LAN口地址为192.168.111.1。 4、WAN2口和国外的TP-LINK路由器建立VPN通道。 5、内网有台邮件服务器,用户在WAN口和WAN1口上分别做了端口映射,让公网用户使用。 二、用户需求 1、内网用户上网时,使用2条公网线路的带宽较为随意,时常造成一条线路上的过于拥堵。需要采用2条公网带宽都能均衡利用的方案。 2、已经构建的VPN通道不能中断,要保证24小时不间断作业。 3、公司内网的邮件服务器,需要在2条公网线路上都做到端口映射,服务不同线路上的外网用户群。 三、解决方法 1、在方案中增设一台链路负载均衡设备,将接在VPN设备WAN口和WAN1口上的网线接到,移动到链路负载均衡设备上。VPN设备上WAN2口的线路保留原貌,不用影响已经建立的VPN通道。 2、将链路负载均衡设备的LAN口地址配置成192.168.111.1。原VPN的LAN口地址则修改成192.168.111.2。 3、在链路负载均衡设备上添加一条静态路由。对于访问目标地址是国外公司网络的用户,自动跳转到VPN的LAN口上,使之必须使用已建立的VPN通道。

4、给邮件服务器配置2个IP地址,分别映射到链路负载均衡设备的2个公网口上。并且在链路负载均衡设备的策略路由中,通过固定指派,让邮件服务器的2个IP地址,限定使用映射的端口上网。 5、最后在链路负载均衡设备上配置负载策略,内网其他电脑通过负载策略平均的通过2个公网线路上网,以实现线路均衡的效果。 通过上面的设置,可以完成路由的IP负载均衡,需要注意在设置时一定要小心,如果其中一步出现错误,就无法完成设置了,重新排查路由器又将会是非常困难的。

网络路由负载均衡

Cisco路由器转发数据包时常用的五种交换方式 进程交换(Process Switching) 这是一种最基本的交换模式,在这种模式下,一条数据流(Flow)中的第一个包(Packet)将被置入系统缓存(System Buffer)。其目的地址将会拿到路由表中去查询比对,路由器的处理器(CPU or Processer)同时将进行CRC校验,检查包是否正确。然后数据包的二层MAC地址将会被重写,替换为下一跳接口的MAC地址。对这条数据流(Flow)中的第2个、第3个数据包……将会继续这样相同的操作,包括查询路由表、重写MAC地址,CRC校验等。这种方式无疑是延迟最大的,因为它要利用System Buffer以及Processor去处理每个收到的包。但是我们仍然有机会使用这种交换方式,比如在进行基于数据包的负载均衡,或是debug ip packet时。因为默认情况下,思科路由器会启用Fast Switching或Optimum Switching或是CEF Switching,而不是Process Switching,所以我们只能通过:no ip route-cache来禁用Fast Switching,这在另一种意义上正是开启Process Switching。 命令:R1(config-if)#no ip route-cache //启用进程交换(禁用快速交换) 注意:命令debug ip packet仅允许观察进程交换的数据包,将启用进程交换,所有数据包都被送至进程记录,CEF交换、快速交换等的数据包将不被显示出来。 快速交换(Fash Switching)/路由缓存交换(Route-Cache Switching) 快速交换要优于Process Switching,它采用了路由缓存(Route Cache)来存储关于某条数据流(Flow)的特定信息,当然会包括诸如目的MAC地址,目的接口等内容。这时我们只需要对一条数据流(Flow)中的第一个包做Process Switching,并把信息存入Cache,所有后续数据包,可以不必再中断System Processor去执行查询等操作,直接从Cache中提取目的接口,目的MAC地址等,这样大大加速了包转发速度。Fast Switching在某些资料上可能被称为Route-Cache Switching。思科1600、1700、2500、2600系列路由器的Ethernet、Fast Ethernet、Serial接口默认采用的就是Fast Switching。 命令:R1(config-if)#ip route-cache //启用快速交换 R1#show ip cache //查看快速交换 最优交换(Optimum Switching) 和分布式交换(Distributed Switching) 这两种交换模式,从原理上来讲都与Fast Switching极为相似,比如Optimum Switching 其实采用了一种经过优化的交换缓存(Optimumed Switching Cache),它的速度要较平常Cache要快。Distributed Switching需要使用Versatile Interface Card这种硬件卡,又称VIP Card。它会自已保存一份Route Cache,这样查询时就不必等待使用共享的系统缓存(Shared System Buffer)了,无论相对于Fast Switching还是Optimum Switching来讲,都是比较快的。这两种模式一般只在思科高端设备上有所应用,比如7200系列的路由器或12000系列的路由器。 命令:R1(config-if)#ip route-cache optimum //启用最优交换 R1(config-if)#ip route-cache distributed //启用分布式交换 R1#show ip cache optimum //查看最优交换 Netflow交换(Netflow Switching) 这种模式是最值得参考的,它完全基于其它Switching Mode,重点在于对流经的数据包进行计费、监控、网管。但值得提的是,这种模式也要存储相关信息,据统计大致65536条数据流(Flow)会耗费4MB的System Buffer。

策略路由应用实例:多链路负载均衡

唱响夏日激情,勇争博客,八月之争烽烟再起!博主的更多文章>> 一、策略路由简介 基于策略的路由允许应用一个策略控制数据包应如何走而非基于路由表选路。IP路由基于目标地,而PBR允许基于源的路由,即来自何处而应到哪去,从而根据需要走一条特殊的路径。 在网络中实施基于策略的路由有以下优点: 1、基于源的供应商选择:通过策略路由使源于不同用户组的数据流选择经过不同的Inte rnet连接。 2、服务质量:可以通过在网络边缘路由器上设置IP数据包包头中的优先级或TOS值,并利用队列机制在网络核心或主干中为数据流划分不同的优先级,来为不同的数据流提供不同级别的QoS。 3、负载均衡:网络管理员可以通过策略路由在多条路径上分发数据流。 4、网络管理更加灵活。 二、双出口配置实例 (一)实验拓朴: (二)实验要求: 1、R1连接本地子网,R2为边缘策略路由器,R3模拟双ISP接入的Internet环境。 2、要求R1所连接的局域网部分流量走R2-R3间上条链路(ISP1链路),部分流量走R2-R3间下条链路(ISP2链路)从而实现基于源的供应商链路选择和网络负载均衡。 (三)各路由器配置如下: R1#sh run . …… interface Loopback0 .

…… interface FastEthernet0/0 ip address ip policy route-map isp-test Tracing the route to 1 7 2 msec 216 msec 276 msec 2 288 msec 360 msec * Tracing the route to 1 9 2 msec 188 msec 52 msec 2 416 msec 436 msec * Tracing the route to 1 136 msec 40 msec 144 msec 2 356 msec * 132 msec Tracing the route to 1 28 msec 104 msec 200 msec 2 300 msec * 196 msec //ISP2入口 ----------------------------------------------------- (五)小结: 通过以上实验,可以看到子网一()的流量都经过R2-R3的上一条链路选择了ISP1链路,子网二()的流量都经过R2-R3的下一条链路选择了ISP2链路。所以通过策略路由实现基于源的供应商选择和网络的负载均衡。

策略路由应用实例:多链路负载均衡

版权声明:原创作品,如需转载,请与作者联系。否则将追究法律责任。策略路由(Policy-based Routing)和静态路由(Static Routing)的比较,如下表:策略路由静态路由配置方式手工配置手工配置配置原则根据“目的”或“来源”位指定路由路径;策略路由也是静态路由的一种,只是比静态路由更有弹性。根据“目的”地址,指定路由路径策略路由配置的一般步骤:1. 定义一个路由映射图:Route-map2. 将路由映射图映射到特定的接口上:Router(config-if)#ip policy route-map map-tag路由映射图(route-map)与控制访问列表命令结构的比较,如下表:Route-map 路由映射ACL访问列表 Route-map (定义一个路由映射)Match(匹配)Set(采取的动作) Access-list(定义一个访问列表)Permit(匹配则保留)Deny(匹配则丢弃)Route-map命令详解命令语法:Router(config)#route-map map-tag [permit/deny] [sequence-number] Map-tag 该路由映射图的名字或ID;指定Permit参数假如满足匹配条件则采取动作;指定deny参数假如满足匹配条件则不采取行动; [sequence-number](序列号)参数指示一个新的路由映射图所处的位置; [sequence-number]序列号也用来检查匹配条件的顺序。命令语法:Router(config-route-map)#match {action}命令语法:Router(config-route-map)#set {action}策略路由的主要应用:1. 应用于路由重分布(Redistribution)2. 根据不同来源位置的数据流量,通过策略路由选择不同的出口;3. 根据不同的类型(HTTP,FTP)的数据流量,通过策略路由选择不同的出口。实验:实验1. 应用于路由重分布:在该实验中边界路由器上运行着RIP和OSPF路由协议,现要求将RIP中度量值(跳数)为3的路由重分发(redistribute)到OSPF中,路由重分发到OSPF中以后,度量值变为6,并且将其度量值属性设置为1。在边界路由器上的配置:Router(config)#router ospf 100Router(config-router)#redistribute rip route-map rip-routesRouter(config)#route-map rip-route permit (路由映射匹配以下条件就采取行动)Router(config-route-map)#match metric 3 (匹配条件:具有跳数为3的RIP路由)Router(config-route-map)#set metric 6 (为匹配条件的RIP路由设置OSPF属性:metric=6)Router(config-route-map)#set metric-type 1 (为匹配条件的RIP路由设置OSPF属性:type1)实验2. 根据不同来源地址的流量,通过策略路由选择不同的出口:在这个实验中,源地址为的数据必须经由R2的S0流出,经过R3再到达Internet;在这个实验

企业多出口网络路由及流量负载均衡研究

企业多出口网络路由及流量负载均衡研究 摘要:随着企业慢慢不断发展壮大,互联网出口越来越多,每个新增出口都有一台防火墙设备单独和运营商连接,这种情况加大了网络维护工作量。如果有一个出口出现设备或者链路故障,相应出口的业务会受到影响导致中断,如果想尽快恢复临时调整到其它出口,会增加网络维护的工作量并导致其它出口流量拥塞。由于希望任何出口出问题时不会影响到该出口所涉及业务的正常使用,并减少网络维护的工作量和出口设备数量,因此需要对内部网络做出口网络路由和负载均衡改造。 关键词:出口网络;路由策略;虚拟防火墙;链路冗余;负载均衡 export enterprise network routing and flow load balance research wang wei (operation and maintenance department of henan catv network group co., ltd.,zhengzhou branch,zhengzhou450000,china) abstract:along with the enterprise slowly the constant development and expansion,the internet export more and more,each new export has a firewall equipment alone and operators connection,this increases the network maintenance.if there is an exit appear equipment or link

策略路由和NAT实现负载均衡实例(华为防火墙)

一、组网需求: 1.正常情况下10.0.0.2从出口1 2.12.12.0NAT转化成100.0.0.0的地址,20.0.0.2从出口1 3.13.13.0NAT转化成200.0.0.0的地址,实现负载均衡。 2.FW双出口的某一条链路down,所有用户NAT成同一地址段出去,实现链路冗余。 二、实验组网 四、关键配置 USG5360 (V100R003C01SPC007): ip address-set 100and200 type object address 0 10.0.0.0 mask 24 address 1 20.0.0.0 mask 24 # ip address-set 10.0.0.2 type object address 0 10.0.0.0 mask 24 # ip address-set 20.0.0.2 type object address 0 20.0.0.0 mask 24

# acl number 3001 rule 0 permit ip source 10.0.0.0 0.255.255.255 acl number 3002 rule 0 permit ip source 20.0.0.0 0.255.255.255 # nat address-group 100 NAT1 100.0.0.1 100.0.0.100 nat address-group 200 NAT2 200.0.0.1 200.0.0.100 # traffic classifier 12 if-match acl 3001 traffic classifier 13 if-match acl 3002 # traffic behavior 12 remark ip-nexthop 12.12.12.2 output-interface GigabitEthernet0/0/0 traffic behavior 13 remark ip-nexthop 13.13.13.2 output-interface GigabitEthernet0/0/1 # qos policy re classifier 12 behavior 12 classifier 13 behavior 13 # interface GigabitEthernet0/0/0 ip address 12.12.12.1 255.255.255.252 #

ADSL双线负载均衡软路由ROS设置详细图文教程

ADSL双线负载均衡软路由ROS设置详细图文教程 计算机与网络2009-08-07 19:10:16 阅读4136 评论0 字号:大中小订阅 先引用一个高手的话. -------------------------------------------------------------------------- 注:很多人问 1.动态的ADSL怎么办? 你仔细观察一下IP Routes 里面动态ADSL重拨IP是变的网关是不变的你在interfaces里的ADSL拨号把Add Default Route 去掉然后在IP Routes里手动添加网关 2.ADSL网关都一样怎么办? 简单嘛...其中一个Moden开启路由功能就就不同网关了不? --------------------------------------------------------------------------- 首先说一下ADSL分流大部分都是根据IP分流,或者是根据端口分流,由于我网吧的IP段比较乱,我就根据IP分流来带60台机子..端口分流的话如果你喜欢可以自己试用一下. 我的ADSL拔号后的情况...我拔号后,每次网关都会变,,网关就是那次拔号后的子网掩码. 那么应该怎么做呢? 往下看就是了.. 第一步:安装好routeros(我用的是2.927) 装上三个网卡,一个内网的,二个外网的.. 接好内网的网线,使你能访问路由...并且改好路由网卡的名称. 如图1 第二步: 外网(WAN1,WAN2)两个网卡添加pppoe client第一个命名为ADSL1 并且加上拔号的用户名和密码, 第二条命名为ADSL2 同时加上拔号的用户名和密码.这里要注意: 把Add Default Route 去掉. 如图2, 3 在IP-routers中添加路由标记,命名为link1,link2这里的MARK要和你上一步中设的一致这里的gateway你可以随便填,因为下面会用脚本来更新这个路由. 如图8,9

一台三层交换机做双链路负载均衡

一台三层交换机做双链路负载均衡(图) 关于一台三层交换机做双出口负载均衡的问题 本单位局域网内,有两个网段,分别接在两条Internet线路上,当一条线路断掉时,一半的人就不能上网。现在想在路由器下面接一台三层交换机,划分二个vlan,这二个vlan的用户可以同时通过两条Internet线路上网,并且在一条线路断掉时,也不会受到影响。 如何能做到这二条线路同时做到负载均衡和冗余呢? 设备情况是:两台艾泰路由器,分别接两根上网线路 四台Cisco2960分两个网段,接不同用户 准备增加一台cisco3560,划分二个vlan ,分别接二条线路和二个网段,并做到冗余和均衡 [本帖最后由 zhaoxinz 于 2009-9-16 13:02 编辑] 附件 - 如何获取无忧币 - 下载扣无忧币规则 网1.jpg (12.77 KB) 2009-9-16 13:02 网2.jpg (14.99 KB) 2009-9-16 13:02

搜索更多相关主题的帖子: 双链负载三层交换 本帖最近评分记录 浪迹江湖无忧币 +5 原创内容 2009-10-6 09:51 引用报告回复 TOP 维护论坛纯净人人有 责,灌水严惩!举报 有奖 gmwd18 新新人类 帖子 75 精华 0 无忧币 8 论坛积分沙发大中小发表于 2009-9-16 14:12 只看该作者 信产部权威认证:弱电安防培训 | 培训光盘免费看 | 专家门诊百期 | 勋章系统全新上线,你还等什么? 我是这样想的,利用HSRP(热备份路由协议)划分两个HSRP组,这两个路由器都是这两个组

89 ?发短消息?加为好友?当前离线?个人博客 的成员,路由1是组1 的活跃路由器,路由2 是standby,同样,路由 2是组2的活跃路由,路由1是standby,正好公司有两个VLAN,可以对 每个VLAN配置一个HSRP 组,这样可以为不同的 子网实现一定程度的负 载均衡,组1的流量由 路由1承载,组2 的流量由路由2承载,其中 有一个down掉,另一个路由立马顶上,然后配 上端口跟踪,就OK了。 不过两个HSRP组的虚拟IP不能一样,你使用的 不是CISCO路由,可能 命令有些不同,毕竟HSRP是CISCO的协议,别的厂商应该支持VRRP (虚拟路由冗余协议),还有就是,要关闭路由 器的ICMP重定向消息,以便不让局域网内的主 机发现HSRP的虚拟MAC 地址。 知道的不多,希望对你 有所帮助。 引用报告回复 TOP 维护论坛纯净人人有责,灌水严惩!举报

利用路由器之间互为主备来实现链路上的负载均衡的探讨与研究

利用路由器之间互为主备来实现链路上的负载均衡的探讨与研究 XX市贷款道路建设车辆通行费征收管理办公室 摘要 介绍了现有通行费征收系统网络的现状, 对路由器实现负载均衡进行了原理的讲解 详细阐述了具体的实施过程和注意事项 为实际工作中的应用提供了测试依据 关键词 路由器 通信运营商线路 负载均衡

1.概述 1.1项目背景 贷款道路建设车辆通行费征收管理办公室(以下简称通征办)使用的通行费征收管理信息系统自2003年建成投入使用以来,已取得了较好的经济效益和社会效益,2007年全年共征收公路养路费、贷款道路建设车辆通行费等公路规费约60亿元,为本市公路养护工作提供了有力的保障。通行费征收管理信息系统负责完成全市百万辆汽车的养路费、通行费征收管理业务,并且随着的汽车保有量的不断增加,该系统正日益显现出功效。 2009年国家实行费改税的政策,在全国范围内取消养路费的征收。XX市的缴费车辆从2009年1月1日起取消养路费征收。取消2009年养路费的征收,但要求补缴2009年以前的欠费;2009年仅征收通行费,并打印通行费缴迄证。应用系统改造的总体目标是:通过本次改造,实现应用系统的平稳过渡,为规费征收工作提供技术保障。在原有“XX市通行费征收管理信息系统”基础上根据养路费政策的调整对应用系统的改造进行整体的规划设计。 1.2现状结构

1.3现状描述 中心与各征收站点通过电信DDN连接(首选主要连接方式)以及ISDN连接(备用连接方式),目前DDN采用的是模拟线路(普通电话线),承载的速率128k或256k。 在实际使用过程中,中心与各站点的电信DDN专线及相关设备发生故障的概率相对较高,从而对征收工作产生一定的影响。主要有电信线路中断、电信局端设备的故障、用户端设备故障、模拟线路信号的干扰以及各类不明原因的线路瞬断等。 由于采用电信局数据专线(帧中继),电信局时常发生故障,因此需要启用线路ISDN,但是该线路速率低下,且与路由器的配合不稳定,会发生备份线路不能自动接管问题。 2.原理 2.1原理设计图 设计前(以一个征稽所为例):

路由器实现网络负载均衡的三种模式

路由器实现网络负载均衡的三种模式 “负载均衡”概念运用在网络上,简单来说是利用多个网络设备通道均衡分担流量。就像是寺庙一天要挑10桶水,1个尚必需要走10趟,但同时指派10个和尚却只要一趟即可完成工作的道理一样。负载均衡可运用多个网络设备同时工作,达成加速网络信息的处理能力,进而优化网络设备的性能,取代设备必须不停升级或淘汰的命运。目前普遍被运用在网络设备中,如服务器、路由器、交换机等。 目前提出的三种不同的负载均衡模式,可较全面的包含各种网络架构中所应采取措施,三种模式分别是: 模式一:智能型负载均衡 智能型负载均衡模式,是依据接入WAN端带宽的大小比例,自动完成负载均衡工作,进一步协助达成带宽使用率的优化目的。Qno侠诺在智能型负载均衡模式中,提供了联机数均衡与IP均衡两种选择。 联机数均衡是依据WAN端带宽大小比例,将内网所有的联网机数作均衡分配。例如WAN1接入4M、WAN2接入2M,则联机数就会依据2:1分配。此种配置是网管员最一般的配置模式。 而IP均衡模式是为了避免某些网站(EX银行网站或HTTPS类型的网站),只能接受来自同一个公网IP的所发出封包的瓶颈。如果采用联机数负载均衡模式,会发生该IP所发出的访问封包不一定是从固定WAN口流出,造成特定网站拒绝服务,导致断线的情况发生。如果采用IP均衡,让IP依据WAN端带宽大小进行比例均衡分配,例如WAN1与WAN2的带宽比例为2:1,则PC1、PC2走WAN1,PC3走WAN2,PC4、PC5走WAN1……,即可达到同一个内网PC 所发出的应用服务封包,都从固定的WAN口(公网IP)流出,而整体内网IP也会依据带宽大小比例,自动进行均衡配置。此种配置比较适合常常需要进入特定网站时选择。 模式二:指定路由 指定路由比起智能型负载均衡而言,是保留了更多的自由设定弹性与例外原则。由于智能型负载均衡是针对整体内网联机数或是整体IP进行均衡分配。并不能个别指定某种应用服务、某个特定IP、某个特定网址,通过哪个WAN口出去。所以,有时会造成特定的服务(例如邮件、VOIP 等)或特定的人士(公司老板、高管等)不能有享有优先或例外的不便。 因此,指定路由是提供可配合协议绑定,先分别指定哪个应用服务、哪个IP网段、哪个目的网址,走哪个WAN端口。而其余剩下未绑定的部份,再进行智能型负载均衡,同样也有协议绑定模式或是IP均衡模式两种选择。

相关文档
最新文档