《切线长定理》教学设计与反思d76

合集下载

切线长定理的教学反思

切线长定理的教学反思

《切线长定理》教学反思本节课是直线与圆的位置关系中的第三课时,是直线与圆位置关系中重点内容,是在学习了切线的性质和判定的基础上,继续对切线的性质的研究,是在垂径定理之后对圆的对称性又一次的认识。

体现了图形的认识、图形的变换、图形的证明的有机结合。

在教学过程中,通过安排实践操作活动,使学生提高了探究的兴趣。

首先教师突出操作要求,学生操作并思考回答问题,教师在学生回答问题的基础上进一步引导学生从中发现问题,让学生体会从具体情景和实践操作中发现条件,解决问题。

通过设计问题情境,使学生提高解决问题的意识,通过自己画图尝试从中得到感性认识,进而不断地比较,让学生的思维能够经历一个从模糊到清晰从具体到抽象,从直觉到逻辑的过程,再由直观、粗糙向严格、精确的追求过程中,使学生体会数学发展的过程。

在本节课中主要关注的是⑴在变化的图形中能否提炼出基本图形;学生是否能够明确问题并能积极寻找解决问题的关键和方法。

⑵学生在活动中发表个人见解的勇气,面对错误有无承认的勇气,这是打破思维定势的关键。

⑶是否对系统知识点真正理解和灵活运用;对于问题的提出与思考,学生是否对探索线段和角的数量关系有兴趣。

在本节课教学中,对本课的重点学习内容能组织学生自主观察、猜想、证明,并深刻剖析切线长定理的基本图形;对重要的结论及时总结。

尤其是切线长的基本图形研究环节,学生能充分利用已有的知识和新课内容结合,把切线长定理和圆的对称性紧密结合,体现了本节课知识点的工具性。

在练习题中,通过不同的思路和观察角度可以明显地得到不同的解法,而且其繁简程度一目了然。

通过设置题目,帮助学生从具体的图形中提炼有效图形。

在学习有困难的情况下,采用互助式学习,培养协作精神。

另外通过设置变式题目,发展学生的发散思维及创新能力,激发学习兴趣,真正体验成功的快乐。

开展互评、师评、让学生学会理解、学会表达。

通过激励评价,让学生初步品尝获得成功的快乐,激起学生的学习热情,提高学生学好数学的自信心。

切线长定理说课稿

切线长定理说课稿

《切线长定理》教学设计及反思夷陵区实验初级中学钱天群我将从教材分析、教材设计及处理、课堂预设与课堂生成的应对三个方面,对本课的设计进行说明:一、教材分析1、教材的地位和作用本节课研究的是切线长定理,它是在学生已经学习了切线的定义、判定和性质的基础上提出的,它简单明了、应用广泛,可以推出较多的结论。

它再次体现了圆的对称性,既是前面知识的应用,又是今后求证明线段相等、角相等、弧相等的重要工具,所以它在教材中处于重要位置2、教学目标根据学生已有的认知基础、心理特征及教材的地位和作用,依据教学大纲,确定本课的教学目标为:1)使学生理解切线长定义,并能在图形中识别切线长;2)会推导切线长定理;3)掌握切线长定理,并会利用它解决相关的计算和证明。

4)知道三角形内切圆、内心的概念并能与外接圆、外心比较不同3、教学重点和难点本节重点是切线长定理及应用。

因为学到此处的几何已经综合性很强,培养学生综合分析问题的能力则是本节课的难点。

4、教学方法鉴于教材及初三学生基本形成逻辑思维能力的特点,我选用启发式教学方法,在演示、观察、练习等师生共同活动中,启发学生,让每个学生都动手、动口、动脑积极思考,进行创造性的学习。

二、教材设计及处理本节课主要是两大内容,一个是两个概念的教学,另一个是一个定理的教学。

(一)两个概念的教学本节课中主要有切线长、圆的内心两大概念。

对这两个概念我主要把握以下几点1、让学生体会概念出现的合理性:一是切线长是在切线中截取的一段线段的长度,一个是在生活中切割符合条件的圆形铁皮,从学生熟知的图形和事例中提供感性材料,引导他们抽象出相应的概念2、利用对比让学生体会概念的本质:为帮助学生准确、深刻理解两个概念,不仅注重讲清概念中的每一字、词的真实含义,而且注意切线长与切线,内切圆与外接圆进行比较,把握概念的外延和内涵,这样才能进一步掌握概念的本质。

3、运用习题巩固概念:围绕概念配备多种练习题,让学生从多角度,多层次上去进行应用。

初中数学_切线长定理教学设计学情分析教材分析课后反思

初中数学_切线长定理教学设计学情分析教材分析课后反思

《切线长定理》教学设计【课标解读】《义务教育数学课程标准(2011年版)》在“课程基本理念”中明确指出:数学教学活动是师生积极参与、交往互动、共同发展的过程.教师要发挥主导作用,引导学生独立思考、主动探索、合作交流,体会和运用数学思想与方法,获得基本的活动经验。

《数学课程标准(2011版)》中对其具体的要求为:探索并证明切线长定理:过圆外一点所画的圆的两条切线长相等。

【教材分析】切线长定理是鲁教版九年级下册第五章《圆》第七节内容,前一节课已经学习了直线与圆的位置关系,本节课是上节课第四课时三角形内切圆的延伸,既对切线的性质、判定定理进行了巩固,也是他们的应用,又为后面要学习的正多边形与圆提供了理论依据。

【重难点分析】重点:切线长定理及其应用.因切线长定理再次体现了圆的轴对称性,它为证明线段相等、角相等、弧相等、垂直关系等提供了理论依据,它属于工具知识,经常应用,因此它是本节的重点.难点:与切线长定理有关的证明和计算问题.不仅应用切线长定理,还用到方程的知识,是代数与几何的综合题,学生往往不能很好的把知识连贯起来.【教法建议】本节内容需要一个课时.(1)在教学中,组织学生自主观察、猜想、证明,并深刻剖析切线长定理的基本图形;对重要的结论及时总结;(2)在教学中,以“观察——猜想——证明——剖析——应用——归纳”为主线开展,在教师组织下,以学生为主体,活动式教学.【教学支持条件分析】心理学研究表明,初中学生接受知识方面,视听结合效果更佳,所以为了有效的实现教学目标,突破难点,在教学中:1、利用小视频、图片让学生感受来自生活中的数学问题,激发学生兴趣。

2、利用希沃授课助手展示学生的多种解法,以拓展学生的解题思路,进一步培养学生的发散思维能力。

3、利用几何画板让图形动起来,学生轻松的发现图形中的内在联系和规律,从而进行更有效的数学思维。

4、利用微课解决拓展提高中的小难点,既节省时间提高效率又激发了学生的兴趣,一举两得。

苏科版九年级数学上册《切线长定理》教案及教学反思

苏科版九年级数学上册《切线长定理》教案及教学反思

苏科版九年级数学上册《切线长定理》教案及教学反思一、教学目标知识目标1.了解切线的概念和性质2.掌握切线长定理的公式及其推导方法3.了解切线长定理在实际中的应用能力目标1.能够运用切线长定理解决实际问题2.能够运用数学知识思考并解决问题二、教学重点1.切线的概念和性质2.切线长定理的公式及其推导方法3.切线长定理在实际中的应用三、教学难点1.切线长定理的公式推导方法2.切线长定理的应用四、教学内容及方法1. 切线的概念和性质教学内容:1.切线和圆的概念2.切线与半径的关系3.切线垂直于半径定理4.与圆相交线段的长度性质教学方法:1.板书呈现切线和圆的图形,引导学生发现切线和圆的性质2.利用图形演示板进行展示3.通过数学作图软件比如 Geogebra 进行实时演示2. 切线长定理的公式及其推导方法教学内容:1.切线长定理的公式2.切线长定理的推导3.切线长定理的运用教学方法:1.讲解切线长定理的公式推导,演示利用相似三角形原理进行公式的推导过程2.小组合作演练,将切线长定理应用到不同的题目中去3.教师分组进行讲解,让部分学生发言与讲解3. 切线长定理在实际中的应用教学内容:1.切线长定理在实际中的应用2.利用切线长定理解决实际问题教学方法:1.教师通过具体问题将切线长定理与实际紧密结合,让学生感受到其重要性并懂得如何运用2.学生们自主寻找小组或个人实际问题,探讨如何运用切线长定理解决,并且进行报告五、教学反思本次教学反思主要分为以下几个方面:1. 教学内容的选择本节课教学内容紧密与圆相关,将活字美化在图形中,让学生获得了较好的视觉体验。

通过图形发现圆的性质以及切线的概念和性质,教师把握了学生的心理感受,在这部分内容中深化学生对切线和圆的认识与理解,高效率地达到了本次教学目标。

2. 教学方法的选择本次教学活动采用了多种教学方法,如板书、演示讲解、DIY 活动、小组合作等,这不仅可以在一定程度上增强了学生的兴趣爱好,还拓展了他们的思维方式,促进了交流合作和自主学习能力的提高。

初中切线长定理教案 切线长定理教案教学反思3篇

初中切线长定理教案 切线长定理教案教学反思3篇

初中切线长定理教案切线长定理教案教学反思3篇第1篇:学校切线长定理教案1、教材分析(1)学问结构(2)重点、难点分析重点:及其应用.因再次体现了圆的轴对称*,它为*线段相等、角相等、弧相等、垂直关系等供应了理论依据,它属于工具学问,常常应用,因此它是本节的重点.难点:与有关的*和计算问题.如120页练习题中第3题,它不仅应用,还用到解方程组的学问,是代数与几何的综合题,同学往往不能很好的把学问连贯起来.2、教法建议本节内容需要一个课时.(1)在教学中,组织同学自主观看、猜想、*,并深刻剖析的基本图形;对重要的结论准时总结;(2)在教学中,以"观看猜想*剖析应用归纳'为主线,开展在老师组织下,以同学为主体,活动式教学.教学目标1.理解切线长的概念,把握;2.通过对例题的分析,培育同学分析总结问题的习惯,提高同学综合运用学问解题的力量,培育数形结合的思想.3.通过对定理的猜想和*,激发同学的学习爱好,调动同学的学习乐观*,树立科学的学习态度.教学重点:是教学重点教学难点:的敏捷运用是教学难点教学过程设计:(一)观看、猜想、*,形成定理1、切线长的概念.如图,p是⊙o外一点,pa,pb是⊙o的两条切线,我们把线段pa,pb叫做点p到⊙o的切线长.引导同学理解:切线和切线长是两个不同的概念,切线是直线,不能度量;切线长是线段的长,这条线段的两个端点分别是圆外一点和切点,可以度量.2、观看利用电脑变动点p的位置,观看图形的特征和各量之间的关系.3、猜想引导同学直观推断,猜想图中pa是否等于pb.pa=pb.4、*猜想,形成定理.猜想是否正确。

需要*.组织同学分析*方法.关键是作出帮助线oa,ob,要*pa=pb.想一想:依据图形,你还可以得到什么结论?opa=opb(如图)等.:从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角.5、归纳:把前面所学的切线的5条*质与一起归纳切线的*质6、的基本图形讨论如图,pa,pb是⊙o的两条切线,a,b为切点.直线op交⊙o于点d,e,交ap于c(1)写出图中全部的垂直关系;(2)写出图中全部的全等三角形;(3)写出图中全部的相像三角形;(4)写出图中全部的等腰三角形.说明:对基本图形的深刻讨论和熟悉是在学习几何中关键,它是敏捷应用学问的基础.(二)应用、归纳、反思例1、已知:如图,p为⊙o外一点,pa,pb为⊙o的切线,a和b是切点,bc是直径.求*:ac⊙op.分析:从条件想,由p是⊙o外一点,pa、pb为⊙o的切线,a,b是切点可得pa=pb,apo=bpo,又由条件bc是直径,可得ob=oc,由此联想到与直径有关的定理"垂径定理'和"直径所对的圆周角是直角'等.于是想到可能作帮助线ab.从结论想,要*ac⊙op,假如连结ab交op于o,转化为*caab,opab,或从od为⊙abc的中位线来考虑.也可考虑通过平行线的判定定理来*,可获得多种*法.*法一.如图.连结ab.pa,pb分别切⊙o于a,bpa=pbapo=bpoopab又⊙bc为⊙o直径acabac⊙op(同学板书)*法二.连结ab,交op于dpa,pb分别切⊙o于a、bpa=pbapo=bpoad=bd又⊙bo=dood是⊙abc的中位线ac⊙op*法三.连结ab,设op与ab弧交于点epa,pb分别切⊙o于a、bpa=pbopab=c=pobac⊙op反思:老师引导同学比较以上*法,激发同学的学习爱好,培育同学敏捷应用学问的力量.例2、圆的外切四边形的两组对边的和相等.(分析和解题略)反思:(1)例3事实上是圆外切四边形的一个重要*质,请同学记住结论.(2)圆内接四边形的*质:对角互补.p120练习:练习1填空如图,已知⊙o的半径为3厘米,po=6厘米,pa,pb分别切⊙o于a,b,则pa=_______,apb=________练习2已知:在⊙abc中,bc=14厘米,ac=9厘米,ab=13厘米,它的内切圆分别和bc,ac,ab切于点d,e,f,求af,ad和ce的长.分析:设各切线长af,bd和ce分别为x厘米,y厘米,z厘米.后列出关于x,y,z的方程组,解方程组便可求出结果.(解略)反思:解这个题时,除了要用三角形内切圆的概念和之外,还要用到解方程组的学问,是一道综合*较强的计算题.通过对本题的讨论培育同学的综合应用学问的力量.(三)小结1、提出问题同学归纳(1)这节课学习的详细内容;(2)学习用的数学思想方法;(3)应留意哪些概念之间的区分?2、归纳基本图形的结论3、学习了用代数方法解决几何问题的思想方法.(四)作业教材p131习题7.4a组1.(1),2,3,4.b组1题.探究活动图中找错你能找出(图1)与(图2)的错误所在吗?在图2中,p1a为⊙o1和⊙o3的切线、p1b为⊙o1和⊙o2的切线、p2c为⊙o2和⊙o3的切线.提示:在图1中,连结pc、pd,则pc、pd都是圆的直径,从圆上一点只能作一条直径,所以此图是一张错图,点o应在圆上.在图2中,设p1a=p1b=a,p2b=p2c=b,p3a=p3c=c,则有a=p1a=p1p3+p3a=p1p3+c①c=p3c=p2p3+p3a=p2p3+b②a=p1b=p1p2+p2b=p1p2+b③将②代人①式得a=p1p3+(p2p3+b)=p1p3+p2p3+b,a-b=p1p3+p2p3由③得a-b=p1p2得p1p2=p2p3+p1p3p1、p2、p3应重合,故图2是错误的。

切线长定理(教案、课后反思、导学案)

切线长定理(教案、课后反思、导学案)

第3课时切线长定理【知识与技能】理解掌握切线长的概念和切线长定理,了解三角形的内切圆和三角形的内心等概念.【过程与方法】利用圆的轴对称性帮助探求切线长的特征.结合求证三角形内面积最大的圆的问题,掌握三角形内切圆和内心的概念.【情感态度】经历观察、实验、猜想、证明等数学活动过程,发展合情推理能力.【教学重点】切线长定理及其应用.【教学难点】内切圆、内心的概念及运用.一、情境导入,初步认识探究如图,纸上有一⊙O,PA为⊙O的一条切线,沿着直线PO对折,设圆上与点A重合的点为B,回答下列问题:(1)OB是⊙O半径吗?(2)PB是⊙O的切线吗?(3)PA、PB是什么关系?(4)∠APO和∠BPO有何关系?学生动手实验,观察分析,合作交流后,教师抽取几位学生回答问题.分析:OB与OA重合,OA是半径,∴OB也是半径.根据折叠前后的角不变,∴∠PBO=∠PAO=90°(即PB⊥OB),PA=PB,∠POA=∠POB;∠APO=∠BPO.而PB经过半径OB的外端点,∴PB是⊙O的切线.二、思考探究,获取新知1.切线长的定义及性质切线长:经过圆外一点作圆的切线,这点和切点之间的线段的长叫做这点到圆的切线长.我们知道圆的切线是直线,而切线长是一条线段长,不是直线.如右图中,PA、PB是⊙O的两条切线,∴OA⊥PA,OB⊥PB.又OA=OB,OP=OP,∴Rt△AOP≌Rt△BOP,∴PA=PB,∠AOP=∠BOP,∠APO=∠BPO.由此我们得到切线长定理:从圆外一点可以引圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角.【教学说明】这个定理要让学生分清题设和结论.题设:过圆外一点作圆的切线.结论:①过圆外的这一点可作该圆的两条切线.②两条切线长相等.③这一点和圆心的连线平分两条切线的夹角.猜想:在上图中连接AB,则OP与AB有怎样的关系?分析:∵PA、PB是⊙O的切线,A、B是切点.∴PA=PB,∠OPA=∠OPB,∴OP⊥AB,且OP平分AB.2.三角形的内切圆思考如图是一张三角形的铁皮,如何在它上面截下一块圆形的用料,并且使圆的面积尽可能大呢?【教学说明】引导学生分析作图的关键,假设圆已经作出,圆心应满足什么条件,怎样根据这些条件确定圆心?圆心确定后,如何确定半径?教师引导,学生要互相讨论来解决这些问题.假设符合条件的圆已作出,那么这个圆与△ABC的三边都相切,这个圆的圆心到△ABC三边的距离都等于半径.又因为我们在角平分线这节中学过,三角形的三条角平分线交于一点,并且这个点到三条边的距离相等.因此,在△ABC 中,作∠B,∠C的角平分线BM和CN,它们相交于点I,则点I到AB、BC、AC的距离相等.∴以I为圆心,点I到BC的距离ID为半径作圆,则⊙I与△ABC 三边相切.内切圆:与三角形各边都相切的圆叫做三角形的内切圆.内切圆的圆心是三角形三条角平分线的交点,叫做三角形的内心.三角形的内心到三角形三边的距离相等.【教学说明】要让学生对照图形理解三角形的内切圆的概念,并与三角形的外接圆进行比较.“接”和“切”是说明多边形的顶点和边与圆的关系;多边形的顶点都在圆上叫“接”,多边形的边都与圆相切叫“切”.三、典例精析,掌握新知例1 教材第100页,例2(本题较简单,教师指点,可由学生自主完成)例2 如图,P为⊙O外一点,PA、PB分别切⊙O于A、B两点,连接OP,交⊙O于C,若PA=6.PC=23.求⊙O的半径OA及两切线PA、PB的夹角.分析:连接OA,设AO=x,在Rt△AOP中利用勾股定理求出x,由切线长定理知∠APO=12∠APB.求出∠APO就可得∠APB.解:连接AO,∵PA是⊙O的切线,∴PA⊥OA,△PAO为直角三角形.设OA=x,则OC=x,在Rt△PAO中,OA2+PA2=OP2,∴x2+6232,解得3.∴33AOP=60°,∠APO=30°.∴∠APB=2∠APO=2×30°=60°.∴⊙O的半径OA为3PA、PB的夹角为60°.【教学说明】例1、例2是利用切线长定理进行计算,在解题过程中,我们常常用方程来解决几何问题.例3如图,在△ABC中,I是内心,∠BIC=100°,则∠A=____.分析:∵I是内心.∴BI,CI分别是∠ABC,∠ACB的平分线.∴∠ABC+∠ACB=2(∠IBC+∠ICB).又∵∠BIC=100°,∴∠IBC+∠ICB=80°.∴∠ABC+∠ACB=160°.∴∠A=180°-160°=20°.【教学说明】指导学生利用三角形内心的性质解决问题.四、运用新知,深化理解课本第100页练习1、2题.【教学说明】教师引导学生完成课本练习.五、师生互动,课堂小结这节课学习了哪几个重要知识点?你有哪些疑惑?【教学说明】学生自主交流并发言总结,教师予以补充和点评,让学生完整地领会本堂课的知识要点.1.布置作业:从教材“习题24.2”中选取.2.完成练习册中本课时练习的“课后作业”部分.本节课的教学是直线与圆的位置关系的继续,从探究切线长定理开始,通过如何作一个三角形的内切圆,引出三角形的内切圆和三角形内心的概念,经历这些探究过程,能使学生掌握图形的基本知识和基本技能,并能解决简单的问题.24.2.2直线和圆的位置关系第3课时切线长定理一、新课导入1.导入课题:情景:如图,纸上有一个⊙O, PA为⊙O的一条切线,沿着直线PO将纸对折,设与点A重合的点为B.问题1:OB是⊙O的半径吗?PB是⊙O的切线吗?问题2:猜一猜图中的PA与PB有什么关系?∠APO与∠BPO有什么关系?这节课我们继续探讨圆的切线的性质——切线长定理(板书课题).2.学习目标:(1)知道什么是圆的切线长,能叙述并证明切线长定理.(2)会作三角形的内切圆,知道三角形内心的含义和性质.(3)能用切线长定理和三角形内心的性质来解决简单的问题.3.学习重、难点:重点:切线长定理及其运用.难点:切线长定理的应用及如何作三角形的内切圆.二、分层学习1.自学指导:(1)自学内容:教材第99页“思考”之前的内容.(2)自学时间:8分钟.(3)自学方法:完成探究提纲.(4)探究提纲:①过⊙O外一点P画⊙O的切线.动手画图,看看这样的切线能作几条?能作两条.②在经过圆外一点的圆的切线上,这点和切点之间线段的长叫做这点到圆的切线长,如图的线段PA与线段PB的长就是点P到⊙O的切线长.③PA与PB,∠APO与∠BPO有什么关系?你能证明它们成立吗?PA=PB,∠APO=∠BPO.可利用HL证明Rt△AOP≌Rt△BOP,进而得出结论.④分别用文字语言和几何语言写出切线长定理.文字语言:从圆外一点引圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角.几何语言:∵PA切⊙O于点A,PB切⊙O于点B.∴PA = PB,OP平分∠APB .2.自学:学生结合自学指导进行自学.3.助学:(1)师助生:①明了学情:看学生能否顺利完成定理的证明.②差异指导:根据学情确定指导方案.(2)生助生:小组内相互交流、研讨.4.强化:(1)切线长定理及它的证明.(2)交流:在提纲④的几何图形中,若连接AB交OP于点C,则图中有哪些垂直关系?哪些全等三角形?若设线段OP与⊙O的交点为D,且PA=4,PD=2,你能求出⊙O 的半径长吗?解:AB⊥OP,OA⊥AP,OB⊥BP;△OAC≌△OBC,△OAP≌△OBP,△ACP≌△BCP.设⊙O 的半径为r,则OP=OD+PD=r+2,在Rt△OAP中,OA2+AP2=OP2,即r2+42=(r+2)2.解得r=3. 即⊙O的半径长为3.1.自学指导:(1)自学内容:教材第99页“思考”到第100页的内容.(2)自学时间:8分钟.(3)自学方法:阅读,画图,推理,猜想.(4)自学参考提纲:①如图,作与△ABC的三边都相切的⊙I.因为⊙I与BA,BC都相切,所以点I在∠ABC的平分线上;因为⊙I与CA,CB都相切,所以点I在∠ACB的平分线上;所以点I是∠ABC与∠ACB平分线的交点.a.作∠ABC的平分线,∠ACB的平分线,交于点I;b.过I作ID⊥BC于D,以I 为圆心,ID为半径画圆,则⊙I即为所求.②三角形的内切圆是指与三角形各边都相切的圆,内切圆的圆心叫三角形的内心.它是三角形三条角平分线的交点,它到各条边的距离都相等.③已知:如图,在△ABC中,AB=9cm,BC=14cm,CA=13cm,它的内切圆分别和BC、AC、AB切于点D、E、F,求AF、BD和CE的长.设AF=x,则AE=x,CD=CE=AC-AE=13-x,BD=BF=AB-AF=9-x.由BD+CD=BC,可得(13-x)+(9-x)=14.解得x=4.因此AF=4cm,BD=5cm,CE=9cm.2.自学:同学们可结合自学指导进行自学.3.助学:(1)师助生:①明了学情:关注学生是否清楚三角形内切圆的作图思路.②差异指导:注意帮助学生理清前后知识间的联系.(2)生助生:生生互动,交流,研讨.4.强化:(1)三角形内切圆的作图和内心的概念和性质.(2)如图,△ABC中,∠ABC=50°,∠ACB=75°,点O是△ABC的内心,求∠BOC的度数.解:∵点O是△ABC的内心,∴OB平分∠ABC,OC平分∠ACB,∴∠OBC+∠OCB=12∠ABC+12∠ACB=12×(50°+75°)=62.5°.∴∠BOC=180°-∠OBC-∠OCB=117.5°.三、评价1.学生的自我评价(围绕三维目标):这节课你学到了哪些知识?掌握了哪些解题方法?2.教师对学生的评价:(1)表现性评价:点评学生学习的态度、积极性、学习的方法、效果及存在的问题等.(2)纸笔评价:课堂评价检测.3.教师的自我评价(教学反思):本节课的教学是直线与圆的位置关系的继续,从探究切线长定理开始,通过如何作一个三角形的内切圆,引出三角形的内切圆和三角形内心的概念,经历这些探究过程,能使学生掌握图形的基本知识和基本技能,并能解决简单的问题.(时间:12分钟满分:100分)一、基础巩固(70分)1.(10分) 如图,△ABC的内切圆⊙O与BC,CA,AB分别相切于点D,E,F,且AB=11cm,BC=14cm,CA=13cm,则AF的长为(C)A.3cmB.4cmC.5cmD.9cm2.(10分) 如图,点O是△ABC的内心,若∠BAC=86°,则∠BOC=(C)A.172°B.130°C.133°D.100°3.(10分)如图,已知VP、VQ为⊙T的切线,P、Q为切点,若VP=3cm,则VQ=3cm.3.若∠PVQ=60°,则⊙T的半径PT=cm4.(20分)如图,PA、PB是⊙O的切线,A、B为切点,AC是⊙O的直径,∠BAC=25°,求∠P的度数.解:∵PA是⊙O的切线.∴∠OAP=90°.∵∠BAC=25°,∴∠BAP=65°.∵OA=OB,∴∠OBA=∠OAB=25°.∵PB是⊙O的切线,∴∠OBP=90°,∴∠ABP=65°.∴∠P=180°-∠BAP-∠ABP=50°.5.(20分)如图,一个油桶靠在墙边,量得WY=1.65m, 并且x Y⊥WY,这个油桶底面半径是多少?解:设圆心为O,连接OW,O x.∵YW,Y x均是⊙O的切线,∴OW⊥WY,O x⊥x Y,又∵x Y ⊥WY ,∴∠OWY =∠O x Y =∠WY x =90°,∴四边形OWY x 是矩形,又∵OW=O x .∴四边形OWY x 是正方形.∴OW=WY=1.65m.即这个油桶底面半径是1.65m.二、综合应用(15分)6.(15分)△ABC 的内切圆半径为r ,△ABC 的周长为l ,求△ABC 的面积.(提示:设△ABC 的内心为O ,连接OA 、OB 、OC )解:设△ABC 的内心为O ,连接OA 、OB 、OC.则ABC AOB BOC AOC S S S S =++ ()AB r BC r AC r AB BC AC r lr =++=++=1111122222. 三、拓展延伸(15分)7.(15分)如图,AB 、BC 、CD 分别与⊙O 相切于E 、F 、G 三点,且AB ∥CD ,BO =6cm ,CO =8cm ,求BC 的长.解:∵AB 、BC 、CD 分别与⊙O 相切,则OB 平分∠EBF ,DC 平分∠FCG .∵AB ∥CD,∴∠EBF+∠GCF=180°.∴∠BOC=180°-∠OBF-∠OCF=180°-12(∠EBF+∠GCF)=90°.∴在Rt △BOC 中,BC=OB2+OC2=62+82=10(cm ).。

数学切线长定理的教案设计及实践

数学切线长定理的教案设计及实践

教案设计及实践:数学切线长定理一、教学目标1.掌握切线长的计算方法;2.理解切线长的定义和数学切线长定理的概念;3.理解并应用数学切线长定理,解决相关问题;4.培养学生的数学思维、逻辑思维和创造性思维。

二、教学重点和难点1.重点:切线长的计算方法和数学切线长定理的概念及应用;2.难点:切线长的证明和数学切线长定理的应用。

三、教具和教材教具:黑板、彩色粉笔、直角三角形模型教材:高中数学教科书《数学》(人教版)四、教学过程1.导入(5分钟)教师向学生介绍切线和圆的关系,并出示一个圆和一根切线的图片。

2.过程1:切线长的计算(20分钟)从三角函数的角度出发,引入切线的计算公式,让学生了解如何计算切线的长度,以及掌握计算方法。

3.过程2:数学切线长定理的概念和证明(40分钟)从图像的角度出发,让学生了解什么是数学切线长定理,以及如何证明数学切线长定理。

这是难点环节,需要教师详细讲解证明过程,并让学生参与讨论。

4.过程3:数学切线长定理的应用(20分钟)让学生根据数学切线长定理的应用,解决一些实际问题,让学生巩固应用能力。

5.练习(20分钟)让学生进行相关题目的练习。

6.总结(5分钟)教师对今天的教学进行总结。

五、教学反思教学中,教师注重了理论与实践的结合,通过图像的距离和切线的长度,引入了数学切线长定理。

同时教师还注重学生的参与性,让学生自己练习问题,广泛地提升了学生的数学思维和逻辑思维能力。

但是,这种教学方法不够丰富,只是注重了理论的讲解和应用的实践。

基础上,可以加入一些实验和应用场景,来增加学生的兴趣和动力。

需要不断地更新教学方法和教学内容,配合学生不断变化的学习需求,提高教学质量。

切线长定理教案(优秀教案)

切线长定理教案(优秀教案)

百度文库- 让每个人平等地提升自我《切线长定理》教案课题:§6.10切线长定理1、教学目标:(1)、知识目标:了解切线长的定义,掌握切线长定理,并利用它进行有关的计算;在运用切线长定理的解题过程中,进一步渗透方程的思想,熟悉用代数的方法解几何题。

(2)、能力目标:经历画图、度量、猜想、证明等数学活动过程,发展合情推理能力和初步的演绎推理能力,培养学生有条理地、清晰地阐述自己的观点的能力。

(3)、素质目标:初步学会从数学的角度提出问题、理解问题,并能运用所学的知识和技能解决问题,发展应用意识。

在解题中形成解决问题的基本策略,体验问题策略的多样性,发展实践能力与创新精神。

(4)、情感与态度目标:了解数学的价值,对数学有好奇心与求知欲,在数学学习活动中获得成功的体验,锻炼克服困难的意志,建立自信心。

2、教学重点:理解切线长定理3、教学难点:应用切线长定理解决问题4、教学方法:教学方法采用引导发现法,辅之以讨论法。

利用“问题情境——建立数学模型——解释、应用、拓展”的模式进行教学。

本节课是概念、定理、解题的教学,因此,要利用概念模式元、定理教学模式元、解题教学模式元的有机组合,完成本节课的教学。

5、课型:综合课6、教具:多媒体计算机、自制圆半径测量仪、悠悠球7、学具:刻度尺2把、量角器、圆规、水杯、强力胶8、教学实施过程:百度文库- 让每个人平等地提升自我教学过程教学内容师生相互交往设计意图一、激发情趣导入新课同学们,请看这是什么玩具?(悠悠球)对,这是大家非常喜爱的一种玩具。

(教师演示一次)可是,大家在玩悠悠球时是否想到过它的转动过程中还包含着数学知识呢?是什么知识呢?我们来看一下它的构造。

(拆开球,出示球的剖面)这是悠悠球在转动的一瞬间的剖面,从中你能抽象出什么样的数学图形?(球的整体和中心轴可分别抽象成圆形,被拉直的线绳可抽象成线段。

)这些图形位置关系怎样?(两圆为同心圆,线段所在直线和小圆相切)[在这两问中,如果学生想不到球的整体时,这个圆可以不提]线段的两个端点和小圆的位置关系怎样?(一个是切点在小圆上,一个在小圆外)我们可以看出,球与手的距离就决定于这条线段的长度。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《切线长定理》教学设计与反思
一、课题:切线长定理
二、教学目标
1、了解切线长定义,掌握切线长定理,并利用它进行有关计算。

2、在运用切线长定理的解题过程中,进一步渗透方程的思想,熟悉用代数
的方法解几何题。

三、重点:理解切线长定理。

四、难点:灵活应用切线长定理解决问题。

五、教法学法指导::观察、实验、讨论、合作研究
教学过程:
一、复习引入:
1.切线的判定定理和性质定理.
2.过圆上一点可作圆的几条切线?过圆外一点呢?过圆内一点呢?
(通过复习切线的判定定理和性质定理.引出课题)
二、合作探究
1、切线长定义:经过圆外一点作圆的切线,这点和切点之间的线段的长叫
做这点到圆的切线长。

2、切线长定理
(1)操作:纸上一个⊙O,PA是⊙O的切线,•连结PO,•沿着直线PO将纸对折,
设与点A重合的点为B。

OB是⊙O 的半径吗?PB是⊙O的切线吗?猜一猜PA
与PB的关系?∠APO与∠BPO呢?
(学生大胆的操作,大胆尝试,并用文字叙述出来,培养学生的语言表达能力和动手操作能力。


从上面的操作及圆的对称性可得:
从圆外一点可以引圆的两条切线,它们的切线长相等,这点和圆心的连线平分两条切线的夹角.
(2)几何证明.
如图,已知PA、PB是⊙O的两条切线.求证:PA=PB,∠APO=∠BPO.
切线长定理:从圆外一点可以引圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角.
3、三角形的内切圆
思考:如图是一张三角形的铁皮,如何在它上面截下一块圆形的铁片,并且使圆
的面积尽可能大呢?
(学生积极思考,踊跃发言,说出自己的不同见解。


三角形的内切圆定义:与三角形各边都相切的圆叫做三角形的内切圆
三角形的内心:三角形内切圆的圆心,即三角形三条角平分线的交点叫做内心。

(1)图中共有几对相等的线段
(2)若AF=4、BD=5、CE=9,则△ABC周长为____
例如图,△ABC的内切圆⊙O与BC,CA,AB分别相切于点D,E,F, 且AB=9cm BC=14cm,CA=13cm,求AF,BD,CE的长。

若S
=18,求⊙O的半径。

△ABC
三、巩固练习
1、如图1,PA、PB是⊙O的两条切线、A、B为切点。

PO交⊙O于E点
(1)若PB=12,PO=13,则AO=____
(2)若PO=10,AO=6,则PB=____
(3)若PA=4,AO=3,则PO=____;PE=_____.
(4)若PA=4,PE=2,则AO=____.
2、如图2,PA、PB是⊙O的两条切线、 A、B为切点,CD切⊙O于E交PA、PB 于C、D两点。

(1)若PA=12,则△PCD周长为____。

(2)若△PCD周长=10,则PA=____。

(3)若∠APB=30°,则∠AOB=_____,M是⊙O上一动点,则∠AMB=____
3、如图Rt△ABC的内切圆分别与AB、AC、BC、相切于点E 、D、F,且∠ACB=90°,AC=3、BC=4,求⊙O的半径。

四、小结归纳
本节课你有何收获?你学到了哪些知识?
(给充足的时间让学生谈一谈收获和感受,增强学生学习的自信心)。

五、作业设计
教材101页第3、4题
六、板书设计
1、切线长:经过圆外一点作圆的切线,这点和切点之间的线段的长叫做这
点到圆的切线长。

2、切线长定理:从圆外一点可以引圆的两条切线,它们的切线长相等,这
一点和圆心的连线平分两条切线的夹角.
3、三角形的内切圆:与三角形各边都相切的圆叫做三角形的内切圆
4、三角形的内心:三角形内切圆的圆心,即三角形三条角平分线的交点
5、内心的性质:内心到三角形三边的距离相等。

教学反思:
本节课是直线与圆的位置关系中的第三课时,是直线与圆的位置关系中的重点内容。

是在学习了切线的性质和判定的基础上继续对切线的性质的研究,是
在垂径定理之后对圆的对称性又一次的认识。

体现了图形的认识、图形的变换、
图形的证明的有机结合。

在教学过程中,我通过复习切线的性质与判定定理引出问题:过圆上一点可作圆的几条切线?过圆外一点呢?过圆内一点呢?进而让学生开始动手操作
自己画图并探究,过圆外的一点所能够引的两条切线长有何关系,在学生利用并
结合圆的轴对称有了一定的感性认识的基础上,丢出问题可否从理论上进行证
明,引导学生从具体的情景和实践操作中找出条件,并挖掘出基本图形,尝试寻
找解决问题的关键和方法。

个人认为对本课的重点学习内容,能组织学生自主观
察探究证明并能提炼基本图形,对重要的结论及时总结。

为了更好的贯彻落实本
课的重难点我设计了几组填空题,用这个简单的题型力争多角度的呈现相关知识
点。

从课堂的效果来看学生对基本图形的提炼、基本结论的掌握还是比较到位。

另外,通过设置一定的变式解答题目,拓展学生的发散思维及创新能力,激发学
生的兴趣,真正体验成功的快乐。

通过本节课,使我更进一步的认识到教师在教学过程中不能闭门造车,以自己的固有知识与过往教学经验来权衡学生,更应该注重学生的实际水平与认知能力,在今后的练习中更加注重双基,设置适当的难度与梯度。

相关文档
最新文档